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Background 3

1 Introduction

The rapid climate changes that have occurred in recent decades are leading
to an increase in natural hazards (IPCC, 2023), with flooding being among
the most common and costly of these (Razavi et al., 2020). As a very
relevant example, while I have been putting the finishing touches on this
thesis, the storm “Hans” has ravaged the eastern and southern parts of
Norway, leading to large and dangerous floodings over considerable parts of
the country. The floods have lead to the evacuation of thousands of people,
a partial collapse of a river dam, a closing of the main roads between the
south and north of Norway, and overall damages that are projected to cost
well over a billion Norwegian kroners to repair. Still, floods are projected
to become even more frequent and damaging as climate change continues
(Yin et al., 2018; Allan et al., 2020). Improved flood mitigation measures
might therefore help in avoiding human casualties and devastating economic
losses to our society (Jongman, 2018). However, in order to improve upon
the already existing flood mitigation tools, a better understanding of the
climatic processes behind the occurring floods might be necessary (Brunner
et al., 2021). The overall aim of this thesis is therefore to gain a better
understanding of these climatic processes, which might later help in the
development of improved flood mitigation tools.

The two main drivers of river flooding are precipitation and snowmelt
(Hanssen-Bauer et al., 2015; Berghuijs et al., 2019). However, snowmelt is
mainly driven by temperature and precipitation. Furthermore, the amount
of precipitation is directly affected by the temperature, as higher tempera-
tures allow the air to hold more moisture, which makes it possible for more
precipitation to fall over an area within a short period of time (e.g., Westra
et al., 2014). We can therefore say that the two main atmospheric drivers
behind river floods are precipitation and temperature. An improved under-
standing of these two variables can thus lead to an improved understanding
of the dangers and possibilities of future floods.

With this as background, the main focus of my thesis has been to
develop and improve upon statistical models for temperature and extreme
precipitation, in order to provide a better understanding of the underlying
processes that can cause floods. I have not attempted to project how
temperature and extreme precipitation might be affected by future climate
changes, but rather to describe how they behave in the present climate.
However, this can also be useful for assessing future climate changes, as a
better understanding of today’s climate can lead to improvements in the
evaluation, development and statistical downscaling of climate models used
for projecting future climate change (Maraun & Widmann, 2018). The
thesis consists of four papers (see Section 6 for a complete overview). The
first paper covers statistical modelling of temperature, while the remaining
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three focus on statistical modelling of extreme precipitation.
In Paper 1, we develop a model for diurnal temperature range, which is

the difference between daily maximum and daily minimum temperature. Hy-
drological impact models often require both daily minimum and maximum
temperature as input, as their values are important for accurately describ-
ing processes like the formation and melting of snow and ice. However,
due to computational constraints, many interpolated data sets, statistical
downscaling methods and bias correction methods treat daily minimum and
maximum temperature as independent variables. This is problematic, as
it can result in highly unrealistic estimates of the temperature variability
within a given day. It can even lead to crossing behaviour, i.e., estimated
daily minimum temperatures that are larger than their corresponding esti-
mated daily maximum temperatures. The Nordic Gridded Climate Data Set
Version 2 (Lussana, Saloranta, et al., 2018; Lussana, Tveito, & Uboldi, 2018)
is an example of such an interpolated data set where the variables are treated
independently, and where temperature crossing occurs for a considerable
amount of the data. The direct modelling of diurnal temperature range
solves this problem by ensuring that no min/max crossing can occur.

Much work has been put into modelling daily minimum, maximum and
mean temperatures, but to the best of our knowledge, a statistical model for
the marginal distribution of diurnal temperature range has never previously
been proposed in the literature. The first step of our modelling is therefore
to propose a marginal distribution for diurnal temperature range. We choose
the somewhat obscure five-parameter lambda distribution (Gilchrist, 2000)
as our marginal model. To the best of our knowledge, this distribution
has never previously been applied for modelling a climate variable. In
the paper, we argue for why this distribution is an appropriate choice for
modelling differences between extreme quantiles, such as the daily maximum
and minimum temperature. We also propose a distributional regression
framework for estimating the marginal distribution of diurnal temperature
range as a function of explanatory variables. The two proposed models
are applied for modelling diurnal temperature range in a case study using
data from a set of weather stations in the south of Norway. We find that
the five-parameter lambda distribution is a flexible model that provides a
good fit to the complex and somewhat unusual marginal distributions of
diurnal temperature range. The distributional regression model allows for
interpolation of the marginal distributions of diurnal temperature range,
and it is found to perform well in a spatial cross-validation study.

The remaining papers focus on statistical modelling of extreme precipi-
tation. This is a complex area of research that contains a large variety of
interesting aspects and problems. We have concentrated on providing new
insight into two of these problems. The first problem is: what is a realistic
estimate for a precipitation value that is so extreme that the probability of
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exceeding it within a year is 1/n, for any integer n > 1? This precipitation
amount is known as the n-year return level, as it on average will be exceeded
once every n years. The concept of return levels is heavily used when
designing and building infrastructure, and the Norwegian Energy Regula-
tory Authority (NVE) therefore produces maps of precipitation return level
estimates over all of Norway. Additionally, all dams in Norway are required
by law to withstand large precipitation amounts such as the 500-year or the
1000-year return level. The second problem we provide new insight into is:
if we today were to observe extreme precipitation somewhere in space, what
would the spatial distribution of that precipitation event be? Answers to
this problem can tell us how the distribution of extreme precipitation over
a water catchment might look like, and thus how focused a rainstorm might
be or how much of the precipitation that might end up in the same parts
of a river at the same time. Paper 2 provides insight to the first problem,
while Paper 3 and 4 provide insight to the second problem.

A reasonable answer to the first problem can often be produced using
only properties of the marginal distributions of observed precipitation, while
a reasonable answer to the second problem relies heavily on the dependence
structure between precipitation observations at multiple locations in space.
This means that more complex statistical models become necessary.

To provide insight into the two mentioned problems, we lean heavily
upon the field of extreme value theory, which provides a nice mathematical
description of how the tails of a probability distribution behave as we
approach their limits. Extreme value theory has shown great success in
modelling environmental extremes, and it has been receiving increased
amounts of interest in recent years, in part due to the impending climate
crisis (e.g., Opitz et al., 2018; Shooter et al., 2019; Reich & Shaby, 2019;
Castro-Camilo et al., 2019; Bacro et al., 2020; Bopp et al., 2020; Simpson &
Wadsworth, 2021; Koch et al., 2021; Richards et al., 2022; Koh et al., 2023).

Even though extreme value theory is a relatively old field, with roots
going back to the work of Fisher and Tippett from 1928 (Fisher & Tippett,
1928), the field is still evolving, and there are many important problems left
to be solved. In my opinion, an important remaining problem is that of
developing extreme value models that have both nice theoretical properties
and that are highly usable in practice. Until recent years, the field has
mostly focused on models with nice theoretical properties, while less effort
has been put into models that work well in practice, in the sense that
they are flexible enough to describe real-life problems of interest while also
allowing for robust and computationally efficient inference. Particularly
when modelling spatial or spatio-temporal extremes, most of the classical
extreme value models focus on explaining “the asymptotics”, which might
often be so far into the distributional tails that it has little practical relevance
for modelling climate data with somewhere between 10 and 100 years of
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available observations. At the same time, the models fail to provide accurate
descriptions of the “subasymptotic” extreme events, which might often be the
ones we actually care about and have relevant data for (Huser & Wadsworth,
2022). Inference for most classical models from spatial extreme value theory
is also computationally demanding, and scales poorly with an increase in
model dimension, which makes the models intractable for describing complex
and high-dimensional spatial data sets.

In the three papers about extreme precipitation, we have therefore at-
tempted to provide new insight into two more theoretical/methodological
problems, in addition to providing insight into the behaviour of extreme
precipitation. The first problem concerns how to develop models for (uni-
variate and spatial) extremes that are flexible enough to provide accurate
descriptions of both subasymptotic and asymptotic extreme behaviour, while
the second problem concerns how to make modelling assumptions that are
as true to the extreme value theory as possible, while also allowing for more
robust and more computationally efficient inference.

The remainder of Part I of this thesis is organised as follows. In Section 2,
an introduction to the field of extreme value theory is provided, briefly
covering the topics of univariate, multivariate and spatial extreme value
theory, extremal dependence structures, and asymptotic and subasymptotic
models for spatial extremes. Then, in Section 3, a short summary of spatial
statistics, with a focus on computationally efficient modelling, is presented.
This briefly covers the topics of Gaussian random fields, spatial covariance
functions, independence assumptions leading to covariance tapering and low-
rank estimation methods, and finally Gaussian Markov random fields and
the so-called stochastic partial differential equation (SPDE) approximation.
Section 4 presents the framework of latent Gaussian models, and how
these models allow for both flexible modelling and computationally efficient
inference using the method of integrated nested Laplace approximations
(INLA). In Section 5, I present some final thoughts about the thesis, and
about possible future extensions of our work. Finally, in Section 6, a short
summary of each of the four papers of the thesis are presented.

2 Extreme value theory

2.1 Univariate extreme value theory

Extreme value theory is a field within probability theory and statistics that
focuses on estimating properties of the tails of probability distributions (see,
e.g., Coles (2001) or Beirlant et al. (2004) for a thorough introduction).
The field originates from the problem of finding the distribution of the
maximum of a large number of random variables with unknown distribution
functions. In their seminal work, Fisher and Tippett (1928) show that,
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for the maximum Mn, of n random variables X1, . . . , Xn
i.i.d.⇠ F , with un-

known distribution function F , if there exists two sequences of standardising
constants {an > 0} and {bn} such that the limiting distribution of the
standardised maximum M

⇤
n = (Mn � bn)/an is non-degenerate as n ! 1,

then the limiting distribution of M⇤
n must have one of three possible forms,

which can be merged together to yield the generalised extreme value (GEV)
distribution

lim
n!1

P(M⇤
n 6 x) = G(x) =

(
exp

h
�{1 + ⇠(x� µ)/�}�1/⇠

+

i
, ⇠ 6= 0,

exp [� exp {�(x� µ)/�}] , ⇠ = 0,
(1)

where a+ = max(a, 0), µ is a location parameter, � > 0 is a scale parameter
and ⇠ is best known as the shape or the tail parameter. If ⇠ > 0, the GEV
distribution has a heavy upper tail and is known as a Fréchet distribution.
If ⇠ = 0, the GEV distribution has an exponential upper tail and is known
as a Gumbel distribution. If ⇠ < 0, the GEV distribution has a finite
upper tail and is known as the reverse Weibull distribution. The Gumbel
distribution has support on the entire real line, whereas the supports of
the Fréchet and reverse Weibull distributions are bounded from below and
above, respectively. Figure 1 displays probability density functions of these
three sub-classes of the GEV distribution. The result in (1) can also be
shown to hold if the n random variables are dependent and come from a
stationary time series, although with slightly different location and scale
parameters (e.g., Coles, 2001).

