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Abstract

The objective of the current study is to make inference about reservoir
properties from seismic reflection data. The inversion problem is cast in
a Bayesian framework, and we compare and contrast three prior model set-
tings; a Gaussian prior, a mixture Gaussian prior and a generalized Gaussian
prior. A Gauss-linear likelihood model is developed and by the convenient
properties of the family of Gaussian distributions, we obtain the explicit
expressions for the posterior models. The posterior models define compu-
tationally efficient inversion methods that can be used to make predictions
of the reservoir variables while providing an uncertainty assessment. The
inversion methodologies are tested on synthetic seismic data with respect
to porosity, water saturation, and change in water saturation between two
time steps. The mixture Gaussian and generalized Gaussian posterior models
show encouraging results under realistic signal-noise ratios.
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Sammendrag

Målet med denne studien er å bruke Bayesiansk inversjon til å predikere
reservoaregenskaper fra seismiske refleksjonsdata. Vi introduserer en lineær
likelihood modell og evaluerer egenskapene til posteriori fordelingen under
henholdsvis en Gaussisk, en mix Gaussisk og en generalisert Gaussisk pri-
ormodell. Egenskapene til den Gaussiske familien av fordelinger sikrer at
vi kan finne eksplisitte utrykk for posteriorimodellene. Posteriorimodellene
definerer raske inversjonmetodikker som kan brukes til å predikere reser-
voaregenskapene og til å tallfeste usikkerheten i dem. Vi tester metodikken
p̊a syntetiske seismiske data hvor vi predikerer porositet, vannmetning og
endring i vannmetning mellom to tidssteg. Inversjonsresultatene for den mix
Gaussiske og generaliserte Gaussiske modellen gir oppmuntrende resultater,
selv under realistiske signal-støyforhold.
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Chapter 1

Introduction

Reservoir characterization and modeling are important tools in the devel-
opment and production of oil and gas from hydrocarbon reservoirs. The
purpose of reservoir modeling is to map the reservoir, and predict reservoir
behavior during production. A robust and accurate reservoir model will pro-
vide crucial information that may increase recovery and extend production.
The average global hydrocarbon recovery rate is approximately 30%, which
is what can be produced without introducing expensive enhanced oil recov-
ery methods. In the past, production from oil fields was normally completed
without application of enhanced oil recovery methods, as oil could be pro-
duced at a lower cost elsewhere. However, during the last decades the world’s
energy demand has increased to a level where the traditional cheaper meth-
ods are no longer sufficient, and the oil price has risen from a level of 20
USD/BBL in the nineties to its current level at around 100 USD/BBL. As a
consequence, investment in enhanced oil recovery is crucial. With the current
high oil price, the value of every extra percent recovered from the Norwegian
Shelf amounts to approximately 200 billion NOK. It is therefore a good in-
vestment to ensure higher recovery rates by collecting and utilizing as much
information as possible from the reservoirs prior to and during production.

The input in a reservoir model includes the structural details of the container
and the reservoir and rock properties which include porosity, permeability,
saturations and pressure. The reservoir in an oil field is located deep beneath
the surface of the Earth. The only available samples and measurements are
log and core data taken at certain locations which may, or may not, be repre-
sentative for the whole field. We therefore have to rely on indirect measure-
ments such as seismic data. This is particularly important in offshore areas
where wells are extremely expensive while seismic data are relatively easy to
acquire. Subsurface geometries are resolvable from seismic data, and since
the rock properties determine the velocity of the reflected P- and S-waves,
the seismic survey will indirectly give information about the properties and
the constituents of the reservoir rock.
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CHAPTER 1. INTRODUCTION

Recent developments in acquisition and processing techniques have drasti-
cally improved the quality of seismic data. Seismic surveys are now playing
an increasingly important role in reservoir management as it is possible to
extract quantitative rock and fluid properties from the reflection data. The
introduction of time-lapse seismic has introduced an option for the industry
to investigate changes in water saturation and pressure over time in pro-
ducing fields. The drainage efficiency and the effect of injected fluids into
the reservoir can therefore be evaluated while production is still ongoing.
However, interpretation of rock properties from seismic data is still associ-
ated with uncertainty since the recorded effect may not have a unique cause.
Variables like porosity, compaction, pressure, water saturation, clay content
and lithology are all important factors, and calibration to adjacent wells is
very important to optimize the robustness of any predictions.

The problem at hand can be formulated as an inverse problem where we
want to make inference about the cause of an effect based on observations of
the effect only. Because the observations are subject to uncertainty due to
random and systematic errors, the problem should be evaluated in a proba-
bilistic setting.

During the last decade, innovative new seismic inversion techniques have been
presented. In Landrø (2001), expressions for the change in AVO data as a
function of the change in saturation and pressure is developed. A follow-up
to this article is given in Landrø (2002), where a deterministic uncertainty
analysis is presented based on the Delta method. In Landrø (2002) it is as-
sumed that all the variables are independent, which is a major simplification.

Another approach is to evaluate the inverse problem in a Bayesian setting.
This provides a framework where we can impose a correlation structure
and incorporate prior knowledge about the reservoir variables. In Bachrach
(2006) an MCMC algorithm is used to evaluate the posterior model for the
water saturation and porosity. A Bayesian approach for saturation-pressure
discrimination is also studied in Veire et al. (2006) and Veire et al. (2007)
where a Gauss-linear likelihood together with a Gaussian prior gives an an-
alytically tractable solution to the inverse problem. The most thoughtful
study of the subject is perhaps found in Grana (2013) which introduces sev-
eral methodologies for seismic reservoir characterization.
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In the current thesis the inverse problem is cast in a Bayesian framework.
The objective is to obtain the posterior distribution for the reservoir vari-
ables from the time-lapse AVO data. The current thesis draws inspiration
from the prior model setup in Grana (2013), but we want to avoid using
sampling methods when evaluating the posterior model, which restrains the
form of our likelihood model. Since the seismic data sets are very large,
the computational efficiency of the methodology is crucial. We therefore
seek prior-likelihood model couples that will keep the posterior analytically
tractable. We evaluate the inverse problem with a Gaussian, a mixture Gaus-
sian and a generalized Gaussian prior. The inspiration for modeling the
problem with the respective priors comes from Grana et al. (2012) and Rim-
stad and Omre (2012). In order to keep the posterior analytically tractable
we impose a Gauss-linear likelihood inspired by Buland and Omre (2003),
where well known rock physics models are linearized in order to find a linear
expression for the forward model. We then use the convenient mathematical
properties of the Gaussian assumption to obtain the posterior models.

The thesis proceeds as follows: In Chapter 2 the background theory needed
to develop the forward model between the reservoir variables and the seismic
variables is presented. In Chapter 3 the linear likelihood model and the three
prior models are derived, and we develop the corresponding posterior models.
In Chapter 4, the methodology is tested and evaluated on a synthetic data
set and in Chapter 5 we draw conclusions and make some recommendations
for further work.
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Chapter 2

Theory

In this chapter the background theory used to develop the forward model
between the reservoir variables and the seismic variables is presented. This
includes a summary of rock-fluid physics and geophysics (Section 2.1-2.2)
and a brief introduction to Bayesian inversion (Section 2.3-2.4).
All attributes considered in Section 2.1 are pseudo point processes where
the property is defined around a small volume surrounding the point. The
attribute is dependent on the horizontal direction x, the vertical direction τ
and time of observation t.

2.1 Rock and fluid physics

A wave is a disturbance that travels through a medium by inducing local
changes in stress and strain. Inside the medium, the wave actuate either a
compressional or a shear force. These two types of waves are called P-waves
and S-waves respectively. The P-wave travels through all types of material
since any media is subject to compression. The S-wave on the other hand
depends upon a resistance to shear force, which is not present in liquids and
gasses. The propagation speed of a wave is determined by the density and
elasticity of the medium. The elastic moduli is given by the bulk modulus
k which measure resistance to uniform compression, and shear modulus g
which describe responds to shearing forces. The velocities in a saturated,
porous medium are expressed as

vp =

√
ks + 4

3
gs

ρ
, (2.1)

vs =

√
gs
ρ
. (2.2)

In this expression ks and gs denote the saturated bulk and shear modulus
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CHAPTER 2. THEORY

and ρ denotes bulk density. If the medium consists of a porous matrix where
the voids are filled with brine and oil, the density is found by a weighted
average of the porosity φ and water saturation sw,

ρ = φ (ρwsw + ρo(1− sw)) + (1− φ)ρm, (2.3)

where ρw is the density of brine and ρo is the density of oil. From this
expression it is apparent that the porosity gives the fraction of fluid in the
rock, and the water saturation gives the fluid composition. A simplistic
display of the composites in a water saturated reservoir is shown in Figure
2.1.

Figure 2.1: Composition in a water saturated reservoir

In order to estimate the wave velocities we need to quantify the saturated
moduli. This is often difficult in practice. The pore space of a rock is
typically occupied by several fluid phases and the moduli depend on the ge-
ometric details, the volume fractions and the individual elastic moduli of
the constituents. The estimation of elastic properties are at study in rock
physics model theory, which in Avseth et al. (2010, p. 32) is described as
”continuum-mechanics approximations of the elastic, viscoelastic and pore-
lastic properties of the rock”. The assumptions and constraints of the models
presented in the following are found in Mavko et al. (2003) and Avseth et al.
(2010).

An expression for the saturated bulk and shear modulus is provided by the
Gassmann model, which relates the bulk modulus of a rock to its matrix and
fluid properties by

ks = kd +

(
1− kd

km

)2

1−φ
km

+ φ
kf
− kd

k2m

. (2.4)
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2.1. ROCK AND FLUID PHYSICS

Here, kd denotes the bulk modulus of the dry porous rock, km is the is the
bulk modulus of the solid mineral grain and kf is the bulk modulus of the pore
fluid. In the Gassmann model it is assumed that the bulk modulus is sensitive
to pore fluid composition, while the shear modulus is not. The saturated
shear modulus gs is in other words unchanged during fluid substitution

gs = gd, (2.5)

where gd is the dry shear modulus. This is one of the fundamental concepts
in the application of the Gassmann model. From Expression 2.4 we deduce
that the saturated media is stiffer under compression compared to the dry
media. This is because the addition of pressure in the pore fluid resists vol-
umetric strain.

