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Acoustic multipole sources for the lattice Boltzmann method
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By including an oscillating particle source term, acoustic multipole sources can be implemented in the lattice
Boltzmann method. The effect of this source term on the macroscopic conservation equations is found using a
Chapman-Enskog expansion. In a lattice with q particle velocities, the source term can be decomposed into q

orthogonal multipoles. More complex sources may be formed by superposing these basic multipoles. Analytical
solutions found from the macroscopic equations and an analytical lattice Boltzmann wavenumber are compared
with inviscid multipole simulations, finding very good agreement except close to singularities in the analytical
solutions. Unlike the BGK operator, the regularized collision operator is proven capable of accurately simulating
two-dimensional acoustic generation and propagation at zero viscosity.
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I. INTRODUCTION

The lattice Boltzmann (LB) method is a relatively recent
advance in computational fluid dynamics, which differs from
traditional methods in that it solves the equations of fluid
dynamics indirectly using a straightforward discretization of
the Boltzmann equation [1]. It has recently also been applied
to practical cases in acoustics [2–4] and aeroacoustics [5–7].

This article describes a new method to generate acoustic
multipole sources in LB simulations. Acoustic monopole point
sources have previously been implemented by completely
replacing the particle distribution in a node with an equilibrium
distribution having a specified oscillating density [8–13]. In
this article we take a different approach by adding a particle
source term to the LB equation. Unlike the previous method,
the new method does not unphysically disturb the underlying
flow, and it also allows dipoles, quadrupoles, and complex
multipole superpositions.

II. LATTICE BOLTZMANN WITH OSCILLATING
SOURCE TERM

The LB method works by evolving the distribution function
fi(x,t) on a square numerical grid. This function represents the
density of particles with position x and velocity ξ i at time t .
The velocities ξ i and their associated distribution functions fi

are restricted to a discrete set. From the moments of fi we can
find the macroscopic quantities of density ρ(x,t) = ∑

i fi(x,t)
and momentum density ρu(x,t) = ∑

i ξ ifi(x,t).
fi is evolved using the lattice Boltzmann equation,

fi(x + ξ i ,t + 1) = fi(x,t) + �i(x,t) + si(x,t), (1)

where si is the aforementioned particle source term, and �i

is a collision operator. Most common is the BGK operator,
which relaxes fi to an equilibrium

f
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with a relaxation time τ ,

�i = − 1

τ

(
fi − f

(0)
i

)
. (3)

In Eq. (2), c0 is the inviscid speed of sound and wi is a set of
weighting coefficients; both depend on the choice of velocity
set ξ i .

This article primarily uses the regularized collision operator
[14], which behaves similarly to BGK but suppresses nonhy-
drodynamic moments of fi by relaxing them to equilibrium in
each time step. It may thus be seen as a conceptually simple,
efficient, and generally applicable multiple relaxation time
operator, which improves on the accuracy and stability of the
BGK operator, in particular at low viscosities. The regularized
collision operator is given by

�i =
(
1 − 1

τ

)
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2c4
0

∑
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ξiαξiβ − c2

0δαβ

)
ξjαξjβf

neq
j − f
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i ,

(4)

where f
neq
i = fi − f

(0)
i . In this notation, Greek indices indi-

cate vector or tensor components, and repeated Greek indices
in a term imply a summation (i.e., aαbα = ∑

α aαbα). δαβ is
the Kronecker δ.

The source term’s effect on the conservation equations can
be analyzed using a Taylor and Chapman-Enskog expansion
[15]. Because Eqs. (3) and (4) have the same hydrodynamic
moments [14], performing the analysis using Eq. (3) gives
results that are valid for both. fi is expanded around f

(0)
i in

orders of the Knudsen number, and si and the derivatives are
also similarly expanded:

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + . . . , si = εsi,

∂t = ε∂t1 + ε2∂t2 , ∂α = ε∂α.

Here, ε is an expansion parameter indicating the order of
the Knudsen number. After inserting Eq. (3) into Eq. (1),
Taylor expanding, collecting terms according to their Knudsen
number order, and performing some algebra, we find

(
∂t1 + ∂αξiα

)
f

(0)
i = − 1

τ
f

(1)
i + si (5)
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at O(ε), and
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at O(ε2). Then we define the monopole, dipole, and quadrupole
moments of si , respectively, as

S0 =
∑

i

si , Sα =
∑

i

ξiαsi, Sαβ =
∑

i

ξiαξiβsi . (7)

Finally, combining the different moments of Eqs. (5) and (6)
[1,15], we end up with a modified mass conservation equation,
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and a modified momentum conservation equation,
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Here, we have a pressure p = c2
0ρ, a kinematic shear viscosity

ν = (τ − 1
2 )c2

0ρ, and a bulk viscosity of 2ν/3. The O(u3) error
term [1] has been neglected.