GEV distributions are max-stable distributions, meaning that for every
natural number n 2 N, there exists constants ↵n > 0 and �n such that

G
n(↵nx+ �n) = G(x).

Furthermore, any random variable that is max-stable must follow the GEV
distribution.

Knowledge about the limiting distribution G of the standardised maxi-
mum can be further used for learning about other properties of the upper
tail of the unknown distribution F . One can, e.g., show that, if (1) holds for
the standardised maximum over n independent realisations of X ⇠ F , then,
for a large enough threshold u, the distribution of a threshold exceedance
[X � u | X > u] can be approximated well by the generalised Pareto (GP)
distribution (Pickands III, 1975; Davison & Smith, 1990),

P(X � u 6 x | X > u) ⇡

8
><

>:

1� (1 + ⇠x/�u)
�1/⇠

, ⇠ > 0, x > 0

1� (1 + ⇠x/�u)
�1/⇠

, ⇠ < 0, 0 6 x 6 ��u/⇠
1� exp (�x/�u) , ⇠ = 0, x > 0

,

(2)
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Figure 1: Probability density function, g(x), for the GEV distribution with location
parameter µ = 0 and scale parameter � = 1. The tail parameter ⇠ takes the values
�0.3, 0 and 0.3 for the Weibull, Gumbel and Fréchet distributions, respectively.

where the scale parameter �u is a function of the threshold u, and the tail
parameter ⇠ is the same as in (1). This is an incredible result, which implies
that any probability distribution with certain tail regularity properties can
be approximated well by the GP distribution if one moves far enough into
its tails, since, when x > u, the probability P(X 6 x) can be decomposed
into

P(X 6 x) = P(X 6 u) + P(X > u)P (X 6 x | X > u).

Together, the results in (1) and (2) make it possible to estimate many
important properties of the tails of statistical distributions, which would
be difficult to estimate using other statistical methods. As an example,
the most common methods for estimating a quantile is to either use an
empirical estimator, or to fit a probability distribution to the available data
and then compute the corresponding quantile of that fitted distribution.
However, if we have, e.g., n available observations, and we wish to estimate
the 1�1/(2n) quantile, it is clear that an empirical estimator might perform
poorly, and that a probability distribution fitted to the n observations might
focus most on the bulk of the data, which can lead to poor performance
in the tails. Using extreme value theory, one can fit the GP distribution
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directly to only the most extreme observations, i.e., those that are larger
than some threshold u, which often yields considerably better estimates
for extreme properties such as the 1 � 1/(2n) quantile. Similarly, if one
is, e.g., designing a dam that needs to withstand the n year return level
of river runoff, but only m < n years of data are available, extreme value
theory makes it possible to provide an estimate for the n year return level
by dividing the river runoff observations into large and disjoint blocks of size
k, typically with k equal to one year, and then fitting the GEV distribution
to the available block maxima. Then one can estimate the n year return
level as the 1� 1/n quantile of the fitted GEV distribution, or some other
quantile if k is different from one year (Coles, 2001).

An important challenge when modelling extremes with the GEV or
the GP distribution is the choice of the block size k and the threshold u

(e.g. Wadsworth & Tawn, 2012a; Langousis et al., 2016; Bader et al., 2018;
Bücher & Zhou, 2021). The results in (1) and (2) only hold exactly in the
limit where k ! 1 and where u ! x

⇤, where x
⇤ is the upper endpoint

of F . Thus, there will always be some model misspecification present for
finite k or u < x

⇤, and this misspecification decreases as we increase k or u.
However, the number of data points available for inference decreases when
k or u increases. This means that the selection problem for k and u can be
considered as a type of bias/variance tradeoff.

Another challenge is that both the GP and the GEV distributions have
supports that depend on the values of their model parameters. This can cause
considerable complications and lead to less robust inference, as small changes
in the parameter values can cause observations to fall outside the support,
thus lending the model fit unsuitable for the given data (e.g. Smith, 1985;
Bücher & Segers, 2017). This lack of robustness can become particularly
challenging in settings with few available observations, which is often the
case since k and u must be chosen large to minimise model misspecification.
It also severely complicates regression-based modelling where one or more
of the parameters are modelled as a function of some explanatory variables,
as this can lead to different supports for each combination of explanatory
variables. In such settings, simply finding a legal set of initial variables
for estimating the model parameters can be a considerable challenge. This
problem is more severe for the GEV distribution, as the GP distribution
only has a support that changes as a function of the parameters values for
light-tailed distributions (⇠ < 0), while the GEV support is bounded and
depends on its parameter values for all ⇠ 6= 0.

For these reasons, in the setting of modelling extremes of heavy-tailed
phenomena, Castro-Camilo et al. (2022) propose to model block maxima
using a modified version of the GEV distribution, denoted the blended GEV
(bGEV) distribution. This distribution is equal to a Gumbel distribution
(⇠ = 0) in its lower tail, and equal to a Fréchet distribution (⇠ > 0) in its
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a b

x

h(x) Gumbel
Fréchet
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Figure 2: The probability density function h(x) of the bGEV distribution together
with the Fréchet and Gumbel distributions in its upper and lower tail, respectively.

upper tail, which means that it always has an unbounded support, and that
it is able to describe both light-tailed and heavy-tailed phenomena. The
cumulative distribution function (CDF) of the bGEV is defined as

H(x;µ,�, ⇠, a, b) = F (x;µ,�, ⇠)p(x;a,b)G(x; µ̃, �̃)1�p(x;a,b)
,

where F is the CDF of a Fréchet distribution, G is the CDF of a Gumbel
distribution and p(x; a, b) is a weight function that is zero for x 6 a, one
for x > b, and increasing as a function of x for a < x < b. The parameters
(µ̃, �̃) of the Gumbel CDF are functions of (µ,�, ⇠, a, b) for ensuring that H
is continuous. The probability density function of the bGEV distribution is
displayed in Figure 2. This distribution provides considerably more robust
inference than the GEV distribution, and it makes regression modelling
easier, faster and more stable. In Paper 2 we apply the bGEV distribution
for performing spatial regression modelling of the yearly maxima of sub-
daily precipitation data in Southern Norway, in order to estimate large
precipitation return levels. Precipitation is well known to be a heavy-tailed
phenomenon (Koutsoyiannis et al., 1998; Cooley et al., 2007; van de Vyver,
2012; Papalexiou & Koutsoyiannis, 2013; Huser & Davison, 2014), which
makes the bGEV distribution a perfect choice for such a task. Our paper
is the first to apply the bGEV distribution for modelling in a complex
large-scale case study with real data. In the paper, we also demonstrate in a
simulation study how the bGEV distribution can be much more robust and
perform considerably better than the GEV distribution when estimating
return levels for heavy-tailed problems.

Asymptotically, the GEV distribution is known to be the only correct
limiting distribution, and many might therefore argue that the bGEV
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distribution is unsuitable for modelling extremes. However, in practice, one
will never obtain an infinite amount of data, and the GEV distribution
will therefore also always be “wrong”, in the sense that the limit in (1) is
never fully reached. Thus, with finite amounts of data, there is no way
of knowing if the GEV distribution is more or less wrong than the bGEV
distribution. The only thing we know is that, if the data are heavy-tailed,
and we choose a large enough block size, then the limit in (1) is probably
close enough to the truth so that both the GEV distribution and the bGEV
distribution can provide good model fits. Then, the only relevant difference
between the two is that the bGEV distribution is more robust and easier
to perform inference with than the GEV distribution. Approximations or
modifications in a similar spirit, for performing more robust and/or more
computationally efficient inference, are more common in other sub-fields
of statistics that have been more focused on applications. For example,
in spatial and spatio-temporal modelling, it is common to model almost
all parts of the dependence structures using transformations of Gaussian
random fields, even though it is known that other dependence structures
can be more appropriate, because the Gaussian copula has nice theoretical
properties and can cause significant improvements in the inference speed
(see Section 3 for more details). As the field of extreme value theory is
becoming more applied, modelling assumptions such as the bGEV, which
allow for faster, better and more robust modelling of the subasymptotics,
by focusing slightly less on the asymptotics, are starting to become more
accepted (Papastathopoulos & Tawn, 2013; Naveau et al., 2016; Stein, 2021b,
2021a; Yadav et al., 2021; Richards & Huser, 2022; Gamet & Jalbert, 2022).
In my opinion, modellers should always consider choosing more robust
modifications with more focus on the subasymptotics, instead of choosing
the less robust, but asymptotically correct, GEV and GP distributions.

2.2 Multivariate extreme value theory

Many of the most impactful extreme events in the real world are multivariate,
spatial, temporal or spatio-temporal in nature. For example, extreme
negative stock results for a single company is problematic, but simultaneous
extreme negative stock results for an entire financial sector can cause severe
damage to human society. Extreme levels of one specific air pollutant
can be dangerous, but simultaneous extreme levels of multiple different
air pollutants might lead to a cocktail-effect that is much more damaging.
Extreme heat can be deadly, but extreme heat for a long time and over an
entire continent can cause serious damage to the food-safety of millions of
people.

There exists a multivariate version of the generalised extreme value the-
orem (e.g. Coles, 2001). To describe the multivariate version, we require n
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realisations X1, . . . ,Xn of a d-dimensional random vector X ⇠ F , with un-
known distribution function F , and we denote Xi = (Xi,1, Xi,2, . . . , Xi,d)

>

for all i = 1, 2, . . . , n. Then, we define the vector of component-wise maxima
as Mn = (Mn,1,Mn,2, . . . ,Mn,d)

>, where Mn,j is the maximum over the jth
component of the n random vectors, i.e., Mn,j = max(X1,j , X2,j , . . . , Xn,j).
The multivariate generalised extreme value theorem now states that, if there
exists two standardising sequences of d-dimensional vectors {an > 0} and
{bn}, with an = (an,1, . . . , an,d)

> and bn = (bn,1, . . . , bn,d)
>, such that the

limiting distribution

G(x) = lim
n!1

P (M⇤
n 6 x)

of the standardised maximum

M
⇤
n =

✓
Mn,1 � bn,1

an,1
,
Mn,2 � bn,2

an,2
, . . . ,

Mn,d � bn,d

an,d

◆>

exists and is non-degenerate, then the limiting distribution of M⇤
n must

be the multivariate GEV distribution. This distribution is nonparametric
and quite complex. However, it must satisfy a set of certain properties,
such as max-stability and the fact that its marginal distributions must
be univariate GEV distributions. This makes it possible to identify and
construct parametric families of probability distributions that are proper
subsets of the family of multivariate GEV distributions, such as the logistic
model (Gumbel, 1960), the asymmetric logistic model (Tawn, 1990) and the
Dirichlet model (Coles & Tawn, 1991). Multivariate max-stability means
that, for every n 2 N, there exist vector constants ↵n > 0 and �n such that

G
n(↵n � x+ �n) = G(x),

where the Hadamard product � denotes element-wise multiplication.
The multivariate version of the extreme value theorem is not directly

applicable in the same way as the univariate extreme value theory, since
the different component-wise maxima in Mn may occur at completely dif-
ferent times, meaning that Mn may be different from all the individual
observations X1, . . . ,Xn. Thus, Mn often contains synthetic data that it
is difficult to use for describing actual multivariate extreme events. How-
ever, just as in the univariate setting, the knowledge about the limiting
distribution G makes it possible to say more about the distributional tails
of F directly. If the limiting distribution G is nondegenerate, then the
conditional distribution of X, given that at least one component of X

exceeds some large enough threshold, is approximately equal to the mul-
tivariate GP distribution (Rootzén, Segers, & Wadsworth, 2018; Rootzén,
Segers, & L. Wadsworth, 2018). Furthermore, if G is nondegenerate, it
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is also possible to describe threshold exceedances of X as a point-process
following a non-homogeneous Poisson distribution (e.g. Davison & Huser,
2015). Thus, extreme value theory produces a large array of usable models
for describing multivariate tail behaviour. However, these models are much
more mathematically involved than the univariate tail models in Section 2.1.
Since they have not been directly used in this thesis, I will not go more into
the mathematical details. Multivariate extreme value theory can also be
generalised into the functional setting, e.g., for modelling the extremes of a
spatial random field. This is described in Section 2.3.