In order to find the saturated moduli from the Gassmann model we need
to quantify kf , kd, km and gd. If we know the constituents and the corre-
sponding volume fractions in a reservoir rock, then according to Mavko et al.
(2003), we can find an upper and lower bound for any effective modulus by
noting that it is impossible to have a mixture of constitutes that is elastically
stiffer than the arithmetic average of the constituent moduli, and likewise,
that it is impossible to have a mixture of constitutes that is elastically softer
than the harmonic average of the constituent moduli. These two principles
define the Voigt–Reuss–Hill bounds for an arbitrary modulus m.

Voigt upper bound:

mv =
n∑
i=1

αimi. (2.6)

Reuss lower bound:

(mr)−1 =
n∑
i=1

αim
−1
i . (2.7)

Voigt–Reuss–Hill average :

mvrh =
1

2
(mv +mr). (2.8)

Here, αi is the volume fraction of the i’th constituent and mi is the modulus
of the i’th constituent.
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CHAPTER 2. THEORY

If the reservoir is only filled with brine and oil, the Reuss lower bound can
be used to approximate kf in the Gassmann model as described in Dvorkin
et al. (2007)

k−1
f = swk

−1
w + (1− sw)k−1

o , (2.9)

were kw and ko is the bulk modulus for water and oil respectively.

In this study we are concerned with a reservoir that consists of well-sorted
clean sand which we assume act as a porous isotropic elastic medium. At the
time of deposition, the porosity of well-sorted sand is approximately 40%.
This value is often referred to as the critical porosity of the sediments. A
model for the elastic moduli of dry, well sorted sand at critical porosity is
given by the Hertz–Mindlin model for unconsolidated sediments,

k0 =

(
q2(1− φ0)2g2

mp

18π2(1− ν)2

)n
, (2.10)

g0 =
5− 4ν

5(2− ν)

(
3q2(1− φ0)2g2

mp

2π2(1− ν)2

)n
. (2.11)

Here φ0 is the critical porosity, gm is shear modulus of the mineral, p is the
effective pressure, q is the average number of contacts per sphere and ν is
the ratio between the horizontal and vertical strains (Poisson ratio) which is
calculated from

ν =
3km − 2gm

2(3km − gm)
. (2.12)

The coefficient n in the Hertz–Mindlin model is dependent on the types of
sediments in the reservoir. It is usually set to a constant in the range ( 1

5.6
, 1

3
).

We use 1
5

as suggested in Veire et al. (2006).

During millions of years with gradually deeper burial, the sand will compact
and the pore space will be filled with cement, which decreases the porosity
from φ0 to φ. The compaction of the sand will also increase the effective
elastic moduli of the sandstone. The principle is illustrated in Figure 2.2. In
order to calculate the new dry bulk and shear moduli we use the friable-sand
model presented in Avseth et al. (2010). At porosity φ the fraction of the
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2.1. ROCK AND FLUID PHYSICS

original packing is φ
φ0

. The dry bulk and shear moduli are then,

kd =

(
φ
φ0

k0 + 4
3
g0

+
1− φ

φ0

km + 4
3
g0

)−1

− 4

3
g0, (2.13)

gd =

(
φ
φ0

g0 + ζ
+

1− φ
φ0

gm + ζ

)−1

− ζ, (2.14)

ζ =
g0

6

(
9k0 − 8g0

k0 + 2g0

)
. (2.15)

Figure 2.2: Reduction in porosity caused by burial and cementation

Now, the only unknowns in the Gassmann model are the mineral moduli km
and gm. The Voigt–Reuss–Hill average in Expression 2.8 provides a simple
way to estimate these. The fraction of solid mineral in the rock is given by
1 − φ. If c denotes the percentage of clay in the rock, then for a simple
mineralogy of sand and shale the fractions of these two components are 1−c

1−φ
and c

1−φ in the solid mineral. Expressions 2.8 is then expressed as

km =
1

2

(
c

1− φ
kc +

1− c
1− φ

ksand +

(
c

1− φ
1

kc
+

1− c
1− φ

1

ksand

)−1
)
, (2.16)

gm =
1

2

(
c

1− φ
gc +

1− c
1− φ

gsand +

(
c

1− φ
1

gc
+

1− c
1− φ

1

gsand

)−1
)
, (2.17)

where kc, gc, ksand and gsand are the moduli of sand and clay, which are as-
sumed to be known.
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CHAPTER 2. THEORY

We divide the reservoir variables discussed in this section into two major
groups; static and dynamic variables. Dynamic variables are influenced by
movement of fluid in the reservoir and include saturation, fluid bulk modulus,
pressure and temperature. These are variables that will change during the
course of production. Static variables are not related to movement of fluid
in the reservoir and include geological data, shear moduli and porosity.
The variables of interest in this study is the porosity φ and the water sat-
uration sw. We develop the relationships between the reservoir variables φ
and sw and the elastic variables vs, vp and ρ from the rock and fluid physics
models listed in this section. In the current study we make the assumption
that the relative change in water saturation is much greater in magnitude
than the relative change in the pressure. This simplification will not be valid
for all reservoirs, but in this introductory study we omit the pressure since
we do not have a pressure profile from the well used in the simulation study.
The statistical methodology developed in the following chapter can easily be
extended to any rock physics variables at interest.
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2.2. SEISMIC ACQUISITION AND PROCESSING

2.2 Seismic acquisition and processing

The purpose of a seismic survey is to acquire information about the Earths
subsurface. In the simplest case, an energy source fires at regular intervals
as a vessel moves along a survey line. Energy from the shot is reflected from
horizons beneath the sea floor and is detected by hydrophones on the surface.
After the shot is recorded, the geophysicist needs to process the data and
make it into a readable image of the subsurface. In this process the data is
subject to stacking, multiple removal and migration steps. Seismic surveys in
the same location acquired at different times can be used to detect changes
in the fluid content of the rock formations. This type of survey is known as
a time-lapse seismic survey. In Figure 2.3 we display a subsurface horizon
together with the corresponding seismic signal and in Figure 2.4 we show a
simplistic illustration of marine seismic acquisition.

Figure 2.3: Layered model
with corresponding seismic re-
sponse.

Figure 2.4: A seismic wave
pulse is reflected at a horizon
below sea bottom and recorded
by the hydrophones.

We consider a 1D vertical profile in the τ direction for two seismic surveys
collected at times t0 and t1. Since the seismic data is given as a discrete set
at a given location we discretize the profile into τ =( τ1, τ2, ..., τT ), such that
τ1 < τ2 <, . . . , < τT . We have seismic observations available for (τj, tk) for
j = 1, . . . , T , k = 0, 1 which is represented as:

dk =


dk,1
.
.

dk,T

 ; k = 0, 1.

If we also have data available from different offset angles (θ1, . . . , θm) in a

11



CHAPTER 2. THEORY

gather, the seismic observation vector is given by

dθk =


dθk,1
.
.

dθk,T×m

 ; k = 0, 1.

Since the mathematical results deduced for the seismic observation vectors
are identical at both time increments we will refer to {dk; k = 0, 1} and
{dθk; k = 0, 1}, as d and dθ respectively in the following.

2.2.1 Convolution and wavelets

Convolution is a mathematical operation on two functions c and w, which
produces a third function that can be interpreted as a modified version of
c. In this interpretation w is called the filter. In a seismic experiment the
pulse generated from the source is altered in shape as it passes through the
underground since the earth causes dispersion. Therefore the signal recorded
will be significantly different from the original seismic pulse. To model the
original signal we set up a convolution model.
We assume that the attributes are continuous which mean that they are
defined for all values in the domain of interest D. The value of a given
attribute ξ at an arbitrary point y ∈ D is then denoted by ξ(y).
Now, suppose we have an unconvoluted reflectivity sequence c(τ, θ) and a
localized wavelet w(u, θ) that act as a filter. The wavelet is allowed to be
angle dependent and is assumed to be stationary within a small time window.
The total value of a trace at τ is the sum of all possible times within the
wavelet,

d(τ, θ) =

∫ ∞
−∞

w(u, θ)c(τ − u, θ)du+ e(τ, θ).

The seismic signal recorded by the convolution model is represented by

d(τ, θ) = w(u, θ) ∗ c(τ, θ) + e(τ, θ),

where e(τ, θ) is the error term.
To represent this in a discrete matrix form we write

dθ = Wc + ε, (2.18)

12



2.2. SEISMIC ACQUISITION AND PROCESSING

where c is the reflectivity signal vector and W is a block diagonal convolution
matrix with diagonal submatrices w(θi) representing the wavelet for angle θi,

W =


w(θ1)

.
.
.

w(θm)

 .
It is common to use the Ricker wavelet in the seismic convolution model.
With its peak and two symmetric side lobes, it bears resemblance to an
actual physical seismic wavelet. The Ricker wavelet is defined as the second
derivative of a Gaussian function,

w(u; ν) = 2π
5
2ν3(1− 2π2ν2u2) exp(−π2ν2u2), (2.19)

with ν being the frequency.
A Ricker wavelet with frequency 25 is depicted in Figure 2.5. A real seis-
mic wavelet is time and angle variant and have a more complex shape than
the Ricker wavelet. To use a linearized convolution matrix with a discrete
Ricker wavelet in the convolution model is therefore simplistic, but still often
adequate for modeling.

Figure 2.5: Ricker wavelet, w(u; 25)
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CHAPTER 2. THEORY

2.2.2 Amplitude versus offset (AVO)

AVO analysis is a technique that relates seismic reflection and transmission
amplitudes to offset distances. The most important application of AVO is
the detection of hydrocarbons and lithology identification. This analysis is
based on the fact that seismic amplitudes at the boundaries are affected by
the difference in the physical properties above and below the boundary. The
Zoeppritz equations is a set of matrix equations which captures the depen-
dence between reflection coefficients, incidence angle and the elastic variables.
These equations includes several unknowns and require large computation
times. It is therefore often more convenient to work with an approximation
to the Zoeppritz equations. In this study the Aki and Richards approxima-
tion is used. In Aki and Richards (1980) the reflectivity coefficients are given
by

c(τ, θ) = aα(τ, θ)
∂

∂τ
ln vp(τ)+aβ(τ, θ)

∂

∂τ
ln vs(τ)+aρ(τ, θ)

∂

∂τ
ln ρ(τ), (2.20)

with

aα(τ, θ) =
1

2

(
1 + tan2(θ)

)
,

aβ(τ, θ) = −4
v̄s(τ)2

v̄p(τ)2
sin2(θ),

aρ(τ, θ) =
1

2

(
1− 4

v̄s(τ)2

v̄p(τ)2
sin2(θ)

)
.