An inhomogeneous linear wave equation can be derived
from these conservation equations. In the τ → 1

2 limit,
corresponding to the low viscosities commonly chosen for
LB acoustics [3,5], this equation is

1
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(10)

where the acoustic pressure p′(x,t) = p(x,t) − p0 is the
pressure’s deviation from a rest state. Unlike when this
equation is derived in the continuous Boltzmann equation
case [16], Sαβ does not fully disappear with viscosity. This
is a fortuitous consequence of the discretization error inherent
in the lattice Boltzmann scheme.

In the simplified case of a time-harmonic source term with
angular frequency ω, the solution to this equation can be found
using standard methods [17] to be

p′(x,t) = Re

{∫ [ (
iω − (iω)2

2

)
S0(y)G(x − y,t)

−Sα(y)
∂G(x − y,t)

∂xα

+ τSαβ (y)
∂2G(x − y,t)

∂xα∂xβ

]
dy

}
,

(11)

where G(x,t) is the time-harmonic Green’s function. The
three terms in the integral represent monopoles, dipoles, and
quadrupoles, respectively. For the two-dimensional case used

in the following sections,

G(x,t) = 1

4i
H

(2)
0 (k|x|) eiωt , (12)

where H (2)
n is the nth order Hankel function of the second kind

and k = ω/c0 is the wavenumber [18].
However, waves in LB simulations have nonideal

wavenumbers, due to discretization errors and viscous effects
[19,20]. It has been shown that linear LB wave propagation
can be formulated as an eigenvalue problem [1,19]. From the
corresponding characteristic polynomial,

∣∣∣∣∣∣
1

3

⎡
⎣ e−ik̂(3 − 1/τ ) e−ik̂/2τ − e−ik̂/τ

2/τ 3 − 1/τ 2/τ

− eik̂/τ eik̂/2τ eik̂(3 − 1/τ )

⎤
⎦ − eiωI

∣∣∣∣∣∣ = 0,

an analytical LB wavenumber including the aforementioned
effects can be found to be

k̂ = i ln{[3τ (ζ 2 − ζ + 1 − ζ−1) + ζ − 2 + 3ζ−1

+
√

3ζ−1
√

�]/[4 + 6τ (ζ − 1) − 2ζ ]}, (13)

where the shorthand ζ = eiω has been used, and

� = (ζ + 1)(ζ − 1)2(τζ + 1 − τ )(3τζ 2 − ζ + 3 − 3τ ).

This wavenumber is used in this article when comparing
analytical and numerical solutions.

III. MULTIPOLE BASIS

For a velocity set with q velocities, si can be seen as a q-
dimensional vector, which can be found from a q-dimensional
orthogonal basis Mj as si(x,t) = AijMj (x,t). Aij can be
chosen so that each component of Mj represents the strength
of a particular multipole. As all LB velocity sets are symmetric
and have an odd number of velocities, one reasonable choice
is to have one monopole in addition to (q − 1)/2 pairs of
oddly symmetric dipoles and evenly symmetric longitudi-
nal quadrupoles; one such pair for each pair of opposing
velocities ξ i .

For the two-dimensional D2Q9 lattice, where

ξ i =

⎧⎪⎨
⎪⎩

(0, 0) for i = 0,[
sin( i−1

2 π ), cos( i−1
2 π )

]
for i = 1–4,√

2
[

sin( 2i−1
4 π ), cos( 2i−1

4 π )
]

for i = 5–8,

wi =
⎧⎨
⎩

4/9 for i = 0,

1/9 for i = 1–4,

1/36 for i = 5–8,

(14)
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and c0 = 1/
√

3, the source term can be decomposed in this way as
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. (15)

The monopole has been chosen so that particles are added
at equilibrium. An x ′-y ′ coordinate system, rotated π/4 to
the x-y one, has been defined for the diagonal dipoles and
quadrupoles. Table I shows how these nine multipoles map
onto the moments defined in Eq. (7). It indicates that lateral
quadrupoles can be made by superposition of the diagonal
longitudinal quadrupoles: subtracting My ′y ′ from Mx ′x ′ and
normalizing.

IV. NUMERICAL VERIFICATION

To determine the correctness of the radiated fields of these
multipoles, a multipole point source was placed at x = 0 in
a system originally at rest with a density ρ0. The simulated
radiated field was compared with the corresponding analytical
solution for several representative multipoles. The simulations
presented in this article were performed at zero viscosity;
i.e., τ = 1

2 . To avoid ripple caused by sudden onset of the
source, the source’s amplitude was multiplied with an envelope
function

E(t) =
⎧⎨
⎩

0 for t � 0,
1
2 − 1

2 cos(ωt/2) for 0 � t � 2π/ω,

1 for 2π/ω � t.