2.3 Spatial extreme value theory

A stochastic process {X(s)}s2S with index set S is denoted a max-stable
process if and only if it has the property that, for every n 2 N, there exists
two functions ↵n(s) > 0 and �n(s) such that

P (X(s) 6 ↵n(s)x+ �n(s))
n = P (X(s) 6 x).

Once more, the marginal distributions of a max-stable process must them-
selves be max-stable distributions, i.e., GEV distributions. This is therefore
the natural generalisation of the GEV distribution into the functional setting.
Most classical models for spatial extremes are based on max-stable processes,
or variants thereof (e.g. Davison et al., 2019; Huser & Wadsworth, 2022).

De Haan (1984) shows that any max-stable process X(s) can be repre-
sented as the pointwise maxima over an infinite amount of random processes,

X(s) = sup
i=1,2,...

RiWi(s),

where R1, R2, . . . are points of a Poisson process on [0,1) with intensity
r
�2dr, and W1(s),W2(s), . . . are independent realisations of a non-negative

stochastic process W (s) with mean E[W (s)] = 1. This so-called spectral
representation allows for an efficient method of simulating approximate
max-stable processes, by sampling R1 > R2 > . . . sequentially, and then
stopping at some sample nr. n such that Rn is so small that

P

 
sup

i=n+1,n+2,...
RiWi(s) > max

i=1,2,...,n
RiWi(s)

!
⇡ 0,

which means that X(s)
d⇡ maxi=1,...,nRiWi(s). This is illustrated in Fig-

ure 3. The spectral representation also allows for an easy way of developing
models for max-stable processes, as it is possible to define a max-stable
process simply by defining a distribution for the spectral process W (s) that
is nonnegative and has mean 1. This approach has given rise to a large vari-
ety of models for spatial extremes, such as the Schlater process (Schlather,
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Figure 3: Illustration of how to simulate max-stable processes using the spectral
representation. The different plots display realisations of {RiWi(s)}ni=1 for different
values of n, along with the pointwise maxima Xn(s) = max {RiWi(s)}ni=1.

2002), the Smith process (Smith, 1990), the Brown-Resnick process (Brown
& Resnick, 1977) and the extremal-t process (Opitz, 2013).

Max-stable processes have seen considerable use in the literature for
modelling spatial extremes of, e.g., precipitation (Padoan et al., 2010;
Davison et al., 2012; Forster & Oesting, 2022), temperature (Davison &
Gholamrezaee, 2012; Thibaud et al., 2016; Davison et al., 2019), river
discharge (Asadi et al., 2015; Engelke & Hitz, 2020) and air pollution
(Vettori et al., 2019).

Once more, a spatial equivalent of the univariate and multivariate
threshold exceedance approaches exists, which gives rise to the so-called
generalised Pareto and r-Pareto processes (Dombry & Ribatet, 2015; Ferreira
& de Haan, 2014; De Fondeville & Davison, 2018). However, these are
considerably more mathematically involved, and have only recently started
to gain traction in the literature.

A considerable problem with max-stable processes is that the log-
likelihood of a d-dimensional observation contains the same number of
terms as the dth Bell number (Davison & Huser, 2015). The Bell numbers
grow superexponentially towards infinity, as shown in Table 1, which means
that likelihood-based inference becomes computationally intractable for
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Table 1: The nth Bell number, Bn, for different values of n (OEIS Foundation,
2023).

n Bn

1 1
5 52
10 115975
15 1382958545
20 51724158235372

most values of d larger than approximately 10. This problem can be some-
what overcome by performing inference using lower-dimensional composite
likelihoods such as the pairwise likelihood (Padoan et al., 2010). However,
this provides less efficient utilisation of the available data, and can easily
become computationally demanding due to combinatorial difficulties as the
dimension d grows.

Very recently, several likelihood-free inference methods, also known
as simulation-based inference methods, have emerged as promising alter-
natives for performing high-dimensional inference with models that have
intractable likelihoods (Lenzi et al., 2023; Sainsbury-Dale et al., 2023;
Richards, Sainsbury-Dale, et al., 2023; Walchessen et al., 2023; Rai et al.,
2023; Majumder & Reich, 2023). These methods allow for performing
inference for essentially any statistical model which one can simulate from.
Inference is performed by first simulating a large set of model parameters
from a chosen prior distribution. Then, data is simulated from the model
for each of the sampled parameter vectors. A machine learning method,
such as a deep neural network, is then fitted to the large collection of
data and model parameters, with the aim of estimating model parameters
given a set of simulated data. Finally, the fitted machine learning method
can be applied for performing inference by estimating model parameters
for observational data sets. This methodology is promising, and has been
shown to allow for fast inference for models that would previously have been
considered intractable, such as a high-dimensional max-stable model. Still,
the methodology is very new, and there are many challenges and unsolved
problems remaining before it can be adopted for widespread use.

2.4 Extremal dependence

An important property of multivariate or spatial extreme value theory is the
extremal dependence structure, which describes whether multiple extremes
tend to occur simultaneously or not. A much used quantity for describing
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extremal dependence is the conditional threshold probability

�p(X,Y ) = P
�
X > F

�1
X (p) | Y > F

�1
Y (p)

�
,

where F
�1
X and F

�1
Y are quantile functions for the random variables X and

Y , respectively. In the limit, as p ! 1, the conditional threshold probability
converges to the tail correlation coefficient

�(X,Y ) = lim
p!1

�p(X,Y ).

We say that X and Y are asymptotically dependent if �(X,Y ) > 0, meaning
that their extremes tend to occur simultaneously, while they are asymptoti-
cally independent if �(X,Y ) = 0. Interestingly, X and Y are asymptotically
independent if and only if their limiting block maxima are perfectly inde-
pendent, meaning that the limiting bivariate GEV distribution reduces to
G(x, y) = G(x)G(y).

Max-stable processes provide a thorough and successful description of
the asymptotic behaviour of random processes, which typically is described
by the tail correlation coefficient �. However, they often fail to describe the
subasymptotic behaviour of such processes, i.e., how the distributional tails
behave as we move towards the asymptotics, which can be represented by
how �p converges towards �. Instead, the models essentially assume that
�p is constant and equal to � for all large enough values of p.

As an illustrating example, let the random vector (X,Y ) follow a bivari-
ate Gaussian distribution with correlation ⇢. Then, for all |⇢| < 1, X and
Y are asymptotically independent (Sibuya et al., 1960). The values of �p

are heavily affected by the value of ⇢, with ⇢ = 0 producing small values of
�p that converge quickly towards 0, while ⇢ = 0.99 produces much larger
values of �p, that converge more slowly towards 0. This is displayed in
Figure 4. However, since �p converges to 0 for all |⇢| < 1, the standardised
component-wise maxima over infinitely many replications of (X,Y ) attain
identical limiting distributions, meaning that ⇢ = 0 and ⇢ = 0.99 is “the
same thing” in the asymptotics. In practice, though, one should clearly care
more about, e.g., precipitation amounts that are 99% correlated over a large
area, than precipitation amounts that are perfectly independent for each
location in space, as the former has a much larger probability of creating
dangerous floods.

This demonstrates a problem with the classical models of multivariate
and spatial extreme value theory. The models focus on describing the
asymptotics, here represented by �, but the data sets they are fitted to are
seldom large enough to be considered truly asymptotic. The classical models
may therefore provide poor fits to “subasymptotic data sets”, because these
are not large enough for the model assumptions to hold. Thus, if we fit a
bivariate max-stable distribution to some tens of thousands of realisations
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Figure 4: Empirical estimates of �p for a bivariate Gaussian distribution with
correlation coefficient ⇢, created using Monte Carlo estimation.

of the bivariate Gaussian distribution with correlation ⇢ = 0.99, we will, as
shown in Figure 4, produce an estimate for the tail correlation coefficient of
� ⇡ 0.8, meaning that we heavily overestimate extremes in the asymptotics.
However, if we instead were able to model how �p converges towards �, then
we would capture the fact that �p is still decreasing, which might produce a
better estimate for both the limiting value of � and for the subasymptotic
extremal dependence, represented through �p. For this reason, Ledford and
Tawn (1996, 1997) developed extremal models with � = 0 that allow for a
large spread of dependence structures at finite levels, and Coles et al. (1999)
introduced an alternative measure, �̄, which provides some information about
the subasymptotic dependence strength under asymptotic independence.
In recent years, the subasymptotic dependence structure has gained large
amounts of interest, and there has been a flourishing of new types of extremal
models that aim to describe both asymptotic and subasymptotic dependence.
Some of these models are described in Section 2.5.

2.5 Subasymptotic models for spatial extremes

Realistic models for spatial extremes should be able to describe both asymp-
totic and subasymptotic behaviour, and should therefore capture both the
value of � and the behaviour of �p as it converges towards �. Additionally,
in the spatial setting, it is reasonable to assume that neighbouring locations
display asymptotic dependence, while far-away locations display asymptotic
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independence. Realistic models for spatial extremes should therefore allow
for random processes whose asymptotic structure can vary from non-trivial
dependence to non-trivial independence. By trivial asymptotic dependence,
we here mean complete dependence, while trivial asymptotic independence
means complete independence. Finally, to be more usable, such models
should allow for computationally efficient inference in high-dimensional
settings. Models based on max-stable processes satisfy none of these re-
quirements, but much effort has recently been put into developing new
subasymptotic models with more flexible dependence structures and/or
less demanding inference. These new model types include the classes of
max-infinitely divisible (max-id) processes, inverted max-stable processes,
scale-mixture models, max-mixture models and conditional extremes models,
among others (Huser & Wadsworth, 2022). Max-id processes are used for
describing the distribution of component-wise maxima, while the remaining
subasymptotic models are used for describing individual events that exceed
some type of extreme threshold.