Here v̄p(τ) and v̄s(τ) are defined as local averages of vp(τ) and vs(τ) in a
window along the seismic trace.

Like in Buland and Omre (2003), we will assume that

v̄s(τ)

v̄p(τ)
=

1

2
. (2.21)

This is a decent approximation for many sandstone reservoirs.
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2.2. SEISMIC ACQUISITION AND PROCESSING

A discrete version of the continuous function in Expression 2.20 in a time
interval and for a set of reflection angels is then

c = ADm, (2.22)

where D is the difference operator with respect to the τ direction, defined as

D =


1 −1

1 −1
. .

. .
1 −1

 , (2.23)

and

A =


Aα(θ1) Aβ(θ1) Aρ(θ1)

. . .

. . .
Aα(θm) Aβ(θm) Aρ(θm)

 , (2.24)

m = [ln(vp), ln(vs), ln(ρ)]T. (2.25)

Here Aα, Aβ and Aρ are diagonal T ×T matrices that contains discrete time
samples of aα(τ, θi), aβ(τ, θi) and aρ(τ, θi) respectively.
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CHAPTER 2. THEORY

2.3 Bayesian inversion

A forward model gives the effect of a cause, while an inverse model describes
the cause of an observed effect. The observed effect is represented by the
response vector d ∈ Rq and the unknown model variable is represented by
the vector r ∈ RT . The relationship between them is given by the forward
operator G : RT → Rq plus an additive independent error term ε ∈ Rq,
including both random and systematic error. It is common to express the
forward model as

d =G(r) + ε. (2.26)

The problem at hand is to determine r given d. The Bayesian framework
provides a robust solution to the inverse problem. In Bayesian inversion we
introduce a likelihood model on the observed data and impose a prior model
on the variables we want to determine. The problem is cast in a probabilistic
setting where (d, r) are random variables. For an observation d the likelihood
of r given the observations is equal to

[d|r] ∼ p(d|r).

Here we have used the notation x ∼ p(x) for the probability density function
of a random variable x. In addition, a prior model for r is defined on the
form

r ∼ p(r).

Bayes formula combines measured data and a priori information, and the
posterior model is defined by

[r|d] ∼ p(r|d) =
p(d|r)p(r)

p(d)
= const× p(d|r)p(r). (2.27)

The Bayesian setting is a suitable choice for geophysical inverse problems.
In this framework it is possible to combine available prior knowledge about
the area of interest with actual observations from seismic surveys and log
data. For most prior-likelihood model couples the normalizing constant in
Expression 2.27 is hard to assess. If the solution is not analytically tractable,
MCMC methods are commonly used to evaluate the posterior model.
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2.3. BAYESIAN INVERSION

By specifying a Gaussian prior model and a Gauss-linear likelihood model
we ensure that the posterior distribution is Gaussian by the following:

If we have a joint distribution of two multivariate Gaussian random vectors[
r
d

]
∼ NT+q

([
µr

µd

]
,

[
Σr Γrd

Γdr Σd

])
, (2.28)

then the posterior distribution is found from the general formula for condi-
tional multivariate Gaussian variables by

[r|d] ∼p(r|d) = NT (µr|d,Σr|d),

with

µr|d =µr + ΓrdΣd
−1(d− µd),

Σr|d =Σr − ΓrdΣd
−1Γdr.

(2.29)

Hence the conditional distribution is also Gaussian.
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CHAPTER 2. THEORY

2.4 Spatial random Field

Spatial data contain information about both an attribute of interest as well
as its location. In order to analyze spatial data we need to have a suitable
mathematical framework. This is provided by the spatial random field, which
is denoted by

{r(x); x ∈ D ⊂ Rm}, (2.30)

where D is the domain of x. The random field is specified by the probability
density function

r =


r(x1)
.
.

r(xT)

 ∼ p(r), (2.31)

∀ configurations [x1, . . . ,xT] ∈ DT , ∀ T ≥ 1.

The most common spatial random field model is the Gaussian random field.
The Gaussian random field shares the convenient mathematical properties
of the Gaussian distribution and many problems can be solved analytically
under a Gaussian assumption. A field is Gaussian if

p(r) ∼ NT (r;µr,Σr).

In other words, all finite dimensional distributions of a Gaussian random
field are multivariate Gaussian. A multivariate Gaussian distribution is fully
specified by its expectation µr and covariance matrix Σr. In geostatistical
applications it is common to assume that the random field is second order
stationary and isotropic which means that:

E [r(x)] = µ,

V ar [r(x)] = σ2, (2.32)

Corr [r(x′), r(x′′)] = ν(∆), where ∆ = |x′ − x′′|.

Hence, the mean and variance is constant over the field and the correlation
between any two locations depends only on the distance between them. From
this it follows that a (second order) stationary and isotropic Gaussian random
field has a probability distribution that is invariant under translation and
rotation.
In the following chapter we are concerned with a spatial random field

{r(τ ); τ ∈ D ⊂ R1}.
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Chapter 3

Bayesian model setup

The observed variable in this inversion problem is a seismic AVO gather with
nθ angles on a regularly discretized vertical profile τ = {τ1, .., τT}, denoted
by d ∈ RT×nθ . We want to estimate the reservoir variables r ∈ RT×2, which
represent the porosity φ and the water saturation sw. In Bayesian inversion
we solve the inverse problem by evaluating the posterior distribution p(r|d).
According to Section 2.3, the posterior model is defined by the likelihood
model p(d|r) and the prior model p(r). Computational efficiency is crucial
when inverting large seismic data sets, as a seismic survey may contain mil-
lions of observations. We therefore confine ourselves to models where the
posterior model is analytically tractable, although numerical methods may
be required to obtain numerical values. We evaluate the posterior model by
imposing three different prior models. The reason for testing different prior
models on r is that the distribution of r may not be adequately represented
by the unimodal, symmetrical and light tailed multivariate Gaussian prior,
which is the traditional choice when evaluating spatial data. In Figure 3.1
we display histograms of a typical porosity and water saturation log, which
indicate non-Gaussian behavior.

Figure 3.1: Typical histogram of φ and sw.
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CHAPTER 3. BAYESIAN MODEL SETUP

We therefore examine prior models that exhibit multi-modality and skewness
and compare them with the inversion result under the multivariate Gaussian
prior model.

In order to simplify the notation in the following chapter, we deduce the
mathematical results for d ∈ RT and r ∈ RT . The results are trivially
generalized to higher dimensions. The seismic gather d and reservoir variable
r is discretized over τ such that d = (d1, . . . , dT ) and r = (r1, . . . , rT ). We
define µr = E(rj) for j = 1, . . . , T , such that

r = µriT + εr, (3.1)

where εr = (ε1, . . . , εT ) is some additive error and we use the notation

im =

1
...
1


m×1

, (3.2)

for m× 1 dimensional vector of ones, and

Im =


1 0

.
.
.

0 1


m×m

, (3.3)

for a m×m identity matrix.

The reservoir variables only take real values in the range of [0, 1]. It is
therefore convenient to introduce a logit transformation on r such that

rj =
er
∗
j

1 + er
∗
j
, j = 1, . . . , T, (3.4)

where r∗j ∈ R1. The transformation ensures that the elements of r is confined
to [0, 1]. The support of r∗j is R1, hence r∗ can be modeled as realizations
from a continuous probability distribution defined over RT .

We start by developing the common observation likelihood model in Section
3.1. Then, in Section 3.2 we find the posterior model in a multivariate Gaus-
sian prior setting. In Section 3.3 we develop the mixture Gaussian posterior
model and in Section 3.4 we find the posterior model in the generalized Gaus-
sian prior setting.
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3.1. ROCK PHYSICS LIKELIHOOD MODEL

3.1 Rock physics likelihood model

In Landrø (2001) a second order regression formula is used to approximate
the relationship between the change in the elastic variables and the reser-
voir variables. We use a similar idea, but in order to keep the rock physics
likelihood linear, we use a first order approximation

[m|r] = Br + εm|r. (3.5)

Here, B is a matrix containing the regression coefficients and εm|r is an ad-
ditive error term which contain both the error in the approximation and
random error. We assume that the error term follows a Gaussian distribu-
tion such that εm|r ∼ NT (0iT , σ

2
m|rIT ). The coefficients in B are obtained by

curve fitting the rock physics models listed in Section 2.1. By nesting the
expressions in Expression 2.1 to 2.17, we obtain a model for the elastic vari-
ables that depends on the reservoir variables. We then find the best linear
fit by applying least squares.

In Figure 3.2 to 3.7 the rock physics models are displayed together with the
estimated linear fit over the range of the variable values. The linear assump-
tion between the logit transformed reservoir variables and the logarithm of
the elastic variables is a plausible assumption as the regression line is very
coherent with the rock physic models in the given ranges. We observe that
the slope of the regression lines are much steeper in the plots depicting poros-
ity compared to in the water saturation plots. In fact, the relative size of
the regression coefficients of φ and sw range from 5 in the plots depicting vp
to 70 in the vs plots. This means that the magnitude of the elastic variables
relies heavily on the porosity in the reservoir.
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Figure 3.2: vp as a function of
logit(φ).
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Figure 3.3: vp as a function of
logit(sw).
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Figure 3.4: vs as a function of
logit(φ).
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Figure 3.5: vs as a function of
logit(sw).
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Figure 3.6: ρ as a function of
logit(φ).
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Figure 3.7: ρ as a function of
logit(sw).

22



3.1. ROCK PHYSICS LIKELIHOOD MODEL

3.1.1 Seismic likelihood model

The seismic likelihood model describes the relation between the change in
seismic data and the elastic variables. In order to keep the problem on
an analytical form, the Aki and Richards equations in Expression 2.20 is
represented as a linear model with an additive Gaussian error term

[c|m] = ADm + εc|m, (3.6)

where εc|m ∼ NT (0iT , σ
2
c|mIT ). The seismic likelihood model is based on

the seismic forward model defined in Buland and Omre (2003). The seismic
traces are modeled by the convolution model in Expression 2.18 with model
error and random error included in the error term which is assumed to be
Gaussian, εd|r ∼ NT (0iT , σ

2
d|rIT ). The discrete matrix form of the likelihood

model is then

[d|r] = Wc + εd|r. (3.7)

By inserting Expression 3.5 and 3.6 into Expression 3.7, we obtain the full
likelihood model which defines the relationship between the reservoir vari-
ables and the seismic variables,

[d|r] = WAD(Br + εm|r) + Wεc|m + εd|r (3.8)

= Gr + εd|r,

with

εd|r = WADεm|r + Wεc|m + εd|r. (3.9)

The additive error term εd|r is a mixture of white and colored error. The
colored error model both the error in the linear fit as well as uncertainty
in the recording procedure of the seismic data. It may be hard to quantify
the magnitude of the error in a likelihood model. However, the variance
parameters should be chosen with great care as underspecification may lead
to unrealistic predictions and overspecification causes information loss. This
will be further discussed in Section 4.5. We now proceed by defining the
prior models for the reservoir variable r.
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3.2 Gaussian prior model

Under the Gaussian prior assumption

r ∼ NT (µr,Σr), (3.10)

where µr = µriT and Σr = σ2
rΣ

ν
r are the expectation vector and variance

matrix of r. In this expression, σ2
r is the variance of rj, j = 1, . . . , T and Σν

r

is a spatial correlation matrix defined through a spatial correlation function
ν(·), which has the property

ν(rj′ , rj′′) = ν(|τj′ − τj′′|); τj′ , τj′′ ∈ τ , (3.11)

such that

Σν
r =


1 ν(1) . . ν(T − 1)

ν(1) 1
. .
. .