(16)

The point source was left to radiate waves until the first
wavefront neared the edge of the simulated system, at
which point the simulation was stopped and the results were
compared with the analytical solution.

To avoid nonlinearities affecting the results, the LB method
was linearized by removing the O(u2) terms in Eq. (2). As
the resulting dynamics and macroscopic equations are linear,

TABLE I. Nonzero moments of the D2Q9 basis multipoles Mj .

M0 Mx My Mxx Myy Mx′ My′ Mx′x′ My′y′

S0 1

Sx 1 1√
2

− 1√
2

Sy 1 1√
2

1√
2

Sxx c2
0 1 1

2
1
2

Syy c2
0 1 1

2
1
2

Sxy
1
2 − 1

2

Syx
1
2 − 1

2

this allows the use of a complex phasor source, which in turn
allows a more simple and accurate analysis. The real part of
the complex radiated field represents its physical value, and
the magnitude represents its amplitude.

For a two-dimensional complex time-harmonic multipole
point source, si(x,t) = siδ(x) eiωt , at τ = 1

2 , Eq. (11) becomes

p′(x,t) = iωS0G(x,t) − Sα

∂G(x,t)

∂xα

+ 1

2

(
Sαβ − c2

0δαβS0
)∂2G(x,t)

∂xα∂xβ

, (17)

because from Eq. (12),

(iω)2G(x,t) = −ω2

4i
H

(2)
0 (k|x|) eiωt =

(
ω

k

)2
∂2G(x,t)

∂xα∂xα

.

The three right-hand terms in Eq. (17) are only affected
by monopole, dipole, and quadrupole multipole strengths,
respectively; Table I indicates that the two components of the
third term cancel for M0.

The waves radiated from three representative multipoles,
simulated with both the BGK and regularized collision
operators at a source frequency ω = 2π/25, are compared
with the analytical solution from Eq. (17) in Fig. 1. While
neither collision operator is unstable for this simulation, the
BGK LB results are heavily affected by spurious oscillations,
particularly for the higher-order multipoles. On the other hand,
the regularized LB results show no such oscillations and are
only significantly in error very close to the point source.
At this point there is a singularity in the analytical solution
that cannot be captured with any similar discrete simulation
methods, such as finite difference time domain methods.
Similar errors were also reported in two and three dimensions
for the previous LB monopole point source method [9]. Also,
since we are comparing a non-steady-state simulated result
and a steady-state analytical solution, there is naturally a
discrepancy near the first wavefront; this area is, therefore,
not shown in Fig. 1.

The fundamental difference between the two collision
operators is that the BGK operator has a relaxation time
τ for all moments, while the regularized operator relaxes
nonhydrodynamic moments to equilibrium in each time
step [14]. At τ = 1

2 , the BGK operator fully overrelaxes
nonhydrodynamic moments in such a way that their amplitude
does not decrease. By increasing τ in these simulations, the
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FIG. 1. (Color online) Physical acoustic density ρ ′ = Re(p′/c2
0)

normalized by multipole strength Mj against distance |x| to point
source. Results were measured along the x axis. Top to bottom:
monopole, x dipole, xx quadrupole.

spurious oscillations in the BGK results are reduced and
localized to the region around the source. This indicates that the
difference shown in Fig. 1 between the two operators is caused
by nonhydrodynamic moments generated in the source node.
The regularized collision operator at τ = 1

2 is used exclusively
in the remainder of this article.

In a region well away from the source and the first
wavefront, the q-norm of the relative error [21] of the
monopole pressure amplitude is

‖e‖q =
⎛
⎝ 1

λ2

3λ∑
|x|=λ

∣∣∣∣ |p
′∗| − |p′|
|p′|

∣∣∣∣
q

⎞
⎠

1/q

, (18)

where λ = 2πc0/ω is the wavelength, p′ is the analytical
solution, and p′∗ is the simulated solution. The 1- and 2-norms
were found for a number of different resolutions, and the
results are shown as function of the spatial resolution 1/λ in
Fig. 2. The overall convergence of the radiated wave is clearly
seen to be second order, the same order as the LB method
itself.

The directivity at k|x| = 25 of the dipole and the longi-
tudinal and lateral quadrupoles, simulated at ω = 2π/50, is
shown in Figs. 3(a)–3(c). In all three cases, there is an excellent
agreement between the numerical and analytical solutions.
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101

1/λ

e
q

O(1/λ2)
q = 1
q = 2

FIG. 2. 1- and 2-norm of the relative error of the monopole
pressure amplitude, found by Eq. (18), compared with second-order
convergence.
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FIG. 3. (Color online) Directivity at k|x| = 25, normalized by
the analytical solution. Lobe phase is indicated by plus and minus
signs. Circles and lines indicate numerical and analytical solutions,
respectively. (a) x dipole; (b) xx quadrupole; (c) xy quadrupole;
(d) rotated supercardioid.