Max-infinitely divisible (max-id) processes were first characterised by
Balkema and Resnick (1977), and more theory for the processes have later
been developed (e.g. Giné et al., 1990; Resnick, 2008; Kabluchko & Schlather,
2010). A max-id process, X(s), is a random process that can be defined
as the point-wise maximum of n i.i.d. realisations of some random process
Yn(s), for any n 2 N. This makes max-id processes a natural extension of
max-stable processes. To be more exact, a finite-dimensional probability
distribution F is max-id if and only if F t is a valid probability distribution
for all real t > 0, and a random process is max-id if all its finite-dimensional
distributions are max-id (Bopp et al., 2021). The class of max-id processes
is much larger than the class of max-stable processes, but it is possible
to develop constrained sub-classes of max-id processes that are in some
sense close enough to a max-stable process to be of use. Such sub-classes
of max-id processes have been developed and applied with some success by
Padoan (2013), Bopp et al. (2021), Huser et al. (2021), and Zhong et al.
(2022). Inference with a max-id process is comparable in complexity to
inference with a max-stable process. Lower-dimensional composite like-
lihoods, such as the pairwise likelihood, are therefore often necessary to
achieve computationally tractable inference. The exception is Bopp et al.
(2021), who develop a Bayesian hierarchical max-id process with conditional
independence assumptions which lead to computationally tractable inference
using Markov chain Monte Carlo (MCMC) methods.

Inverted max-stable processes, as proposed by Wadsworth and Tawn
(2012b), are reciprocals of max-stable processes. Thus, for any max-stable
process X(s), the process X̃(s) = 1/X(s) is an inverted max-stable process.
An asymptotically dependent max-stable process gives rise to an asymp-
totically independent inverted max-stable process, thus resulting in a large
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class of models for asymptotic independence with different subasymptotic
properties. However, inverted max-stable processes are tightly connected to
max-stable processes, and likelihood-based inference is therefore computa-
tionally intractable for large dimensions without lower-dimensional compos-
ite likelihood methods. Additionally, the processes are unable to vary from
non-trivial asymptotic dependence to non-trivial asymptotic independence in
space. The inverted max-stable models are close to GP threshold exceedance
models in that they describe actual events of a random process, instead of
describing synthetic data like the vector of component-wise maxima. This
makes it possible to provide more realistic descriptions of the extremal
dependence structure. However, since the models are asymptotically moti-
vated, data with simultaneous extreme and non-extreme observations can
lead to biased inference (Ledford & Tawn, 1996; Huser et al., 2016). It
is therefore common to employ censoring of small observations, such that
only contributions from large enough observations are fully included into
the (composite) likelihood. This leads to more computationally demanding
inference because it becomes necessary to integrate out all observations that
are too small. This is not a considerate problem if one is already performing
inference using a lower-dimensional composite likelihood, but it can be a
considerable problem when relying on higher-dimensional likelihoods for
performing inference. Some applications of inverted max-stable processes
are found in Davison et al. (2013), Thibaud et al. (2013), and Kereszturi
et al. (2016).

To address the need for non-trivial descriptions of both asymptotic
dependence classes, Wadsworth and Tawn (2012b) developed the class of
max-mixture models. The random process

X(s) = max(cX1(s), (1� c)X2(s))

is a max-mixture process if X1(s) is a max-stable process and X2(s) is an
inverted max-stable process that is independent of X1(s). The parameter
c 2 [0, 1] is a mixing parameter. This model allows for simultaneous non-
trivial descriptions of both asymptotic dependence classes. However, the
mixing parameter c is often difficult to estimate, and it is not so clear
how the parametrisations of X1(s) and X2(s) affect the properties of X(s).
Additionally, likelihood-based inference is even more challenging for the max-
mixture processes than for the max-stable and inverted max-stable processes,
and censoring is also necessary here. Some applications of max-mixture
models are found in (Bacro et al., 2016; Ahmed et al., 2020; Abu-Awwad
et al., 2020).

Another proposed solution is that of scale-mixture modelling (Opitz,
2016; Huser et al., 2017; Huser & Wadsworth, 2019; Engelke et al., 2019;
Huser & Wadsworth, 2019; Zhang, Risser, et al., 2022; Zhang, Shaby, &
Wadsworth, 2022). Inspired by the spectral representation from Section 2.2,
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scale-mixture models represent random processes as X(s) = RW (s), where
W (s) can be any kind of stochastic process, while R is a scale random
variable that “lifts” the process W (s) to the correct level. Typically, the
process W (s) displays asymptotic independence, such that the process X(s)
displays asymptotic independence if W (s) is more heavy-tailed than R, and
asymptotic dependence if R is more heavy-tailed than W (s). As an example,
Huser and Wadsworth (2019) develop a scale-mixture model on the form
X(s) = R

�
W (s)1��, with � 2 [0, 1], such that X(s) displays asymptotic

independence when � > 1/2 and asymptotic independence when � < 1/2.
The freedom of choice for the distributions of R and W (s) leads to large
amounts of flexibility for describing the subasymptotic dependence structure,
and the simple form of the scale-mixture model leads to more simple inference.
However, it is still necessary to perform censoring to avoid bias from non-
extreme observations, meaning that inference is computationally demanding
and that one often needs to rely on less efficient inference methods such as
low-dimensional composite likelihoods. Additionally, the form of X(s) makes
it impossible to describe non-trivial changes in the asymptotic dependence
class as a function of distance without further modifications.

The spatial conditional extremes model (Wadsworth & Tawn, 2022) is
the spatial extension of the conditional extremes model (Heffernan & Tawn,
2004; Heffernan & Resnick, 2007), which describes the distribution of a
random vector conditional on one of its components exceeding an extreme
threshold. The model is quickly gaining popularity in the field of extreme
value theory, and has already seen much usage (Shooter et al., 2019; Simpson
et al., 2023; Simpson & Wadsworth, 2021; Richards et al., 2022; Shooter
et al., 2022; Richards, Tawn, & Brown, 2023). It is also the model we have
chosen for performing spatial modelling of extreme precipitation in Paper 3
and Paper 4. Details about the model are given in Section 2.6.

2.6 The spatial conditional extremes model

The spatial conditional extremes model describes the conditional distribu-
tion of a spatial random process, {X(s)}s2S with S ✓ R2, given that it
exceeds some large threshold ⌧ at a prespecified conditioning site s0 2 S.
The model is easiest described if X(s) follows the standardised Laplace
marginal distribution, everywhere in space (Keef et al., 2013). The Laplace
distribution is also known as the double exponential distribution, and it has
probability density function f(x) = exp(�|x|). Given Laplace marginals,
the model assumes that there exist two standardising functions, a(s; s0, x0),
with a(s0; s0, x0) = x0, and b(s; s0, x0) > 0, such that the conditional
process

Z(s; s0, x0) =


X(s)� a(s; s0, x0)

b(s; s0, x0)

����X(s0) = x0

�
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converges in distribution to a residual process Z(s; s0), which is independent
of x0, in the limit where x0 ! 1. The residual process has a nondegenerate
distribution and satisfies Z(s0; s0) = 0 almost surely. To use the spatial
conditional extremes model in practice, one assumes that the limiting
distribution holds exactly when x0 exceeds a large enough threshold ⌧ , i.e.,

Z(s; s0, x0)
d
= Z(s; s0) 8 x0 > ⌧.

The requirements on the standardising functions a(·) and b(·) and on the
residual process Z(·) are quite weak, which makes the spatial conditional
extremes model highly flexible and suitable for modelling a large variety of
different phenomena. The model also allows for non-trivial descriptions of
both asymptotic dependence and independence, and for non-trivial changes
in the asymptotic dependence class as a function of the distance between
different locations. Additionally, since the model is designed to describe
both extreme and non-extreme observations, conditional on X(s0) > ⌧ , it
becomes possible to perform inference without the censoring schemes that
are necessary for all the previously described subasymptotic extreme value
models. Thus, if the distribution of the residual process Z(·) is computation-
ally tractable, it is possible to perform efficient likelihood-based inference
without any form of lower-dimensional composite likelihood method. In or-
der to model high-dimensional spatial extremes with the spatial conditional
extremes model, it is common to use a Gaussian copula for the residual
process Z(·), since most other copulas tend to result in computationally
intractable inference. Constraining the copula to be Gaussian leads to a
loss in model flexibility, but the spatial conditional extremes model can still
capture a large variety of different extremal dependence structures, and
encompasses several of the classical extremal models based on max-stable
processes (Wadsworth & Tawn, 2022).

In Paper 3 and Paper 4, we build upon a variant of the spatial conditional
extremes model, proposed by Simpson et al. (2023). In this model variant,
the residual process is modelled as a Gaussian Markov random field, created
using the so-called stochastic partial differential equation (SPDE) approach
of Lindgren et al. (2011), and a nugget effect is added to the model, which
turns it into a latent Gaussian model and allows for computationally efficient
inference using the method of integrated nested Laplace approximations
(INLA; Rue et al., 2009). See Section 3 and Section 4 for more details about
the SPDE approach and INLA, respectively.

Unfortunately, the flexibility and computational efficiency of the condi-
tional extremes model comes at a cost. The spatial conditional extremes
model depends on choosing a conditioning site s0 2 S before performing
modelling and inference. Therefore, the model is only a local model, in the
sense that it can only perform inference using data from time points where
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the threshold is exceeded at s0. In comparison, the previously described
subasymptotic models are global models, in the sense that they can use
all of the available data for inference, although not without censoring of
non-extreme observations. This means that only a small fraction of the data
are available for inference when performing high-dimensional modelling with
the spatial conditional extremes model. To account for this, Heffernan and
Tawn (2004) and Wadsworth and Tawn (2022) develop composite likelihood
methods that make it possible to combine information from multiple condi-
tioning sites by creating a global model fit that on average provides the best
fit to the data. However, these composite likelihoods wrongfully assume
independence between dependent random variables, which often leads to
overconfident uncertainty estimates that can be particularly problematic
when performing Bayesian inference (e.g. Ribatet et al., 2012). In Paper 3,
we show how to account for the misspecification of the global model fit to
produce more reliable Bayesian inference using more of the available data.

