Efficient high-dimensional modelling of temperature and extreme precipitation
Doctoral thesis
Permanent lenke
https://hdl.handle.net/11250/3104497Utgivelsesdato
2023Metadata
Vis full innførselSamlinger
Består av
Paper 1: Vandeskog, Silius Mortensønn; Thorarinsdottir, Thordis Linda; Steinsland, Ingelin; Lindgren, Finn. Quantile based modeling of diurnal temperature range with the five-parameter lambda distribution. Environmetrics 2022 s. - This is an open access article under the terms of the Creative Commons Attribution License CC-BY. Available at: http://dx.doi.org/10.1002/env.2719Paper 2: Vandeskog, Silius Mortensønn; Martino, Sara; Castro-Camilo, Daniela; Rue, Håvard. Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution. Journal of Agricultural Biological and Environmental Statistics 2022 ;Volum 27. s. 598-621. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License CC-BY. Available at: http://dx.doi.org/10.1007/s13253-022-00500-7
Paper 3: Vandeskog, Silius Mortensønn; Martino, Sara; Huser, Raphaël. An Efficient Workflow for Modelling High-Dimensional Spatial Extremes. Submitted for publication to Journal of the American Statistical Association. Published on arXiv under license CC-BY 4.0. Available at: https://doi.org/10.48550/arXiv.2210.00760
Paper 4: Vandeskog, Silius Mortensønn; Martino, Sara; Huser, Raphaël. Fast spatial simulation of extreme high-resolution radar precipitation data using INLA. Submitted for publication to Annals of Applied Statistics. Published on arXiv under license CC-BY 4.0. Available at: https://doi.org/10.48550/arXiv.2307.11390