Coronary artery occlusions diagnosed by transthoracic Doppler
Journal article, Peer reviewed
Published version
View/ Open
Date
2014Metadata
Show full item recordCollections
Original version
10.1186/1476-7120-12-12Abstract
Background
Our aim was to assess whether anterograde flow velocities in septal perforating branches could identify an occluded contralateral coronary artery, and to assess the feasibility and accuracy of diagnosing occlusions in the three main coronary arteries by the combined use of several noninvasive parameters indicating collateral flow.
Methods
A total of 108 patients scheduled for coronary angiography because of chest pain or acute coronary syndromes were studied using transthoracic Doppler echocardiography.
Results
Anterograde peak diastolic flow velocities (pDV) in septal perforating branches were higher in patients with angiographic occluded contralateral artery compared with corresponding velocities in patients without significant disease in the contralateral artery (0.80 ± 0.31 m/sec versus 0.37 ± 0.13 m/sec, p < 0.001). Receiver operating characteristic curve showed pDV ≥ 0.57 m/sec to be the optimal cutoff value to identify occluded contralateral artery, with a sensitivity of 79% and a specificity of 69%. Demonstration of at least one positive parameter (retrograde flow in main coronary arteries, reversed flow in septal perforating and left circumflex marginal branches, pDV ≥ 0.57 m/sec, or demonstration of other epicardial or intramyocardial collaterals) indicating collateral flow to an occluded main coronary artery had sensitivity, specificity, positive and negative predictive value of 89%, 94%, 63%, and 99%, respectively, for detection of a coronary occlusion. With this combined use of several parameters, 25 of 28 coronary occlusions were identified.
Conclusions
By investigating several parameters indicating collateral flow, we were able to identify most of the main coronary occlusions in the patient cohort. Furthermore, our study demonstrated that coronary artery occlusions may result in complex and diverging coronary pathophysiology depending on which coronary artery segment is occluded and the extent of accompanying coronary artery disease.