Another complication of the spatial conditional extremes model is that it
lacks self-consistency, in the sense that models based on different conditioning
sites can produces different estimates for the same events. This is a well
known problem that can occur when defining a joint distribution using a
set of conditional distributions (Besag, 1974). We illustrate the problem by
assuming that some bivariate random variable (X,Y ) has a fully symmetric
distribution with Laplace marginal distributions, and that its extremes
follow the conditional extremes model, with

[X | Y = t]
d
= [Y | X = t]

d
= a(t) + b(t)Z, t > ⌧,

with threshold ⌧ = 3, standardising functions a(t) = 0.8t and b(t) = t
0.4

and the residual term Z ⇠ N (0, 0.22). Probability density functions for
[X | Y = y] and [Y | X = x] with x, y > ⌧ are visualised in the left and
right subplots of Figure 5, respectively. The probability that (X,Y ) 2 A

can be computed as

P {(X,Y ) 2 A} =

Z
P {(X,Y ) 2 A | Y = y}⇡(y)dy

=

Z
P {(X,Y ) 2 A | X = x}⇡(x)dx,

where ⇡(y) and ⇡(x) are the probability density functions of Y and X,
respectively. From Figure 5 we see that these two integration paths can
provide completely different answers. Similarly, multiple probabilities can
be computed for the event B, and for any other event where both X and
Y exceed the threshold ⌧ . The inconsistency problem of the conditional
extremes model is examined by Heffernan and Tawn (2004) and Liu and
Tawn (2014), and it is also examined in an unpublished note located right
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Figure 5: Visualisation of the self-inconsistency of the conditional extremes
model. The upper subplots display probability density functions for [X | Y = y]
with y > ⌧ (left) and [Y | X = x] with x > ⌧ (right). The lower subplots
display Monte Carlo simulations used for estimating probabilities on the formR

P {(X,Y ) 2 · | Y = y}⇡(y)dy (left) and
R

P {(X,Y ) 2 · | X = x}⇡(x)dx (right).
The red and blue boxes display two events, A and B, where both X > ⌧ and
Y > ⌧ , which can have multiple different probabilities, depending on whether we
first condition on X > ⌧ or Y > ⌧ when we compute them.
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after Paper 3 in the thesis, but no good solutions have been proposed on
how to ensure self-consistency.

The lack of self-consistency and of a global model definition can make the
conditional extremes model seem problematic to use for some. However, as
we show in Paper 3 and Paper 4, it is possible to account for these problems
if one is aware of them, and thus to perform successful modelling of high-
dimensional spatial extremes with the spatial conditional extremes model.
In Paper 3 we apply a post hoc transformation method that transforms
samples of the posterior distribution to achieve Bayesian inference that
is more robust towards misspecification, and we show how this leads to
more successful global modelling with a composite likelihood. Then, in
Paper 4, we propose new forms for the standardising functions a(·) and b(·)
of the spatial conditional extremes model, that make it possible to lower the
thresholds ⌧ to perform inference with more data for each of the conditioning
sites. In some sense, we can say that the spatial conditional extremes model
trades away nice theoretical probabilities, such as self-consistency, to achieve
good properties for practical modelling of the subasymptotics. Some might
find this tradeoff to be problematic, but I believe that it can be a good choice
for achieving successful modelling of high-dimensional spatial extremes, as
long as one is aware of the pitfalls and the limitations of the model.

3 Computationally efficient spatial modelling

Most of the models in Paper 2, 3 and 4 contain spatial random fields, which
can improve model performance by capturing spatial dependence structures
and by making it possible to share information between neighbouring lo-
cations. For a review of spatial statistics, see, e.g., Diggle et al. (1998),
Gelfand et al. (2010), Banerjee et al. (2014), and Cressie and Wikle (2015).
A problem with the modelling of complex spatial dependence structures
is that it quickly becomes computationally demanding or intractable as
the model dimension grows. To circumvent this, statisticians tend to add
assumptions to their models that lead to more computationally efficient
modelling, typically at the cost of decreased model flexibility or correctness,
i.e., a type of bias/speed tradeoff, instead of the more commonly known
bias/variance tradeoff.

The by far most common modelling assumption in spatial statistics is
that most, or all, of the spatial dependence structure can be described well
by a (possibly transformed) Gaussian process. This is a common approach
because Gaussian processes have many nice theoretical processes and are
relatively flexible, while also being considerably more computationally effi-
cient than most other reasonable choices for describing spatial dependence.
It is well understood that the entire world is not perfectly Gaussian, but
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the Gaussianity assumption tends to produce small amounts of bias while
leading to considerable speed improvements.

For a d-dimensional Gaussian random vector X = (X1, . . . , Xd)
>, the

covariance function can be used to define the covariance matrix

⌃ =

0

BBBB@

Cov(X1, X1) Cov(X1, X2) · · · Cov(X1, Xd)

Cov(X2, X1)
. . . . . . ...

... . . . . . . ...
Cov(Xd, X1) · · · · · · Cov(Xd, Xd)

1

CCCCA
.

This matrix must be positive semi-definite, i.e., c>⌃c > 0 8 c 2 Rd. If ⌃ is
positive definite, then the distribution of X is non-degenerate, and it has a
probability density function. This probability density function is

⇡(x) = (2⇡)�d/2|⌃|�1/2 exp

⇢
�1

2
(x� µ)>⌃�1(x� µ)

�
, (3)

where µ 2 Rd is the mean vector of X and |⌃| is the determinant of
⌃. Thus, an important part of spatial statistics is to propose parametric
covariance functions that are flexible and suitable for the application at
hand, while also ensuring a positive semi-definite covariance matrix for any
given set of locations and model parameters.

Some nonparametric covariance functions have been developed (e.g. Yin
et al., 2010; Fox & Dunson, 2015). However, since it can be difficult to guar-
antee positive semi-definite covariance matrices when using nonparametric
covariance functions, the main focus within spatial statistics is on parametric
covariance functions. When choosing a parametric covariance function, it
is common to assume weak stationarity of the random field, which means
that the covariance between two random variables of the random field only
depends on the distance between them. Then, given a suitable distance
function, we can describe the correlation between two random variables with
distance h, using the autocorrelation function �(h). Any positive definite
function �(·) guarantees a positive definite covariance matrix (e.g., Gelfand
et al., 2010).

Of all possible autocorrelation functions, the Matérn autocorrelation
function (Matern, 1986; Guttorp & Gneiting, 2006)

�(h) =
1

2⌫�1�(⌫)
(h)⌫K⌫(h), (4)

where ⌫ > 0 is a smoothness parameter, ⇢ =
p
8⌫/ is a range parameter and

K⌫ is the modified Bessel function of the second kind and order ⌫, is one of
the most popular choices (Stein, 1999). Other popular choices, due to their
simplicity, are the exponential autocorrelation function �(h) = exp(�h/⇢)
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and the Gaussian autocorrelation function �(h) = exp(�h
2
/(2⇢2)), where

⇢ is a range parameter. However, these functions are special cases of the
Matérn autocorrelation function, when the smoothness parameter equals
⌫ = 1/2 or as ⌫ ! 1, respectively.

Even though Gaussian spatial processes lead to computationally efficient
inference, the computation of high-dimensional likelihoods can still be
demanding, as computing the probability density function in (3) requires
computing ⌃�1(x�µ) and |⌃|, which typically has a cost that scales cubicly
with the model dimension d. Further steps must therefore be taken to achieve
computationally tractable inference for large model dimensions. The most
common methods for achieving this are either based on representing or
approximating the Gaussian likelihood as a product of lower-dimensional
conditional or unconditional composite likelihoods (Besag, 1975; Vecchia,
1988; Stein et al., 2004; Varin et al., 2011), or on adding conditional or
unconditional independence assumptions to the model, which lead to sparse
or low-rank covariance matrices, or to covariance matrices with sparse
inverses, and therefore reduce the cost of computing the full likelihood. The
most common independence assumptions are those of covariance tapering
methods (Furrer et al., 2006; Kaufman et al., 2008) and low-rank estimation
methods such as process convolutions (Higdon, 2002), fixed rank Kriging
(Cressie & Johannesson, 2008), predictive processes (Banerjee et al., 2008),
lattice Kriging (Nychka et al., 2015) and the SPDE approach (Lindgren
et al., 2011).

Composite likelihoods have already been mentioned several times in
Section 2 due to their usefulness. A composite likelihood for the random
vector X is a function that is the product of one or more conditional or
unconditional likelihood functions for subsets of X (Lindsay, 1988). An
early version of a composite likelihood is the pseudolikelihood of Besag (1974,
1975), which is the product of conditional likelihoods based on neighbouring
random variables,

⇡Besag(x) =
dY

i=1

⇡(xi | {xj : j 2 n(i)}),

where n(i) ⇢ {1, 2, . . . , d} is the set of indices for all neighbours of the ith
component of X, where the definition of a “neighbour” typically depends
on the application. Later, Vecchia (1988) takes advantage of the fact that
any distribution can be decomposed into

⇡(x) = ⇡(x1)
dY

i=2

⇡(xi | x1, . . . , xi�1),
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and develops the Vecchia approximation

⇡Vecchia(x) = ⇡(x1)
dY

i=2

⇡(xi | {xj : j 2 n(i)}),

where, this time, n(i) ✓ {1, 2, . . . , i� 1} is the set of indices that is smaller
than i, for all neighbours of the ith component of X. Note that there
exists generalisations of the Vecchia approximation that cannot be classified
as composite likelihoods (Katzfuss & Guinness, 2021). Other popular
composite likelihoods include: the independence likelihood (Chandler &
Bate, 2007), where all components of X are treated as independent; the
pairwise likelihood (Cox & Reid, 2004), where the composite likelihood
is built using a subset of the

�d
2

�
possible joint pairwise distributions for

components of X; and the block likelihood (Eidsvik et al., 2014), which is a
generalisation of the pairwise likelihood, in which the composite likelihood
is built using joint distributions over larger (possibly overlapping) blocks
of components of X. These composite likelihood methods can be very
powerful, and can lead to computationally tractable inference in almost
any setting, such as inference for max-stable processes (Padoan et al., 2010;
Davison et al., 2012; Richards et al., 2022). However, composite likelihood
methods can often be less efficient, as they essentially discard all information
that can be gained from observations that are far away from each other
or that can be gained from interactions between a large group of random
variables. Additionally, composite likelihoods may not be proper likelihoods,
in the sense that they might not integrate to 1 when integrating out the
data. Therefore, it is hard to interpret how the definition of a neighbour or
the number of likelihood factors might affect the final inferences.

Covariance tapering methods are based on the fact that the Hadamard
product, i.e., element-wise multiplication, of two positive definite matrices is
positive definite (Styan, 1973). This makes it possible to produce a sparse,
valid covariance matrix, by computing the Hadamard product of the original
dense covariance matrix and a sparse covariance matrix that equals zero for
all location pairs that are far enough away from each other,

⌃tapered = ⌃original �⌃sparse,

where � denotes the Hadamard product. Low-rank estimation, on the other
hand, is based on the assumption that a spatial Gaussian random field can
be represented as a linear combination of a lower-dimensional multivariate
Gaussian basis vector, i.e.,

X(s) =
kX

i=1

ai(s)Wi,
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where X(s) is our spatial Gaussian random field, recorded at some lo-
cation s 2 S, inside the spatial domain S ✓ R2, W = (W1, . . . ,Wk)

>

is a k-dimensional Gaussian random vector, and {ai}ki=1 is a collection
of k spatial basis functions. The d-dimensional random vector X =
(X(s1), X(s2), . . . , X(sd))

>, with s1, . . . , sd 2 S, can then be represented
as

X = AW ,

where A is a (d⇥ k)-dimensional projection matrix, containing the values
of the k basis functions at all d locations. In high-dimensional settings, the
dimension k of the underlying random vector W is typically much smaller
than the dimension d of X, which one can take advantage of to perform
computationally efficient inference. Additionally, the basis functions tend to
have a compact support, which can make the projection matrix A sparse,
and therefore speed up computations even further.