The basic multipoles may be superposed to form more
complex ones. Rotation by an angle θ may be performed by
applying a rotation matrix αij = [ cos θ − sin θ

sin θ cos θ ] to a dipole vector

Di = [ Sx

Sy
] like Drot

i = ∑
j αijDj , or to a quadrupole tensor

Qij = [ Sxx Sxy

Syx Syy
] like Qrot

ij = ∑
m,n αimαjnQmn. Figure 3(d)

shows a rotated supercardioid formed by superposing a dipole
and a longitudinal quadrupole [22], both normalized to the
same amplitude and rotated an angle θ = π/6. This composite
multipole is highly directive.

V. COMPARISON WITH PREVIOUS METHOD

A previous method for acoustic monopole point sources
within the LB domain [8–13] works by replacing the distri-
bution function fi in the source node in each time step. It is
replaced by an equilibrium distribution f

(0)
i determined by the

velocity u, found from fi , and a specified oscillating density:

ρ = ρ0 + ρsrc sin(ωt). (19)

Thus, the original density and all information contained in
f

neq
i is overwritten and lost in the source node in each time

step. Extending the previous method for dipoles is possible by
making u an oscillating function of time. However, extending
it further would not be possible, as the equilibrium distribution
it depends on is fully defined by ρ and u.

Unlike the current method described in this article, there
have never been found any expressions for the previous
method, either regression- or theory-based, to relate the
amplitudes and phases of the source node and the radiated
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wave. Previous comparisons of the previous method with
theory have been done by ad hoc scaling and phase shifting
of the analytical solution [8,9]. Thus, we cannot make fair
direct quantitative comparisons with theory like in the previous
section.

However, the previous method systematically generates
errors in the source node. This is most clearly seen in a limiting
case where the monopole source strength goes to zero (i.e.,
si → 0 and ρsrc → 0) and there is a background flow field
with a density ρ(x,t) = ρ0 + ρ ′(x,t). For the current method,
Eq. (1) shows that the effect of the source vanishes. For the
previous method, however, Eq. (19) shows that the fixed source
node density ρ0 will result in a relative error |ρ ′/(ρ0 + ρ ′)|.
This error will propagate outward, affecting the rest of the flow
field.

VI. CONCLUSION

By adding an oscillating particle source term to the LB
equation, acoustic multipole sources may be implemented.
These may be either spatially distributed or point sources.
Comparing simulations of the fields radiated by monofre-
quency point multipole sources with the corresponding fields
predicted by theory, very good agreement is found except in
the vicinity of the source node, where there is a singularity in
the analytical solution. Similar errors were also reported for a
previous LB monopole point source method [9].

In a lattice with q velocities, we suggest using an orthogonal
multipole basis of one monopole, (q − 1)/2 dipoles, and (q −
1)/2 longitudinal quadrupoles. These fundamental multipoles
may be superposed to form more complex sources, such as
the highly directive source shown in Fig. 3(d). This could be
useful for simulating cases with directed emission of sound in
a complex fluid flow.

Because acoustic LB simulations are commonly performed
at very low viscosities, i.e., τ close to 1

2 [3,5], the simulations
in this article were performed using the regularized collision
operator at the inviscid limit τ = 1

2 . The simulations prove
that the regularized operator allows stable and accurate zero-
viscosity LB simulation of some phenomena, at minimum
acoustic generation and propagation. For the same case,
the BGK operator gives results with very large spurious
oscillations unless the viscosity is increased. This is because
it does not at all, when τ = 1

2 , suppress the nonhydrodynamic
moments generated by the source node, unlike the regularized
operator, which fully suppresses them.

It is worth noting that while monopoles, dipoles, and
quadrupoles appear as source terms in the wave equation,
higher-order multipoles, such as octupoles, do not. This is also
the case when the wave equation is similarly derived from the
continuous Boltzmann equation [16]. However, it is likely that
such higher-order multipoles would appear in the momentum
equation if its derivation were carried to the Burnett level,
where the equation contains additional terms with derivatives
of higher order. Thus, octupoles, etc., are likely also possible
in LB simulations, if the symmetries of the chosen velocity set
permit.

Comparison with the derivation based on the continuous
Boltzmann equation also shows that the quadrupole strength
here is nonzero in the inviscid limit due to a fortuitous
discretization error in the lattice Boltzmann scheme. In the
continuous case, quadrupoles disappear in this limit.
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