ν(T − 1) 1

 . (3.12)

By marginalizing the likelihood in Expression 3.8 under the Gaussian prior
assumption, we attain the joint distribution of r and d,

[
r
d

]
∼ N2T

([
µr

µd

]
,

[
Σr (GΣr)

T

GΣr Σd

])
, (3.13)

with

µd = Gµr,

Σd = GΣrG
T + WADσ2

m|r(WAD)T + Wσ2
c|mWT + σ2

d|rIT.

The posterior model is then obtained by using the general formula for con-
ditional multivariate Gaussian variables given in Expression 2.29:

[r|d] ∼ NT (µr|d,Σr|d), (3.14)

with

µr|d = µr + GΣrΣd
−1(d− µd),

Σr|d = Σr −GΣrΣd
−1(GΣr)

T.
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3.2. GAUSSIAN PRIOR MODEL

We use the posterior expectation as the predictor [r̂|d] which coincide with
both the median and the mode in the Gaussian framework. A (1 − α)%

confidence interval is defined by
(

[r̂|d] + Φ−1
(
α
2

)
σ̂, [r̂|d] + Φ−1

(
1− α

2

)
σ̂
)

,

where Φ−1(·) is the inverse of the Gaussian cumulative distribution function
and σ̂ is a T × 1 vector constructed by the square root of the diagonal ele-
ments in the Σr|d matrix.

In Figure 3.8 and 3.9 we show two examples of the symmetric and light tailed
univariate Gaussian density function.
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Figure 3.8: µ = 0 , σ2 = 1
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Figure 3.9: µ = 0 , σ2 = 4
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3.3 Mixture Gaussian prior model

Under the mixture Gaussian prior assumption, we have a latent categorical
variable π = [π1, ..., πT ], which takes values from a discrete state space such
that πj ∈ Ωπ : {1, ..., L} and π ∈ ΩT

π . The prior for r is defined as

p(r) =
∑
π∈ΩTπ

p(r|π)p(π), (3.15)

with

p(r|π) =NT

(
µr|π,Σ

σ
r|πΣν

rΣ
σ
r|π

)
, (3.16)

and

µr|π =


µr|π1
.
.
.

µr|πT

 , Σσ
r|π =


σr|π1 0

.
.
.

0 σr|πT

 .
Here µr|π is the conditional expectation vector of r given π and Σσ

r|π is the

conditional variance matrix. We assume that µr|π and σ2
r|π are known and

only dependent of π ∈ Ωπ. The spatial correlation matrix Σν
r is independent

of π and defined in Expression 3.12. It follows that the marginal distributions
are also mixture Gaussian,

p(rj) =
∑
π∈Ωπ

p(rj|π)p(π), j = 1, .., T (3.17)

with

p(rj|π) = N1(µr|π, σ
2
r|π).

Further, it is assumed that the latent categorical variable π is spatially inde-
pendent, such that

p(π) =
T∏
j=1

p(πj). (3.18)

A graph of the model is displayed in Figure 3.10. A possible extension of
this model would be to apply a Markov chain model, but in this study we do
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3.3. MIXTURE GAUSSIAN PRIOR MODEL

not explore this possibility.

π1 π2 π3 ... πT

r1 r2 r3 ... rj

d1 d2 d3
... dT

Figure 3.10: Graph of the model

By combining the mixture Gaussian prior model and the likelihood model
given in Expression 3.8, the posterior model is obtained,

p(r|d) = const× p(d|r)p(r) (3.19)

= const× p(d|r)
∑
π∈ΩTπ

p(r|π)
T∏
j=1

p(πj),

with

const =

∫ p(d|r)
∑
π∈ΩTπ

p(r|π)dr
T∏
j=1

p(πj)

−1

.

The posterior model contains a sum over LT terms so the model on its cur-
rent form is inconvenient. To get around this problem, we want to find an
approximate likelihood model such that the posterior model is found for each
[rj|d], j = 1, . . . , T separately. The full approximate posterior model is then
found from

p∗(r|d) =
T∏
j=1

p∗(rj|d), (3.20)

with

p∗(rj|d) =
p∗(d|rj)p(rj)

p∗(d)
, (3.21)
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where p(rj) is given by the marginal distribution in Expression 3.17 and
p∗(r|d) is some approximate posterior model. Note that this will not be the
same as assuming no spatial dependency in the model as we will incorporate
the spatial dependency into the approximation of p∗(d|rj).

In order to evaluate the approximate posterior model we seek an approximate
likelihood model on the form

p∗(d|rj) =
1

p(rj)

∫
p(d|r)p∗(r)dr−j =

p∗(d, rj)

p(rj)
, (3.22)

where r−j = (r1, . . . , rj−1, rj+1, . . . , rT ).

We find the approximate likelihood model by assuming a Gaussian approxi-
mation prior

r
approx.∼ p∗(r), (3.23)

with

p∗(r) = NT (µ∗r,Σ
∗
r),

and

µr
∗ = E(r) =

∑
π∈Ωπ

µr|πiT p(π), (3.24)

Σ∗r = V ar(r) =
∑
π∈Ωπ

Σr|πiT p(π) +
∑
π∈Ωπ

[
µr|πiT − µr

∗] [µr|πiT − µr
∗]T p(π).

(3.25)

In the approximation of the variance we assume that π = πiT in Expression
3.15, such that p(r|πiT ) = NT

(
µr|πiT ,Σ

σ
r|πiTΣν

rΣ
σ
r|πiT

)
. Note that this is not

the most accurate Gaussian approximation to the mixture Gaussian prior
as the current approximation enforces higher correlation between the nodes.
Our experience is that when the resulting method is tested on observations
with error, this approximation provides more reliable results.

The joint distribution between d and r under the Gaussian approximation
prior p∗(r) is thereby[

d
r

]
∼ p∗(d, r) = N2T

([
Gµ∗r
µ∗r

]
,

[
Σd GΣ∗r

Σ∗rG
T Σ∗r

])
. (3.26)
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By marginalizing Expression 3.26 with respect to rj for j = 1, .., T , we obtain

[
d
rj

]
∼ p∗(d, rj) = NT+1

([
Gµ∗r
µ∗rj

]
,

[
Σd γ∗drj
γ∗Tdrj σ2∗

rj

])
. (3.27)

Here σ2∗
r = Diag(Σ∗r) =

[
σ2∗
r1
, . . . , σ2∗

rT

]
and γ∗drj is defined as the j′th row in

GΣ∗r.

The approximate likelihood is now found by applying the formula for condi-
tional Gaussian variables given in Expression 2.29

p∗(d|rj) = NT (µ∗d|rj ,Σ
∗
d|rj), j = 1, . . . , T, (3.28)

with

µ∗d|rj = Gµ∗r +
1

σ2∗
rj

γdrj
(rj − µ∗rj),

Σ∗d|rj = Σd −
1

σ2∗
rj

γdrj
γ∗Tdrj ,

and we see that the approximate likelihood is Gauss-linear.

By combining the approximate likelihood with the mixture Gaussian marginal
prior model, the approximate posterior model is established. We rewrite Ex-
pression 3.21 such that

p∗(rj|d) =
∑
π

[
p∗(d|rj, π)p(rj|π)p(π)

p(d)
× p∗(d|π)

p∗(d|π)

]
(3.29)

= p∗(rj|d, π)
p∗(d|π)p(π)∑
p∗(d|π)p(π)

(3.30)

= p∗(rj|d, π)p∗(π|d), (3.31)

and we see that the posterior model is also a mixture Gaussian model.

The posterior probabilities for π ∈ Ωπ is assessed by the likelihood

p∗(d|π) =

∫
p∗(d|rj)p(rj|π)drj =

∫
p∗(d, rj|π)drj, (3.32)

which is easily evaluated as p(d|rj) and p(rj|π) are both Gaussian densities
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p∗(d|π) = NT

(
µ∗d|π,Σ

∗
d|π
)
, (3.33)

with

µ∗d|π = Gµ∗r +
1

σ2∗
rj

γdrj
(µr|π − µ∗rj),

Σ∗d|π = Σ∗d|rj +
γdrj

σ2∗
rj

σ2
r|π
γ∗Tdrj
σ2∗
rj

.

Since the mixture Gaussian distribution is multimodal, the expectation and
median are not good predictors for [rj|d] as they usually will be located in
low-probability regions of the posterior pdf. We choose the mode as our pre-
dictor for [rj|d] in the mixture Gaussian setting. Hence we use the marginal
MAP predictor for [r|d]:

r̂ = {[̂rj|d] = arg max
rj

p(rj|d); j = 1, . . . , T}. (3.34)

In order to get an estimate of the uncertainty in the predictor, we find a
100(1− α)% confidence interval

[
Qj,1−α

2
, Qj,α

2

]
such that

p
(
Qj,1−α

2
≤ rj ≤ Qj,α

2
|d
)

= 1− α, j = 1, . . . , T, (3.35)

where Qj,1−α
2

and Qj,α
2

are found by a root finding function in MATLAB.

In Figure 3.11 we display four different parameter choices in the univariate
mixture Gaussian model, see Table 3.1 for the setups.

p(π = 0) p(π = 1) µπ=0 µπ=1 σ2
π=0 σ2

π=1

Setup 1 0.3 0.7 -2 2 1 1
Setup 2 0.6 0.4 -2 3 5 5
Setup 3 0.5 0.5 -1 1 1 1
Setup 4 0.5 0.5 -2 2 1 1

Table 3.1: Parameters in the mixture Gaussian model setups
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Figure 3.11: The univariate mixture Gaussian density p(r) is illustrated by
the black solid line together with the corresponding univariate approximate
distribution p∗(r) given by the green stippled line.
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3.4 Generalized Gaussian prior model

In order to capture the skewed and bi-modal nature of r, the random vari-
able is modeled by a generalized Gaussian distribution. The generalized
Gaussian distribution provides a unification of the multivariate and various
selection normal distributions. The distribution allows modeling of skew-
ness and multi-modality while retaining some of the convenient properties of
the Gaussian distribution such as being closed under marginalization, lin-
ear transformation and conditioning. In Rimstad and Omre (2012), the
generalized Gaussian random field on a regularly discretized vertical pro-
file τ = {τ1, . . . , τT} is defined as follows:

Consider a vector r̃ ∈ RT and u ∈ RT which are jointly a Gaussian ran-
dom variable [

r̃
u

]
∼ N2T (µ,Σ), (3.36)

where

µ =

[
µr̃

µu

]
,

Σ =

[
Σr̃ Γr̃u

Γur̃ Σu

]
,

and

µr̃ = µr̃iT ,

µu = 0iT ,

Σr̃ = σ2
r̃Σ

ν
r̃ ,

Γur̃ = γσr̃Σ
ν
r̃ ,

Σu = (1− γ2)IT + γ2σ2
r̃Σ

ν
r̃ .

Here, µr̃ and σ2
r̃ are the expectation and covariance of r̃t ∈ r̃, Σν

r̃ is the spatial
correlation matrix as defined in Expression 3.12 and γ defines the coupling
structure, with |γ| ≤ 1.

The random field of interest is then

r =[̃r|u ∈ A] ∈ RT , (3.37)
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where A is the selection set. There are many possible parameterizations of
the selection set A. In the current study we consider the family of distribu-
tions where Aj ∈ A is constructed by two line segments Aj = (l1j , u

1
j)∪(l2j , u

2
j),

j = 1, . . . , T , where l1j and l2j gives the lower bounds and u1
j and u2

j gives the
upper bounds for the two line segments. This parameterization of A can
define a bimodal distribution for u. If we let φT (·) denote the Gaussian
probability density function and ΦT (A;µ,Σ) =

∫
y∈A φT (y;µ,Σ)dy, then

the pdf of r is specified by

p(r) = p(r̃|u ∈ A) =
p(u ∈ A|̃r)p(r̃)

p(u ∈ A)
(3.38)

=
ΦT (A;µu|̃r,Σu|̃r)φT (r;µr̃,Σr̃)

ΦT (A;µu,Σu)
,

where

µu|̃r = µu + Γur̃Σ
−1
r̃ (r− µr̃),

Σu|̃r = Σu − Γur̃Σ
−1
r̃ Γr̃u.

Now, r is distributed as a multivariate generalized Gaussian distribution with
respect to an arbitrary set A ∈ RT and the prior model is denoted by

r ∼ GenGaussT,T (µr̃,µu,Σr̃,Σu,Γr̃u,A). (3.39)

The model flexibility lies in the choice of model parameters µ, Σ and the
selection set A ∈ RT .

In the generalized Gaussian case, we define the likelihood model for d as

d =Gr̃ + εd|̃r, (3.40)

where εd|̃r is an additive error term

εd|̃r = WADεm|̃r + Wεc|m + εd|̃r. (3.41)

with

εm|̃r ∼ NT (0iT , σ
2
m|r̃IT ), εd|̃r ∼ NT

(
0iT , σ

2
d|r̃IT

)
,

εc|m ∼ NT

(
0iT , σ

2
c|mIT

)
.
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By marginalizing the likelihood model under the generalized Gaussian prior
assumption we get

d ∼NT (Gµr̃,Σd), (3.42)

with

Σd = GΣr̃G
T + WADσ2

m|r̃(WAD)T + Wσ2
c|mWT + σ2

d|r̃IT .

By combining Expression 3.36 and 3.42, the joint distribution of r̃,d and u
is available to us r̃

d
u

 ∼ N3T

 µr̃

Gµr̃

µu

 ,
Σr̃ Γr̃d Γr̃u

Γdr̃ Σd Γdu

Γur̃ Γud Σu

 , (3.43)

where Γdu = GΓr̃u and Γr̃d = GΣr̃.

Now, we condition on d, such that[
r̃|d
u|d

]
∼ N2T

([
µr̃|d
µu|d

]
,

[
Σr̃|d Γr̃u|d
Γur̃|d Σu|d

])
, (3.44)

with

µr̃|d = µr̃ + Γr̃dΣd
−1(Gr̃−Gµr̃),

µu|d = ΓudΣd
−1(Gr̃−Gµr̃),

Σr̃|d = Σr̃ − Γr̃dΣd
−1Γr̃d

T,

Σu|d = Σu − ΓudΣd
−1Γud

T,

Γr̃u|d = Γr̃u − Γr̃dΣd
−1Γud

T.

Following the reasoning leading up to Expression 3.36-3.39, it is apparent
that the posterior model is also generalized Gaussian distributed with

[r|d] ≡ [̃r|d,u ∈ A] ∼ GenGaussT,T (µr̃|d,µu|d,Σr̃|d,Γr̃u|d,Σu|d,A).

(3.45)

The marginal MAP solution is used as the predictor of [r|d] in the generalized
Gaussian setting.

r̂ = {[̂rj|d] = arg max
rj

p(rj|d); j = 1, . . . , T}. (3.46)
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The posterior marginal MAP predictor is easily obtainable by numerical opti-
mization as the expression for the posterior marginal density is known. The
general form for the generalized Gaussian density function is given in Ex-
pression 3.38, and by inserting the parameters in Expression 3.45, we obtain
the density function for the posterior distribution. A confidence interval for
the predictor is found by solving for

[
Qj,1−α

2
, Qj,α

2

]
in Expression 3.35. The

numerical values for the bounds are found by using the trapezoidal method
on the posterior density function.

In Figure 3.12 we display four different parameter choices in the univariate
generalized Gaussian model p(r), see Table 3.2.

l1j u1
j l2j u2

j µr̃ σ2
r̃ γ

Setup 1 −∞ -1 1 ∞ 0 1 0.5
Setup 2 −∞ -1 0.5 ∞ 0 1 0.6
Setup 4 −∞ -1 0.5 ∞ 0 3 0.5
Setup 3 -1.1 -1 1 ∞ 0 1 0.4

Table 3.2: Parameters in the generalized Gaussian model setups
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Figure 3.12: The univariate generalized Gaussian density p(r) is illustrated
by the black solid line together with the univariate Gaussian density p(r̃)
given by the green stippled line.
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Chapter 4

Synthetic data study

In this chapter, the inversion methodology is tested on synthetic seismic data.
We start by defining the common model design for the inversion problem at
hand. Then in Section 4.2-4.6 we display and discuss the inversion results
for the different prior model cases. In Appendix A we have included more
test runs where we over- and underspecify the error in the inversion model.

4.1 Synthetic model design

The synthetic data is created by the forward model and a reference reservoir
variable profile. The reference profile at t0 consists of porosity φ and water
saturation sw,0. The profiles are segments from actual reservoir log data. We
let t0 be a time step prior to production and let t1 represent a time step post
production start. A reservoir that has been in production for some time will
have a higher oil-water contact than at original reservoir conditions. The
synthetic data for the water saturation at t1 is therefore created by lifting
the oil water contact. The porosity is assumed to be the same at the two
time steps. The reference profiles are shown in Figure 4.1.
The variable of interest is

r =

[
r0
∆r

]
=

 φ
sw,0
∆sw

 ∈ R3T , (4.1)

discretized over a 1D vertical profile τ = (τ1, . . . , τT ). We use a logit trans-
formation on sw,0 and a modified logit transformation on φ which confines
the porosity to [0, 0.5].
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Figure 4.1: Reference reservoir variable profile

The expectation and variance of r is given by

E

 φ
sw,0
∆sw

 =

 0.2iT
0.5iT
0.25iT

 ,
and

Var

 φ
sw,0
∆sw

 =

 σ2
φΣ

ν
r γsw,φσswσφΣ

ν
r 0IT

γsw,φσswσφΣ
ν
r σ2

swΣν
r 0IT

0IT 0IT σ2
∆sw

Σν
r

 . (4.2)

Here, σ2
φ, σ

2
sw and σ2

∆sw
are the variances of the porosity, water saturation and

change in water saturation respectively. The correlation between sw and φ
at t0 is denoted by γsw,φ = −0.3 and Σν

r is defined through Expression 3.12,
where we have used a Gaussian correlation function with δ = 4,

ν(rj′ , rj′′) = exp

(
|τj′ − τj′′ |2

δ2

)
, τj′ , τj′′ ∈ τ .
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Further, all the change in the synthetic seismogram from t0 to t1 is con-
tributed to the change the water saturation, so we model ∆r by ∆sw only.
The water saturation at time step t1 can be expressed as

sw,1 = sw,0 + ∆sw, (4.3)

with

E (sw,1) = E (sw,0) + E (∆sw) ,

Var (sw,1) = Var (sw,0) + Var (∆sw) .

We apply a logit transformation on ŝw,1 = ŝw,0 + ∆ŝw to ensure that the
predictor is in the interval [0, 1].

The synthetic seismograms are computed by the forward model in Expression
3.8. The seismic signal is modeled with three angle stacks θ = (0, 15, 30)◦

and a 25 Hz Ricker wavelet in the convolution model. The synthetic model
for dθ is on the form

dθ = WADBr + εd|r, (4.4)

εd|r = Wεc|m + εd|r.

This is the likelihood model in Expression 3.8 with σ2
m|r = 0. The corre-

sponding synthetic seismograms with εd|r = 0 are displayed in Figure 4.2.

The error term εd|r is specified through the signal-noise ratio (SNR) which
gives the fraction of signal to error. There are different definitions of the
signal-noise ratio in the literature, we define

SNR =
Tr [Var(WADBr)]

Tr
[
Var(εd|r)

] . (4.5)

In the current experiment we make synthetic AVO data sets with additive
error corresponding to a signal-noise ratio of 104, 5 and 2 (Case I, II and
III respectively). The synthetic seismic survey with SNR=2 represent poor
quality seismic and the survey with SNR=5 mimic good quality seismic. A
synthetic data set with SNR=104 is also made in order to examine the model
performance when the error approaches zero. In a seismic survey the signal-
noise ratio is unknown and should be estimated by an educated guess in the
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Figure 4.2: AVO signal

inversion model. In Subsection 4.5.1 we examine to what extent the poste-
rior model is influenced by an underspecification of the error in the seismic
gather. In Appendix A we have included more test runs where we over and
under specify the error in the inversion model. An overview of the different
model setups tested is listed in Table 4.1.

Inversion
Model

SNR 2 5 20 104

Synthetic
Model

2 x A A
5 A x A
20 A A A
104 x

Table 4.1: An x indicate that the model is displayed and discussed in this
chapter. The model setups that are marked with an A are displayed in
Appendix A.
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4.1. SYNTHETIC MODEL DESIGN

The complete solution is given by the posterior distribution developed for the
individual priors in Section 3.2, 3.3 and 3.4. In the following the inversion

results are represented graphically by the posterior predictor [r̂|dθ] together
with the 95% confidence interval and the synthetic earth profile that we
are trying to restore, see for example Figure 4.3. We also list the root-
mean-square error for the different model setups, which is a measure of the
difference between the predictor and the reference profile.

RMSE =

√√√√ 1

T

T∑
i=1

[(
r̂j −

1

T

T∑
k=1

r̂k

)
−

(
rj −

1

T

T∑
k=1

rk

)]2

. (4.6)

It is important to note that since the forward operator G = WADB con-
tains the difference operator D, all constant terms in the underlying profile
r are unidentifiable. Hence, we will not be able to estimate the level of the
reservoir variables, only its variation and change in magnitude. The predic-
tor will therefore always replicate the mean level in the prior. This should
be taken into consideration when evaluating the inversion result.
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4.2 Gaussian prior case

In the Gaussian prior model we impose the following structure on the covari-
ance matrix

Var

 φ
sw,0
∆sw

 =

 1Σν
r −0.3Σν

r 0IT
−0.3Σν

r 1Σν
r 0IT

0IT 0IT 0.2Σν
r

 . (4.7)

The numerical values in the covariance matrix are with respect to a logit
transformation on the porosity and water saturation. The marginal prior
models and the inversion results for the Gaussian prior case are shown in
Figure 4.3, 4.4 and 4.5. We observe that the prior model distribution for
the porosity is skewed and that the distribution for the water saturation
has heavier tails than the standard Gaussian distribution. The reason that
the prior models display non-Gaussian behavior is that the prior models are
defined with respect to the logit transformed variables, while it is the un-
transformed variables that are depicted. A test run with SNR = 104 in the
synthetic and inversion model is shown in Figure 4.3. This setup is referred
to as Case I. The figure shows that in the presence of negligible error, the
synthetic earth profile is estimated almost perfectly by the predictor with
corresponding narrow confidence intervals.

In Figure 4.4 and 4.5, more error is added to the synthetic seismogram to
mimic a real seismic survey. The accuracy for the porosity and change in
water saturation predictor is similar to in Case I. The confidence intervals
for the porosity and change in water saturation also remain fairly stable with
increasing error. The predictor for the water saturation on the other hand
regress increasingly towards the mode of the prior as the signal-noise ratio
decreases. From the sw,0 profile in Figure 4.4 and 4.5 it is clear that under
realistic error levels the posterior predictor for the water saturation is less
informative. The confidence bounds for the water saturation are also very
wide compared to the confidence bounds for the porosity and change in wa-
ter saturation. We see that the uncertainty in the water saturation profile
increases drastically from Case I to Case II, and it seems like all the error in
the model is contributed to the water saturation variable.

In Table 4.2 we list the root-mean squared error and in Table 4.3 the relative
decrease in mean variance from the prior to the posterior model is displayed.
From both the tables we deduce that the water saturation is very sensitive to
a decrease in the signal-noise ratio, while the inversion results for the porosity
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and change in water saturation remain relatively stable with increasing model
error.

SNR φ sw,0 ∆sw sw,1
104 0.01 0.02 0.02 0.02
5 0.01 0.17 0.05 0.17
2 0.02 0.17 0.09 0.15

Table 4.2: Root mean square error

SNR φ sw,0 ∆sw
104 0.95 0.95 0.95
5 0.89 0.40 0.94
2 0.86 0.27 0.90

Table 4.3: Relative decrease in mean variance from prior model to posterior
model

The benefit of using a Gaussian prior model is that the inversion is done
jointly for all dimensions of r. The methodology can therefore be applied to
large data sets without having to use extensive amounts of computational
effort. The disadvantage of using the Gaussian prior model setup is that
the predictor does not acknowledge the bimodal nature of sw,0 and when the
signal-noise ratio decrease, the predictor for this variable will tend to regress
towards the mode of the prior. When evaluating the posterior distribution,
we also have to find Σ−1

d ∈ R3T×3T . This operation is costly if T is very
large and the matrix also has to be positive definite. However, as the Gaus-
sian prior model is a very common setting for inverse problems, the issues
mentioned above have been thoughtfully studied.
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=104

Inversion model with SNR=104

0

10

20

30

40

50

60

70

80

90

1000 0.2 0.4

Porosity, q

 

 

Synthetic earth profile
Mixture Gaussian 
 MAP predictor
95 percent confidence  
 bound for MAP predictor

0

10

20

30

40

50

60

70

80

90

100
0 0.5 1

Water saturation at t0, sw0
0

10

20

30

40

50

60

70

80

90

100
−1 0 1

Change in water stauration 6 sw=sw1− sw0
0

10

20

30

40

50

60

70

80

90

100
−0.5 0 0.5 1 1.5

Water stauration at t1, sw1

Figure 4.3: Gaussian prior model, Case I
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=5
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Figure 4.4: Gaussian prior model, Case II
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=2

0

10

20

30

40

50

60

70

80

90

1000 0.2 0.4

Porosity, q

 

 

Synthetic earth profile
Mixture Gaussian 
 MAP predictor
95 percent confidence  
 bound for MAP predictor

0

10

20

30

40

50

60

70

80

90

100
0 0.5 1

Water saturation at t0, sw0
0

10

20

30

40

50

60

70

80

90

100
−1 0 1

Change in water stauration 6 sw=sw1− sw0
0

10

20

30

40

50

60

70

80

90

100
−0.5 0 0.5 1 1.5

Water stauration at t1, sw1

Figure 4.5: Gaussian prior model, Case III
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4.3 Mixture Gaussian prior case

We let π ∈ Ωπ = {0, 1} with p(0) = p(1) = 0.5 and

µr|π=0iT
=

0.2iT
0.2iT
0iT

 , µr|π=1iT
=

0.2iT
0.8iT
0.5iT

 ,

Σr|π=0iT = Σr|π=1iT =

 1Σν
r −0.3Σν

r 0IT
−0.3Σν

r 3Σν
r 0IT

0IT 0IT 0.2Σν
r

 . (4.8)

The marginal prior models and the inversion results for the mixture Gaussian
prior case is shown in Figure 4.6, 4.7 and 4.8. The two modes in the bimodal
prior for the water saturation are very close to the boundaries of 0 and 1
because of the inverse logit transformation. The change in water saturation
is also modeled with two local modes in the prior model. However, since the
variance for the change in water saturation is high compared to the distance
between the two modes, the prior model density function appear unimodal
with heavy tails.

The inversion results for Case I with SNR=104 in the synthetic and inversion
model is displayed in Figure 4.6. We see that the predictor is not able to
perfectly predict the synthetic earth profile even when the error is negligible.
This is not surprising as we have imposed an approximate likelihood model.

The inversion results for model setups with the realistic signal-noise ratios
of 5 and 2 are shown in Figure 4.7 and 4.8 respectively. We see that the
predictor identify the general trend in the profiles even when the amount of
error added to the synthetic seismogram is large. Since the prior is bimodal,
the predictor for sw,0 does not tend towards the median of the prior model
like in the Gaussian case. Instead, the predictor will tends to flip between
the two modes as the error in the model increases. In the current prior model
setup we inhibit this effect by imposing a strong spatial correlation in the
prior model.

For sw,0, especially, the confidence intervals are very wide under the mixture
Gaussian prior assumption. This is because the posterior model is bimodal
and the posterior probabilities for the local maximum that is not the global
max is in the range 0.25 to 0.49 for all the variables. The predictor for [r|d]
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is therefore highly uncertain, even when we have a negligible amount of er-
ror in the likelihood model as illustrated in Case I. By adding the posterior
predictors for sw,0 and ∆sw, we get a prediction of the water saturation at
t1. The confidence bounds for sw,1 are very wide as we inherit uncertainty
from both the prediction of sw,0 and ∆sw.

In Table 4.4 we list the root-mean squared error and in Table 4.5 the relative
decrease in mean variance from the prior to the posterior model is displayed.
We see that the RMSE is fairly stable with decreased signal-noise ratio, which
coincide with the conclusion from the discussion above.

SNR φ sw,0 ∆sw sw,1
104 0.01 0.08 0.04 0.10
5 0.02 0.10 0.06 0.12
2 0.02 0.14 0.11 0.22

Table 4.4: Root-mean-square error

SNR φ sw,0 ∆sw
104 0.95 0.46 0.76
5 0.91 0.33 0.75
2 0.85 0.21 0.72

Table 4.5: Relative decrease in mean variance from prior model to posterior
model

When assessing the posterior distribution, we have to find Σ−1
d|π ∈ R3T×3T

for j = 1, . . . , T . This operation is costly if T is very large. When im-
plementing the method in higher dimensions we should therefore investigate
the possibility of making some simplifying assumptions in order to reduce the
computational time of the inversion step. We also have to evaluate p(d|π)
for j = 1, . . . , T which requires that Σd|π is positive definite. In the current
simulation study, the inversion is done very efficiently and the methodology
is very fast compared to algorithms which relies on sampling.
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=104

Inversion model with SNR=104
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Figure 4.6: Mixture Gaussian prior model, Case I
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MIXTURE GAUSSIAN PRIOR CASE
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Figure 4.7: Mixture Gaussian prior model, Case II
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=2
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Figure 4.8: Mixture Gaussian prior model, Case III
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4.4 Generalized Gaussian prior case

In the generalized Gaussian prior model we assign the following structure on
the covariance matrix for r̃

Σr̃ =

 1Σν
r −0.3Σν

r 0IT
−0.3Σν

r 3Σν
r 0IT

0IT 0IT 0.2Σν
r

 . (4.9)

and the coupling coefficients and selection sets are listed in Table 4.6.