A problem with the methods that produce sparse covariance matrices is
that the element ⌃ij at the ith row and jth column of ⌃ is zero only if Xi

and Xj are completely independent. This is a very strong assumption that
seldom holds true in practice. For this reason, Rue and Held (2005) propose
to reparametrise the Gaussian random field from its covariance matrix ⌃
to its precision matrix Q = ⌃�1. For an element Qij of the precision
matrix to be zero, it is only required that Xi and Xj are conditionally
independent given all other variables, X�ij , in X. This is a much weaker
assumption that more easily holds true. Therefore, one can often achieve
more sparse precision matrices using weaker model assumptions. However,
there is no such thing as a free lunch, and the elements of Q are much
harder to interpret than the elements of ⌃, because they represent global
properties of the dependence structure (Rue & Held, 2005). This makes it
difficult to create suitable parametrisations of the precision matrix that are
both positive definite and that represents realistic dependence structures.
Gaussian random fields with sparse precision matrices are known as Gaussian
Markov random fields.

In their seminal work, Lindgren et al. (2011) develop a parametric formula
for creating valid sparse precision matrices that approximate the precision
matrices of Gaussian random fields with Matérn covariance functions. Their
method is known as the stochastic partial differential equation (SPDE)
approach, and it is based on the fact that all Gaussian random fields X(s)
with Matérn covariance functions are solutions to the SPDE

(2 ��)
↵/2

X(s) = W (s), s 2 Rd
, ↵ = ⌫ + d/2,

where  and ⌫ are the parameters of the Matérn covariance function in (4),
W (s) is Gaussian white noise and � is the Laplacian operator (Whittle,
1954). By numerically approximating a solution of this SPDE with the
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Figure 6: Illustration of how the finite element method approximates a smooth
spatial field (left plot) with a spline function based on piecewise linear basis functions,
created using a triangulated mesh (right plot). The spline consists of one piecewise
linear basis function for each node in the mesh, and one of these basis functions are
displayed right on top of the mesh. This illustration is inspired by the illustration
of Cameletti et al. (2013).

finite element method, they create a parametrised class of Gaussian Markov
random fields with precision matrices that are very close to those of the
Matérn covariance function. Explained in a simplistic manner, the finite
element method approximates the solutions of partial differential equations
using a spline function that is based on piecewise linear basis functions
that are defined using some triangulated mesh. See, e.g., Bakka (2022) for
a simple and non-extensive introduction to the finite element method for
statisticians. This is visualised in Figure 6, where the finite element method
is used for approximating the smooth function in the left subplot using a
spline function, displayed in the right subplot, based on piecewise linear
basis functions from a triangulated mesh.

The SPDE approach is heavily applied in Papers 2, 3 and 4, as we
find that it allows for flexible and computationally efficient inference for
high-dimensional problems, while being based on reasonable assumptions
of conditional independence as well as a covariance structure that is close
to the Matérn covariance. The SPDE approach has also been found to
perform well in comparison with other methods for fast high-dimensional
inference (Heaton et al., 2019). Additionally, the SPDE approach performs
particularly well in conjunction with the INLA inference method (Rue
et al., 2009), which is based upon performing all necessary computations
for inference using only the precision matrix. This is further described in
Section 4.

As previously mentioned, assumptions of Gaussianity and (possibly con-
ditional) independence are often added to a model for computational reasons,
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and not necessarily because we believe them to be completely true. This
can lead to model misspecification, which can complicate the interpretation
of inferred parameter estimates and uncertainty intervals, and which can be
particularly challenging when performing Bayesian inference (Ribatet et al.,
2012; Kleijn & van der Vaart, 2012; Shaby, 2014). As an example that is
somewhat explored in Papers 2, 3 and 4, the SPDE approximation can lead
to large degrees of model misspecification if it is based on too strong smooth-
ness assumptions, which leads to overestimation of the variance parameters
in the model. Additionally, if too strong independence assumptions are
added to a model, the effective sample size will be overestimated, which
in turn can lead to underestimation of the model uncertainty. However,
misspecification is not something that one should avoid at all costs, as it
might often be necessary to achieve computationally tractable inference.
Additionally, it is impossible to completely avoid misspecification, since all
models are wrong (Box, 1976). Therefore, as long as one is aware of the
consequences and potential pitfalls, the addition of misspecification through
strong model assumptions can be an important and successful tool. In
Paper 3, we also examine different methods that can achieve more robust
inference by accounting for the discrepancies between model assumptions
and the available data, thus allowing us to enjoy the benefits of strong
modelling assumptions while also attaining more reasonable uncertainty
estimates.

4 Latent Gaussian models

The model type that is used the most in Papers 2, 3 and 4 is the latent
Gaussian model. Latent Gaussian models are both highly flexible and
mathematically quite simple, which has made them into popular and suc-
cessful tools for modelling complex phenomena in a large range of fields
and applications, including spatial and spatio-temporal modelling (Gelman
et al., 2013; Banerjee et al., 2014).

The latent Gaussian model assumes that all observations are condition-
ally independent of each other given a latent Gaussian random process
that describes the entire dependence structure of the data. This assump-
tion leads to a flexible model framework that is both elegant and simple
to describe. To be more exact, we assume that the n response variables
y = (y1, . . . , yn)

> are conditionally independent given an m-dimensional
latent field, x = (x1, . . . , xm)>, and a vector of hyperparameters, ✓1, such
that the conditional probability density function of the response variables,
commonly referred to as the likelihood, can be written as

⇡(y | x,✓1) =
nY

i=1

⇡(yi | ⌘i(x),✓1),
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where all the marginal likelihoods, {⇡(yi | ⌘i(x),✓1)}ni=1, belong to the same
family of probability distributions, parametrised by ⌘i(x) and ✓1, and ⌘i(x)
is a linear combination of the variables in x, known as the linear predictor.
The likelihood can be either a probability density function or a probability
mass function for [y | x,✓1]. Furthermore, the latent field x is assumed to
be conditionally Gaussian given a vector of hyperparameters ✓2, i.e.,

[x | ✓2] ⇠ N (µ(✓2),Q
�1(✓2)),

where N (µ,Q�1) denotes a multivariate Gaussian distribution with mean
µ and precision matrix Q. It is common to perform Bayesian inference
for latent Gaussian models, and in that setting the hyperparameters ✓ =
(✓1,✓2)

> are assumed to follow a prior distribution with a probability density
function that tends to be factorised into

⇡(✓) = ⇡(✓1)⇡(✓2).

Since ⌘i(x) is a linear combination of x, we can write ⌘i(x) = A
>
i x,

where Ai is an m-dimensional column-vector of fixed coefficients known as
a design vector, or a projection vector. This leads to the formulation

⌘(x) = (⌘1(x), ⌘2(x), . . . , ⌘n(x))
> = (A>

1 x,A
>
2 x, . . . ,A

>
nx)

>
= Ax,

with the (n⇥m)-dimensional design matrix A. This matrix formulation,
together with the Gaussianity of x, makes it simple to incorporate a large
variety of non-trivial trends and dependence structures into the model by
setting

Ax = A
(1)

x
(1) +A

(2)
x
(2) + · · ·+A

(j)
x
(j)

,

where the vectors x
(1)

,x
(2)

, . . . ,x
(j) partition the latent field x, and the

matrices A
(1)

,A
(2)

, . . . ,A
(j) are lower-dimensional design matrices. Here,

A
(1)

x
(1) might, e.g., be a set of regression coefficients, x

(1), multiplied
with a set of covariates, A(1), while A

(2)
x
(2) might represent a Gaussian

spline function, A(3)
x
(3) might be a spatial Gaussian random field used

for describing the spatial dependence structure, and so on. To extend a
latent Gaussian model by adding a new component, A(j+1)

x
(j+1), that is

independent of all the other components of the latent field, we can simply
set

Anew = (A,A
(j+1)), xnew = (x>

,x
(j+1)>)

>
,

where the extended latent field xnew has mean and precision matrix

µnew = (µ>
,µ

(j+1)>)
>
, Qnew =

✓
Q 0
0 Q

(j+1)

◆
,

respectively, where the added component x(j+1) is a Gaussian random vector
with mean µ

(j+1) and precision matrix Q
(j+1).
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In a latent Gaussian model, both the hyperparameters ✓ and the latent
field x represent unobservable model parameters. The dimension m of the
latent field can be of great magnitude, which makes inference methods like
maximum likelihood estimation (MLE) and Markov chain Monte Carlo
(MCMC) challenging and computationally demanding. It is possible to
reduce the dimension of the parameter space by considering parts of x as
nuisance parameters that can be integrated out. However, this requires
computing integrals on the form

Z

X
⇡(y | ⌘(x),✓1)dx,

where X ✓ Rm. This is possible if the likelihood is Gaussian, but it is
typically computationally intractable for most other likelihood functions.
However, in the groundbreaking paper of Rue et al. (2009), a novel inference
method is proposed that makes it possible to perform fast approximate in-
ference for latent Gaussian random fields with truly high-dimensional latent
fields. Their method is based on integrated nested Laplace approximations
(INLA) which make it possible to quickly compute numerical approximations
to the joint posterior distribution ⇡(✓ | y), and to the marginal posterior dis-
tributions ⇡(✓i | y) and ⇡(xj | y), with i = 1, 2, . . . , n✓ and j = 1, 2, . . . ,m,
where ✓i is the ith element of ✓, and n✓ is the cardinality of ✓.

The joint posterior distribution of ✓ is approximated as

⇡(✓ | y) = C
⇡(x,✓,y)

⇡(x | ✓,y)
��
x=x⇤(✓) ⇡ C

⇡(x,✓,y)

⇡̃G(x | ✓,y)
��
x=x⇤(✓) ,

where ⇡̃G(x | ✓,y) is the Gaussian approximation of the full conditional
distribution of x, x⇤(✓) is the maximiser of ⇡̃G(x | ✓,y) and C is a nor-
malising constant. C can be approximated by numerically integrating over
⇡(✓ | y) and setting the result equal to 1. This is not too computationally
demanding if the dimension of ✓ is small. Given the approximation for the
joint posterior distribution of ✓, the marginal posterior distributions of ✓ can
be approximated by numerical integration over ⇡(✓ | y). Finally, Rue et al.
(2009) propose multiple different methods for approximating the marginal
posteriors of x with varying degrees of correctness and computational cost.
The simplest method is to integrate out ✓ from the Gaussian approximation,

⇡(xj | y) =
Z
⇡(xj | ✓,y)d✓ ⇡

Z
⇡̃G(xj | ✓,y)d✓, (5)

where ⇡̃G(xj | ✓,y) is the marginal distribution of xj from ⇡̃G(x | ✓,y).
However, this method can cause considerable bias in the approximate
posterior of xj (Rue & Martino, 2007). The other alternatives are based on
approximating ⇡(xj | ✓,y) using another layer of Laplace approximations,
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or simplified versions thereof. These methods are more computationally
demanding, but are found to outperform the Gaussian approximation.

