• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Inversion of Time-lapse Seismic Data using Bimodal Prior Models

Amaliksen, Ingvild
Master thesis
Thumbnail
View/Open
716052_FULLTEXT01.pdf (5.476Mb)
716052_COVER01.pdf (184.1Kb)
URI
http://hdl.handle.net/11250/259275
Date
2014
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1390]
Abstract
The objective of the current study is to make inference about reservoir properties from seismic reflection data. The inversion problem is cast in a Bayesian framework, and we compare and contrast three prior model settings; a Gaussian prior, a mixture Gaussian prior and a generalized Gaussian prior. A Gauss-linear likelihood model is developed and by the convenient properties of the family of Gaussian distributions, we obtain the explicit expressions for the posterior models. The posterior models define computationally efficient inversion methods that can be used to make predictions of the reservoir variables while providing an uncertainty assessment. The inversion methodologies are tested on synthetic seismic data with respect to porosity, water saturation, and change in water saturation between two time steps. The mixture Gaussian and generalized Gaussian posterior models show encouraging results under realistic signal-noise ratios.
Publisher
Institutt for matematiske fag

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit