Acoustic multipole sources for the lattice Boltzmann method
Original version
10.1103/PhysRevE.87.023306Abstract
By including an oscillating particle source term, acoustic multipole sources can be implemented in the lattice Boltzmann method. The effect of this source term on the macroscopic conservation equations is found using a Chapman-Enskog expansion. In a lattice with q particle velocities, the source term can be decomposed into q orthogonal multipoles. More complex sources may be formed by superposing these basic multipoles. Analytical solutions found from the macroscopic equations and an analytical lattice Boltzmann wavenumber are compared with inviscid multipole simulations, finding very good agreement except close to singularities in the analytical solutions. Unlike the BGK operator, the regularized collision operator is proven capable of accurately simulating two-dimensional acoustic generation and propagation at zero viscosity.