The INLA method is designed to be really fast if the latent Gaussian
model has a sparse precision matrix. The Gaussian approximation, ⇡̃G(x |
✓,y), of the full conditional distribution of x has precision matrix Q+diag(c)
and mean vector given as the solution of the equation (Q+ diag(c))µ = b,
where diag(c) is a diagonal matrix containing the elements of c, and b

and c are vectors that depend on the likelihood ⇡(y | x,✓). All necessary
computations for approximating the posterior ⇡(✓ | y) are therefore based
on computing determinants for matrices on the form Q + diag(c), and
on solving linear systems involving Q. These computations become much
faster if Q is sparse. This is why, as previously mentioned, the SPDE
approximation, which produces realistic and sparse precision matrices for
Gaussian random fields, works particularly well in combination with INLA.

The INLA method has been implemented in the R package R-INLA
(Lindgren & Rue, 2015; Rue et al., 2017; Bakka et al., 2018; van Niekerk
et al., 2021, 2023), which allows for a fast and easy way of performing
inference. The package ships with a large selection of readily implemented
likelihood functions. It also provides implementations of design matrices
and latent Gaussian fields that can describe different types of regression
coefficients, splines, block effects, spatial effects, temporal effects and spatio-
temporal effects, all using sparse precision matrices. Recently, van Niekerk
and Rue (2021) proposed a new method for approximating the marginal
posterior distributions of the latent field x. Their method has far-reaching
consequences that allow for considerable improvements on how to describe
the latent field when using INLA and that yields faster computations of
both the joint posterior ⇡(✓ | y) and the marginal posteriors ⇡(xj | y),
for j = 1, . . . ,m. This INLA formulation has been implemented within
R-INLA and is expected to become the default method in the near future
(van Niekerk et al., 2023).

In Papers 2, 3 and 4, we use R-INLA for performing inference with our
latent Gaussian models. In Papers 3 and 4, we also demonstrate how to
implement specialised model components in R-INLA that are tailored for
specific applications. Originally, the likelihood of the latent Gaussian model
should be log-concave for INLA to perform well, but as we show in Paper 2, it
is also possible to perform successful inference with probability distributions
that are not log-concave, although this requires care to work well.

5 Discussion and conclusion

In the four papers in this thesis, we have developed statistical models for
diurnal temperature range and extreme precipitation, with the overall aim
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of aiding in the development of improved flood risk assessment methods.
The first paper targets modelling of diurnal temperature range, the second
paper deals with estimation of large return levels for sub-daily precipitation,
and the two last papers focus on modelling the spatial behaviour of hourly
precipitation extremes. Methodologically, all four papers focus on statistical
modelling of complex phenomena that have unusual and intricate proper-
ties, using smart reparametrisations, robust estimators, computationally
efficient inference methods and modelling assumptions with various degrees
of credibility, in order to achieve fast and robust inference for the properties
that we care the most about.

Much of our work has taken place within the field of extreme value
theory, where we have attempted to develop models that can bridge the gap
between the asymptotic and the subasymptotic, and that perform well in
high-dimensional settings. We have focused on models that allow for more
robust and computationally efficient inference, two properties we believe to
be important in practice, by sacrificing certain theoretical properties, which
we believe to be important, but slightly less so than the robustness and
computational efficiency. In this way, we believe that we have contributed
to the development of statistical models that can be more useful in practice,
while staying as true to the theory as possible.

We have developed models for temperature and precipitation to achieve
a better understanding of floods. However, it is not temperature or pre-
cipitation alone that cause floods, but a combination of the two. Thus,
given more time, I would want to build upon all of our work, and use it to
examine how precipitation and temperature affect each other, and how they
affect river flow and the risk of floods.

In our work, we have mainly focused on spatial modelling, and we have
put less effort into describing the temporal properties of our data. However,
the temporal aspect can provide important information about the data, and
future work should therefore go into performing spatio-temporal modelling
of both temperature and extreme precipitation. Especially in Paper 4, I
believe that more temporal components, to describe the temporal extent
of a storm as well as its spatial extent, could have provided considerable
improvements to our model framework.

In Paper 3, we apply a post-hoc transformation of the posterior distri-
butions to account for possible model misspecification. The transformation
is fast and works well, but it requires computing gradients of the marginal
log-likelihood with respect to the model hyperparameters. For a latent
Gaussian model, this is only computationally tractable if the latent field is
low-dimensional, or if the likelihood is Gaussian. For this reason, the same
post-hoc transformation is not applied in Paper 4, where we apply different
latent Gaussian models with high-dimensional latent fields and Bernoulli,
gamma and generalised Pareto likelihoods. However, similarly to how INLA
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makes inference computationally tractable for these models, I believe that
the gradients of these marginal log-likelihoods might be approximated well
using nested Laplace approximations. This would be an interesting topic for
future research, which might have the potential to produce an automated
method of accounting for model misspecification within the R-INLA package,
or a similar framework.

All of the subasymptotic extreme value models mentioned in Section 2
rely on performing inference using only the data that are extreme in some
sense. Thus, inference always relies on some kind of threshold, either for
removing or censoring contributions from non-extreme observations (Huser
et al., 2016), or as the conditioning threshold of the conditional extremes
model. Inference efficiency therefore relies heavily on the threshold choice,
with lower thresholds yielding more data but also possibly more model
misspecification. It might be that some of the extreme value models have
better “threshold convergence” properties than the others, in the sense
that a specific low threshold ⌧0 might yield less misspecification for, e.g.,
the scale-mixture models, than for the other models. As an example of
this, in the case study of Paper 3 we are forced to choose a very large
threshold for the spatial conditional extremes model, which results in few
available observations at each conditioning site. Therefore, in Paper 4, we
propose a novel form for the standardising functions of the model, which
lets us considerably lower the conditioning threshold and perform more
efficient inference. Thus, there can clearly be large differences in threshold
convergence properties, also within a certain class of extreme value models.
To the best of my knowledge, the threshold convergence properties of the
aforementioned extreme value models have never been examined in detail or
compared against each other. This would be an interesting topic for further
research.
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6 Paper summaries

Paper 1

We propose the five-parameter lambda distribution as a statistical model
for the marginal distribution of diurnal temperature range. Our model
takes inspiration from extreme value theory and is able to describe both
the bulk and tails of the data. To achieve faster and more robust inference,
we propose a reparametrisation of the five-parameter lambda distribution
that makes it easier to choose appropriate initial values, and that constrains
the possible parameter values in a way that is suitable for our specific
application. Three competing inference methods are proposed and evaluated
in a simulation study and in a case study. Of these, we prefer the method of
quantiles, which estimates parameters by minimising the distance between
empirical quantiles and model quantiles, due to its speed, simplicity and good
performance. We also propose a distributional quantile regression model for
describing the marginal distribution of diurnal temperature range using a
set of explanatory variables. The model is divided into two steps: First, we
model multiple different distributional quantiles with quantile regression and
a set of relevant explanatory variables. Then, at each location of interest,
the full marginal distribution of diurnal temperature range is estimated
by fitting the five-parameter lambda distribution to the set of estimated
quantiles. This “smooths” the quantile regression estimates and avoids the
common problem of quantile crossing, which occurs when multiple different
quantiles are estimated using independent quantile regression models. The
distributional quantile regression model is developed in a way that allows
for fast and easy inference using the method of quantiles. We apply our
two proposed models for modelling diurnal temperature range from a set of
weather stations in the south of Norway, and compare the five-parameter
lambda distribution with several competing statistical distributions. The
five-parameter lambda distribution provides a good fit to the available data,
and is found to outperform the competing distributions. The model fits are
evaluated using the probability integral transform (PIT) and the continuous
ranked probability score (CRPS), and we find that they provide good fits
to the data.
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Paper 2

We propose a latent Gaussian model with a bGEV likelihood, for the distri-
bution of the yearly maxima of sub-daily precipitation observations. Fast
approximate inference is achieved using INLA. The bGEV likelihood allows
for more robust and more numerically stable inference than a GEV likeli-
hood, which we demonstrate with a small simulation study. This is especially
true when modelling block maxima in space using explanatory variables.
Neither the GEV distribution nor the bGEV distribution are log-concave,
which is a requirement for using INLA, but we develop a standardisation
technique which we find to yield numerically stable inference with the bGEV
distribution. To strengthen inference, by borrowing information from neigh-
bouring locations, we include a spatial Gaussian random field in the latent
field of the model. This Gaussian random is field created using the SPDE
approach, to achieve faster inference. In practical regression settings, we
find that inference using small amounts of data can make it difficult to
model both the location and scale parameters of the bGEV as varying in
space. We therefore propose a novel two-step estimation procedure that
allows for less wasteful and more stable inference, and that makes it easier to
let both parameters vary in space. The two-step method extracts additional
information from threshold exceedance data when modelling block maxima
data. This is achieved by first modelling the standard deviation of threshold
exceedance data, and then standardising the block maxima data using the
estimated standard deviations. The standardised block maxima are then
modelled with the bGEV distribution. Proper uncertainty estimation is
achieved by propagating uncertainty from the threshold exceedance step
into the block maxima step using bootstrapping. We evaluate model fits
using a novel scaled and threshold weighted version of the CRPS, which
mainly focuses on model performance in the upper distributional tails. Our
two models are applied for estimating return levels of sub-daily precipitation
data from a set of weather stations in the south of Norway, and we find
the resulting model fits to provide promising results. Model fits based on
the two-step model always outperform model fits where trends in both the
location and the scale parameters are estimated simultaneously.
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Paper 3

We develop a general statistical methodology for modelling high-dimensional
spatial extremes using the spatial conditional extremes model, while per-
forming robust and computationally efficient inference with INLA. We build
upon a latent Gaussian model variant of the spatial conditional extremes
model proposed by Simpson et al. (2023), which allows for fast and easy
modelling, using INLA and the SPDE approximation, with the R-INLA
package. Using the recently developed cgeneric component of the R-INLA
package, we create a general methodology for implementing specialised vari-
ants of the spatial conditional extremes model with R-INLA. To achieve this,
we also propose a nonstationary variation of the SPDE approximation that
is more suitable for the spatial conditional extremes model. Extreme value
models are typically based on strong asymptotically motivated assumptions,
which can lead to a certain degree of model misspecification when describing
finite amounts of data. This can be particularly troublesome for Bayesian
inference methods, which are ill-suited for tackling model misspecification.
We therefore extend upon the post hoc transformation method of Shaby
(2014), which yields more robust Bayesian inference by affinely transforming
samples from the posterior distribution to get a more reasonable variance.
We propose new methods for estimating the scaling factors of the post
hoc transformation method, and we also propose an improvement of the
method, based on transforming the prior distribution before performing
inference. The spatial conditional extremes model can produce considerably
more efficient inference by employing the composite likelihood method of
Wadsworth and Tawn (2022). However, this leads to considerable model
misspecification and has therefore, to the best of our knowledge, never
previously been attempted while performing Bayesian inference. We show
how the post hoc transformation accounts for the misspecification from
the composite likelihood, and thus allows for more efficient inference. Our
methodology is applied for modelling both high-dimensional spatial ex-
tremes, in a simulation study, and gridded high-density observations of
hourly precipitation from a weather radar in Central Norway, in a case
study. The model fits are evaluated visually and using the logarithmic score,
and found to provide good fits to the available data. Furthermore, the post
hoc adjusted model fits are always found to outperform their unadjusted
counterparts.