γ Ai
φ 0.45 (−∞,∞)
sw 0.45 (0.2− µsw,0 , 0.4− µsw,0) ∪ (0.6− µsw,0 , 0.8− µsw,0)
∆sw 0.45 (−0.05− µ∆sw , 0.05− µ∆sw) ∪ (0.45− µ∆sw , 0.55− µ∆sw)

Table 4.6: Model parameters for the generalized Gaussian prior model

The marginal prior models and the inversion results for the generalized Gaus-
sian prior case is depicted in Figure 4.9, 4.10 and 4.11. We see that the prior
model for the porosity is skewed and that the prior model for the water satu-
ration is bimodal. The prior model density for the change in water saturation
is unimodal even though we have defined two selection sets. This is caused
by the relatively high variance in the prior model compared to the distance
between the two selection sets.

The inversion results for a test run with SNR=104 in the synthetic and inver-
sion model is displayed in Figure 4.9. The figure shows that in the presence
of negligible error, the reservoir variables are estimated almost perfectly with
corresponding narrow confidence intervals. The model error is increased to
realistic levels in Figure 4.10 and 4.11. The predictor captures the general
trend in the profiles for both signal-noise ratios. By comparing the sw,0 pro-
files in Figure 4.11 and 4.10, we see that the predictors ability to predict the
details in the reference profile diminish as the error level in the likelihood
model increase. The inversion results for the porosity is not as good as in
the Gaussian prior case. This is due to correlation with the water saturation.
Another coupling effect is seen in the water saturation profile at τ = 55. Here
a rapid change in φ induce a spike in d which then is predicted to originate
from sw.

52



4.4. GENERALIZED GAUSSIAN PRIOR CASE

In Table 4.7 the RMSE is listed and in Table 4.8 we show the relative decrease
in mean variance from the prior model. It is apparent that the RMSE and
the change in the variances are very stable for the porosity and change in
water saturation, while it increases fast for the water saturation at t0 with
decreasing signal-noise ratio.

SNR φ sw,0 ∆sw sw,1
104 0.02 0.02 0.04 0.03
5 0.02 0.18 0.04 0.21
2 0.02 0.18 0.06 0.20

Table 4.7: Relative decrease in variance from prior model to posterior model

SNR φ sw,0 ∆sw
104 0.94 0.68 0.94
5 0.93 0.54 0.93
2 0.89 0.24 0.92

Table 4.8: Table of relative decrease in variance from prior to posterior model

In order to obtain the posterior predictor we have to go sequentially trough
all rj ∈ r. However, the optimization we perform in each step require very
little computational effort, so the inversion is performed efficiently for our
choice of T . Another benefit of using the generalized Gaussian prior model
is that the distribution is very flexible, as we can model both skewness, mul-
timodality and heavy tails. We are therefore free to design fairly informative
priors without having to resort to MCMC methods.
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GENERALIZED GAUSSIAN PRIOR CASE
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Figure 4.9: Generalized Gaussian prior model, Case I
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=5
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Figure 4.10: Generalized Gaussian prior model, Case II
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=2
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Figure 4.11: Generalized Gaussian prior model, Case III
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4.5 Sensitivity study

In the model design we have to specify the model parameters in the prior
model and the likelihood model. In this section, we examine to what extent
these parameter choices influence the posterior model.

4.5.1 Model sensitivity: Likelihood error

The likelihood model is defined by a deterministic relationship and an error
term that describe the structure of the uncertainty in the model. As dis-
cussed in Subsection 3.1.1, it is important to impose a realistic error level in
the inversion model. If the error is underspecified in the likelihood model,
the posterior predictor will often give misleading predictions as the fluctua-
tion caused by error in the data is accredited to the underlying variable. We
will not know the error level in a real data case. Therefore it is of interest
to know how sensitive the posterior models are to a wrongly specified error
level in the likelihood model.

We examine the effect in Figure 4.12, 4.13 and 4.14. Here we have imposed
an inversion model with SNR=20, while the synthetic data set is created with
SNR=5. We expect that the posterior predictor exaggerate the variability in
the reference profile. We assess the effect by comparing Figure 4.12, 4.13 and
4.14 to the inversion model setup with a correct error level in Figure 4.4, 4.7
and 4.10. We observe that the predictor is smoother in the mixture Gaus-
sian and generalized Gaussian prior case. The effect is especially apparent in
the sw,0 profiles. However, the wrongly specified likelihood models does not
make the predictor extensively vague and it still captures the general trend
in the profile. The result for the Gaussian posterior model actually shows an
improvement in the prediction of sw,0 from Figure 4.4 to 4.12. This is be-
cause the exaggeration effect draws the predictor away from the prior median.

As an overspecification of the error in the likelihood model will typically not
be as large as the one assumed in this simulation study, we conclude that
the methods are not extensively sensitive to a wrongly specified error level,
which is encouraging. Figures where the amount of error in the inversion
model has been overspecified is displayed in Appendix A. In this case, we
will lose the inherent accuracy in the predictor.
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=20
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Figure 4.12: Gaussian posterior model sensitivity to underspecification of
likelihood model error
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=20
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Figure 4.13: Mixture Gaussian posterior model sensitivity to underspecifica-
tion of likelihood model error
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=20
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Figure 4.14: Generalized Gaussian posterior model sensitivity to underspec-
ification of likelihood model error
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4.5.2 Model sensitivity: Prior correlation length

In the prior models defined in Section 3, we have assigned a spatial correla-
tion structure that is a function of a length scale parameter δ. The parameter
is a measure of how rapid the dependency between locations decline and in
low signal-noise scenarios, the spatial correlation will indirectly control fluc-
tuations in the predictor. The choice of δ is therefore of importance. The
most sensitive variable is the water saturation sw,0, so we will focus on the
predictors performance for this variable.

In Figure 4.15, 4.17 and 4.19 we have imposed a high spatial dependency in
the prior models. The predictor is then a slowly varying smooth function
which in the mixture and generalized Gaussian prior case captures the gen-
eral trend in all the profiles. We then examine to what extent the assumption
of small spatial dependence in the prior models influence the predictor. The
inversion results are shown in Figure 4.16, 4.18 and 4.20. With small spatial
dependency the predictor will vary more rapidly and appear less smooth. By
comparing Figure 4.18 and 4.20 we see that it is the predictor for sw,0 in the
generalized Gaussian posterior model that suffers most with declining δ, but
the effect is present for all three models.

It is not easy to know which δ to choose in the prior model. In this study it
appears that we get the most accurate results when δ is high. However we
can also lose details in the predictor if we impose a very high spatial depen-
dency in the prior model. When performing an inversion study one should
therefore test to what extent the length scale influences the inversion result.
It is also possible to explore other correlation structures as for example the
exponential correlation function. The variance σ2

r in the prior model also
impacts the posterior model. As with the likelihood model an underspecifi-
cation of the error in the prior model should be avoided. However, the effect
on the predictor caused by a wrongly specified variance in the prior model
will usually not be as large as the effect of a wrongly specified variance in
the likelihood model. The choice of σ2

r is therefore not discussed further in
this section.
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GAUSSIAN PRIOR CASE

Figure 4.15: δ = 7, Inversion and synthetic model with SNR=5

Figure 4.16: δ = 1, Inversion and synthetic model with SNR=5
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MIXTURE GAUSSIAN PRIOR CASE

Figure 4.17: δ = 7, Inversion and synthetic model with SNR=5

Figure 4.18: δ = 1, Inversion and synthetic model with SNR=5
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GENERALIZED GAUSSIAN PRIOR CASE

Figure 4.19: δ = 7, Inversion and synthetic model with SNR=5

Figure 4.20: δ = 1, Inversion and synthetic model with SNR=5
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4.6 Discussion of the posterior models

In Section 3 we introduced a Gauss-linear likelihood model and we developed
the posterior models for three prior model settings; a Gaussian prior, a mix-
ture Gaussian prior and a generalized Gaussian prior. In the current section
the three prior model setups have been tested on a synthetic data set with
respect to the porosity, water saturation, and the change in water saturation
between two time steps.

In Case I we imposed negligible error in the synthetic and inversion model.
By examining the predictor performance under high signal-noise ratios, we
mean to assess the posterior model accuracy. The predictor for the Gauss-
ian and generalized Gaussian model estimate the reference profile almost
perfectly. This is also demonstrated by the low root-mean-square error in
Table 4.2 and 4.7. Since we have used an approximate likelihood model in
the mixture Gaussian prior case, the mixture Gaussian posterior model pre-
dictor is not able to replicate the reference profile, even when the model error
approaches zero. We also see that confidence intervals are very wide in Case
I under the mixture Gaussian setup. The confidence bounds for the Gaus-
sian and generalized Gaussian prior on the other hand, are very narrow. The
small uncertainty in these predictors is also demonstrated by the result in
Table 4.3 and 4.8. Here we see that the mean variance for the Gaussian and
generalized Gaussian posterior models is reduced by over 90 percent com-
pared to the variance in the prior model. There is a small difference between
the width of the confidence bounds for the water saturation at t0. This is
because we have imposed a somewhat higher variance in the prior model for
the generalized Gaussian prior model compared to the Gaussian prior model.

Since the method is developed with application to seismic data in mind, we
are interested in the performance at high error levels which are represented
by SNR=5 and SNR=2 in the current study. The predictors for all three
posterior models estimate the porosity and the change in water saturation
fairly accurately. The main difference between the models is found in the
water saturation profiles. The reason that the water saturation predictor
suffer with increasing error levels is traced back to the slope of the curves
in Figure 3.2 to 3.7. Since the regression coefficients for the porosity is 5 to
70 times greater in magnitude than the regression coefficients for the water
saturation, the signal in the synthetic seismogram will be most sensitive to
the porosity. An increase in uncertainty will therefore affect the water sat-
uration to a much greater extent than the porosity. This is also the reason
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why we use the change in the water saturation as our model variable instead
of water saturation at time t1. When comparing the different models, the
focus should therefore be on the statistics for the water saturation at t0.

A comparison of the inversion results under realistic signal-noise ratios shows
that the reference profile is reconstructed best in the mixture Gaussian and
generalized Gaussian prior model case. The Gaussian posterior model pre-
dictor gives little information about the water saturation profile while the
posterior predictor in the mixture Gaussian and generalized Gaussian prior
model case provides good predictions that captures the general trend in the
profile. Common for the mixture Gaussian and generalized Gaussian prior is
that we model the water saturation with a bimodal distribution. We conclude
that the bimodal prior assumption for the water saturation is the reason for
the good inversion results for these two prior models. The bimodality en-
sures that the predictor does not regress towards the posterior median with
decreasing signal-noise ratio.

By comparing Table 4.2, 4.4 and 4.7 we deduce that the root-mean square
error is similar for the three different prior model cases. The main difference
is the drop in the water saturation RMSE from Case II to Case I under the
Gaussian and generalized Gaussian model, compared to the stable water sat-
uration RMSE in the mixture Gaussian prior model setting. The fact that
the RMSE is marginally lower in the Gaussian prior model case compared to
the generalized Gaussian setup shows us that the RMSE is not an absolute
measurement of accuracy and should be used in combination with graphical
inspection.

While the confidence bounds remain fairly narrow for the porosity and change
in water saturation under all three prior model setups, we see a dramatic in-
crease in the confidence bounds for the water saturation with decreasing
signal-noise ratio. This is traced back to the relative size of the regression
coefficient for sw,0 compared to φ. We see that the confidence bounds for the
reservoir variables are slightly narrower for the generalized Gaussian setup
than in the mixture Gaussian case, however both confidence intervals span
almost the entire range of sw,0. This is because the posterior model for sw,0
also is bimodal as it inherits the general shape of the prior model with two
areas of high probability. The predictions are therefore associated with a fair
amount of uncertainty in Case II and Case III.

All three inversion methodologies are very computationally efficient and can
be used to make inference about the reservoir variables on large seismic data
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sets. In the mixture Gaussian and generalized Gaussian prior model case
we find the posterior predictor for each rj ∈ r separately, which means that
we sequentially go through all the nodes when performing the inversion. We
experienced that the mixture Gaussian prior methodology is slightly more
computational demanding on its current form as we have to evaluate an
inverse for each j = 1, . . . , T . Most of the inversion methodologies found
in literature use MCMC approaches which are computer demanding. Seen
in this perspective, the results in the current study are encouraging. The
analytical form of the posterior models provides computationally efficient in-
version methodologies that is very suitable for 2D and 3D seismic data. The
extensions of the models to a 2D and 3D setting is straight forward for all
three models, although numerical methods may be required to obtain nu-
merical values.

A major simplification used in the current study is the linear likelihood model
which is found by linearizing the relationship between the reservoir variables
and the seismic variables. Since the rock physics and geophysics models listed
in Chapter 2 are empirical models, we get error both from the model and
from the regression. In addition, we have inserted numerical values for the
static variables in the rock physic model. What is considered as reasonable
values for these variables will vary from reservoir to reservoir. If core mea-
surements from the field are available, more accurate regression coefficients
could be found empirically as described in Landrø (2001).

In the inversion model we surmise that the regression error and model error
is included in the Gaussian error terms. The scope of the error should be
evaluated further to decide if this is a reasonable simplification. Also, we
assume that the error term is on the form Wεc|m + εd|r. A more accurate
model is given by WADεm|r + Wεc|m + εd|r. In this report we conclude
that the magnitude of the latter can be seen as insignificant compared to the
overall uncertainty in the model.

In a real seismic survey the variation in the amplitude will also be caused
by all the reservoir variables, and not just the porosity and the water sat-
uration. The model can however, easily be extended to include additional
model variables, but the accuracy in the posterior model will suffer as the
number of variables increase. In the current study we have imposed very
general prior models. As the mixture Gaussian and generalized Gaussian dis-
tribution are flexible distributions that can model several local modes with
different weights, we recommend that the parameters in the model should be
selected with great care and in collaboration with a skilled geoscientist.
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As discussed in Section 4.1, we will not know the exact signal-noise ratio in
a real data study. The confidence bounds should therefore be used more as
a guide for the range of the variables. For this purpose, a 80% confidence
interval might be more illustrative. The uncertainty the posterior models
can be reduced by for example conditioning on actual observations. In the
mixture and generalized Gaussian prior models we have also used a very high
variance for the water saturation variable. Assuming a smaller variance term
in the models could be justified, and such an assumption would decrease the
variance in the posterior model.
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Conclusion

In the current thesis, inversion methodologies for assessing reservoir proper-
ties from time-lapse seismic data are presented. The inversion problem is cast
in a Bayesian framework, and we compare and contrast three prior model set-
tings; a Gaussian prior, a mixture Gaussian prior and a generalized Gaussian
prior. By combining the priors with the Gauss-linear likelihood model, we
obtain the explicit expressions for the posterior models. Since the posterior
models, or reliable approximations of the posterior models, are on analytical
form, they provide very computationally efficient inversion methodologies.
The three methods are tested on a synthetic data set with respect to poros-
ity, water saturation, and change in water saturation between two time steps.

In the presence of negligible error, the predictor for the Gaussian and gener-
alized Gaussian model estimate the reference profile almost perfectly. Since
we have used an approximate likelihood model in the mixture Gaussian prior
case, the mixture Gaussian predictor does not replicate the reference pro-
file with this kind of precision, even when the model error approaches zero.
When error is added to the synthetic seismogram, the Gaussian predictor
gives very little information about the water saturation variable while the
mixture Gaussian and generalized Gaussian predictor provides good esti-
mates that captures the general trend for all the variables.

We conclude that the test study shows encouraging results for the mixture
Gaussian and generalized Gaussian prior model setups. The posterior mod-
els provides computationally efficient inversion methodologies that are very
suitable for 2D and 3D seismic data. The extensions of the models to a 2D
or 3D setting is straight forward for all three models, although numerical
methods may be required to obtain numerical values for the statistics.

We hope the work in the current thesis will inspire further work on the sub-
ject. Since the methodologies are constructed with the application to real
seismic data in mind, a natural extension is to do a parameter estimation
study. If well observations from the area of examination are available, the
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unknown parameters in the prior and likelihood model should be estimated
by for example a maximum likelihood approach. This is not a trivial prob-
lem when the posterior distribution is multimodal. In Rimstad and Omre
(2012) an MCMC approximate maximum likelihood method for estimating
the parameters in the generalized Gaussian model is presented, which could
also be applied to the current generalized Gaussian setup.

In the mixture Gaussian prior case we find the expression for the variance in
the approximate Gaussian prior by assuming that π = πiT . This assumption
enforces a very high correlation between the nodes. The exact variance of Ex-
pression 3.15 together with a hidden Markov chain model on π will decrease
the confidence intervals in the mixture Gaussian prior setup. We would then
have to use the Forward-Backward algorithm to assess the posterior model.

Another extension is to include controlled-source electromagnetic (CSEM)
data in the model. CSEM is still a developing technology, but it has recently
been introduced for commercial purposes. As the electrical conductivity is
highly dependent on the pore fluid, we should be able to obtain a more accu-
rate prediction of the water saturation by utilizing the CEMS data together
with the seismic data.
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Appendix A

Cross study

In this appendix we display the inversion results for a cross study of varying
signal-noise ratio in the inversion and synthetic model, see Table A.1 for the
model setups. Further analysis is left to the reader.

Inversion
Model

SNR 2 5 20 104

Synthetic
Model

2 x x x
5 x x x
20 x x x
104 x

Table A.1: x = Inversion result for model setup is displayed in Appendix A
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=104

Inversion model with SNR=104
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Figure A.1: Synthetic model with SNR=104 and SNR=104 in the inversion
model
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Synthetic earth profile made with SNR=20
Inversion model with SNR=20
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Figure A.2: Synthetic model with SNR=20 and SNR=20 in the inversion
model
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=5
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Figure A.3: Synthetic model with SNR=5 and SNR=5 in the inversion model
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Synthetic earth profile made with SNR=2
Inversion model with SNR=2
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Figure A.4: Synthetic model with SNR=2 and SNR=2 in the inversion model
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=20
Inversion model with SNR=5
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Figure A.5: Synthetic model with SNR=20 and SNR=5 in the inversion
model
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Synthetic earth profile made with SNR=20
Inversion model with SNR=2
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Figure A.6: Synthetic model with SNR=20 and SNR=2 in the inversion
model
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=20
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Figure A.7: Synthetic model with SNR=5 and SNR=20 in the inversion
model
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Synthetic earth profile made with SNR=5
Inversion model with SNR=2
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Figure A.8: Synthetic model with SNR=5 and SNR=2 in the inversion model
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GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=20
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Figure A.9: Synthetic model with SNR=2 and SNR=20 in the inversion
model
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Synthetic earth profile made with SNR=2
Inversion model with SNR=5
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Figure A.10: Synthetic model with SNR=2 and SNR=5 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=104

Inversion model with SNR=104
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Figure A.11: Synthetic model with SNR=104 and SNR=104 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=20
Inversion model with SNR=20
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Figure A.12: Synthetic model with SNR=20 and SNR=20 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=5
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Figure A.13: Synthetic model with SNR=5 and SNR=5 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=2
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Figure A.14: Synthetic model with SNR=2 and SNR=2 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=20
Inversion model with SNR=5
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Figure A.15: Synthetic model with SNR=20 and SNR=5 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=20
Inversion model with SNR=2
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Figure A.16: Synthetic model with SNR=20 and SNR=2 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=20
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Figure A.17: Synthetic model with SNR=5 and SNR=20 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=2
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Figure A.18: Synthetic model with SNR=5 and SNR=2 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=20
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Figure A.19: Synthetic model with SNR=2 and SNR=20 in the inversion
model
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MIXTURE GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=5
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Figure A.20: Synthetic model with SNR=2 and SNR=5 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=104

Inversion model with SNR=104
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Figure A.21: Synthetic model with SNR=104 and SNR=104 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=20
Inversion model with SNR=20
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Figure A.22: Synthetic model with SNR=20 and SNR=20 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=5
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Figure A.23: Synthetic model with SNR=5 and SNR=5 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=2
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Figure A.24: Synthetic model with SNR=2 and SNR=2 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=20
Inversion model with SNR=5
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Figure A.25: Synthetic model with SNR=20 and SNR=5 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=20
Inversion model with SNR=2
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Figure A.26: Synthetic model with SNR=20 and SNR=2 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=20
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Figure A.27: Synthetic model with SNR=5 and SNR=20 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=5
Inversion model with SNR=2
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Figure A.28: Synthetic model with SNR=5 and SNR=2 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=20
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Figure A.29: Synthetic model with SNR=2 and SNR=20 in the inversion
model
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GENERALIZED GAUSSIAN PRIOR CASE

Synthetic earth profile made with SNR=2
Inversion model with SNR=5
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Figure A.30: Synthetic model with SNR=2 and SNR=5 in the inversion
model
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