In working on this paper, we developed an unpublished note about the
lack of self-consistency of the conditional extremes model, which we later
decided to not include into the paper, to keep it more streamlined and
focused. However, the note is still quite interesting, in my opinion, so I
wanted to include it in the thesis. The note is found right after the contents
of Paper 3.
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Paper 4

We build upon our work from Paper 3, for developing a complete framework
for modelling and simulating high-dimensional spatial precipitation extremes
with the spatial conditional extremes model. In Paper 3, a simplified pro-
cedure is applied for standardising the marginals to Laplace distributions.
Additionally, in the case study of Paper 3 we only focus on modelling non-
negative precipitation, as there is a bulk at zero in the marginal distribution
of hourly precipitation. In Paper 4, however, we develop a flexible and
computationally efficient framework for spatio-temporal modelling of the
marginal distributions of precipitation data to ensure a proper standardisa-
tion to Laplace marginals. The framework is based upon a combination of
two different latent Gaussian models with a gamma likelihood and a gener-
alised Pareto likelihood, for accurate modelling of the bulk and the upper
tail of the marginal distributions of nonnegative precipitation observations,
respectively. For modelling the presence or absence of precipitation, we
propose multiple competing binary spatial models, all aimed at capturing
different properties of the presence/absence process. In the case study of
Paper 3, we struggle with a model choice that makes it necessary to choose
a very high threshold for the conditional extremes model, thus leading to
less efficient inference. In Paper 4, we develop new empirical diagnostics for
selecting a suitable model, and we use these diagnostics for proposing new
parametric forms for the standardisation functions of the spatial conditional
extremes model, that allow us to considerably lower the extreme threshold
and perform more efficient inference. The marginal models, presence/ab-
sence models and the spatial conditional extremes model are all combined
in a case study for simulating from the high-density spatial distribution of
extreme hourly precipitation observation over a water catchment in Cen-
tral Norway, using data from the same weather radar as in Paper 3. The
resulting simulations display much promise, and capture many important
properties of the data with high performance.
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Abstract

Diurnal temperature range is an important variable in climate
science that can provide information regarding climate variability
and climate change. Changes in diurnal temperature range can have
implications for hydrology, human health and ecology, among others.
Yet, the statistical literature on modelling diurnal temperature range
is lacking. In this paper we propose to model the distribution of
diurnal temperature range using the five-parameter lambda (FPL)
distribution. Additionally, in order to model diurnal temperature
range with explanatory variables, we propose a distributional quantile
regression model that combines quantile regression with marginal
modelling using the FPL distribution. Inference is performed using
the method of quantiles. The models are fitted to 30 years of daily
observations of diurnal temperature range from 112 weather stations
in the southern part of Norway. The flexible FPL distribution shows
great promise as a model for diurnal temperature range, and performs
well against competing models. The distributional quantile regression
model is fitted to diurnal temperature range data using geographic,
orographic and climatological explanatory variables. It performs well
and captures much of the spatial variation in the distribution of
diurnal temperature range in Norway.

1 Introduction

In this paper we develop distributional models for diurnal temperature range,
which is the difference between daily maximum and minimum temperature.
The fourth IPCC assessment report identified diurnal temperature range
as a key uncertainty factor (IPCC, 2007), and the fifth report described a
substantial knowledge gap surrounding this climate variable (IPCC, 2013).

55



56 Introduction

While more effort has since been made to understand diurnal temperature
range, the literature on it is still lacking (Thorne, Donat, et al., 2016; Thorne,
Menne, et al., 2016; Sun et al., 2019; IPCC, 2021). Diurnal temperature
range can be used as an index of radiative forced climate change, and as a
useful index for assessing the output of general circulation models (Braganza
et al., 2004). Additionally, it has been shown that diurnal temperature range
is linked to human health conditions such as the risk of influenza (Park et al.,
2020), risk of stroke (Vered et al., 2020), and overall health and mortality
(Cheng et al., 2014; Lim et al., 2015). Changes in diurnal temperature range
can also be of large importance within ecology (Henry, 2007; Peng et al.,
2013; Vasseur et al., 2014; Kovi et al., 2016) and hydrology (Hanssen-Bauer
et al., 2016), among others. Despite these areas of usage, to the best of
our knowledge, there do not exist any attempts at statistical modelling of
the distribution of diurnal temperature range in the literature. In their
recent work of reassessing changes in diurnal temperature range worldwide,
Thorne, Donat, et al. (2016) conclude that there is “only medium confidence

in the magnitude of reductions in diurnal temperature range since 1950”
and that “there is low confidence in trends and multidecadal variability in
diurnal temperature range prior to 1950”. Thus, more knowledge about
diurnal temperature range is needed.

In this paper we propose to model the marginal distribution of diurnal
temperature range with the five-parameter lambda (FPL) distribution
(Gilchrist, 2000). The FPL distribution is an extension of the four-parameter
generalised lambda distribution (Ramberg & Schmeiser, 1974), itself an
extension of Tukey’s three-parameter lambda distribution (Tukey, 1962).
This family of distributions has seen infrequent use within the statistical
literature. Some areas of usage for the FPL distribution have been income
modelling (Tarsitano, 2004) and reliability analysis (Ahmadabadi et al.,
2012; Nair et al., 2013). The FPL distribution is tightly linked to the
generalised Pareto distribution (e.g. Coles, 2001), as its quantile function is
equal to the difference between two generalised Pareto quantile functions
(see Section 3.1). The generalised Pareto distribution is often used for
estimating extremely large or small quantiles, and has been much used
for modelling both the upper and lower tails of temperature distributions
(e.g. Stein, 2021a; Rohrbeck et al., 2021). Thus, the FPL distribution is
a natural choice for modelling the difference between daily maximum and
daily minimum temperature if one considers these as extreme upper and
lower quantiles in the daily temperature distribution.

The FPL distribution can be used for modelling the distribution of
diurnal temperature range in locations with available observations. However,
most locations do not contain any available temperature data. Thus, it is
also of interest to model diurnal temperature range in locations without
daily temperature observations, using a regression model. Most classical
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regression models focus on estimating the conditional mean of a distribution,
given a set of explanatory variables. However, the distribution of diurnal
temperature range is complex, and its variance, skewness and kurtosis vary
in space (see Section 2). Thus, a regression model for the mean would
not provide enough information about diurnal temperature range to be of
much use. An alternative to regression on the mean is quantile regression
(Koenker, 2005), where one models a set of conditional quantiles given some
explanatory variables. Quantile regression is based on fewer assumptions
than mean regression, and it allows for more flexible modelling of complex
distributions. However, it can often lead to quantile crossing, meaning that
certain combinations of the explanatory variables lead to non-monotonic
quantile functions (Bondell et al., 2010; Cannon, 2011; Rodrigues & Fan,
2017). Furthermore, quantile regression can only estimate a finite set of
quantiles, and it does not lend an easy way of estimating distributional
properties like moments. An alternative that has gained more popularity
in recent years is distributional regression, where one attempts to model
the entire conditional distribution given a set of explanatory variables (e.g.
Klein et al., 2015; Schlosser et al., 2019; Henzi et al., 2021). As stated by
Hothorn et al. (2014), this should be the ultimate goal of any regression
analysis. However, most distributional regression models can be somewhat
complex and computationally demanding.

Here, we propose a conceptually simple and highly parallelisable distri-
butional regression model, based on a combination of quantile regression and
marginal modelling with the FPL distribution. Parameter estimation for the
FPL distribution is performed using the method of quantiles (e.g. Koenker,
2005), which is based on minimising the distance between a quantile function
and a set of estimated quantiles. A thorough description of this estimation
method is presented, and it is compared to competing estimation methods
for the FPL distribution, both in a simulation study, and using real temper-
ature observations. In order to ease parameter interpretation and numerical
inference, a novel reparametrisation of the FPL distribution is developed.
The marginal FPL model and the distributional quantile regression model
are fitted to thirty years of daily temperature observations from 112 weather
stations in southern Norway, including both coastal and inland stations over
a large range of altitudes. In order to properly evaluate the model fits, a
closed-form expression for the continuous ranked probability score (CRPS;
Matheson & Winkler, 1976) with an FPL forecast distribution is developed.
This new modelling framework provides a rigorous alternative to analyse
diurnal temperature range and its observed variation in time and space
compared to current empirical approaches (e.g. Wang et al., 2017; Vinnarasi
et al., 2017; Shelton et al., 2021; Sun et al., 2021).

The remainder of the paper is organised as follows. Section 2 introduces
daily temperature data from the southern part of Norway, and associated
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Figure 1: Empirical season medians of diurnal temperature range (DTR) at the
112 weather stations in our data set. The locations of the four stations from
Figures 2, 6 and 8 are presented in all the plots. These are: (1) Flesland, (2)
Hovden – Lundane, (3) Lyngør fyr and (4) Sande – Galleberg.

explanatory variables. Section 3 provides a motivation for the choice of
modelling diurnal temperature range with the FPL distribution, and presents
some of the properties of the distribution. The distributional quantile
regression model is also developed here. In Section 4, the method of
quantiles and two other competing inference methods are described, and a
closed-form expression for the CRPS with an FPL forecast distribution is
developed. In Section 5, a simulation study is performed, where we compare
the method of quantiles with two competing inference methods. Finally,
we apply our models to Norwegian diurnal temperature range data and
evaluate the model fits in Section 6. The paper concludes with a short
discussion in Section 7.

2 Data

The analysis in this paper is based on daily time series of air temperature
observations from a set of weather stations in southern Norway. The data
are openly available from Norwegian Meteorological Institute (2019). For
each weather station, daily minimum and maximum temperatures between
18–18 UTC are used to find time series of diurnal temperature range.
Data is downloaded from the thirty year time period from 1 January 1989
to 31 December 2018. Two thirds of the weather stations were already
established in 1989, and the ages of the remaining stations are almost
uniformly distributed between one and thirty years. Some stations are too
recently established to be useful for our purposes, and others contain large
amounts of missing data. Data cleaning is therefore performed by removing
all weather stations that contains less than 180 observations from any of the
four seasons of the year (winter: December-February; spring: March-May;
summer: June-August; autumn: September-November). By cleaning the
data we reduce the number of weather stations from an initial 133 to a
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Figure 2: Histograms of diurnal temperature range for four selected weather
stations and seasons.

new value of 112 stations. The locations of these are displayed in Figure 1
together with median diurnal temperature range for each season. These 112
stations span altitudes from 0 to 1900 meters above sea level, and contains
observations from tundra, subarctic and oceanic climates (Kottek et al.,
2006).

Our modelling framework does not specifically account for measurement
and round-off errors. Obvious errors, resulting in negative diurnal tempera-
ture range, are removed from the data. Due to the existence of negative
data, it is expected that there also are erroneous data among the positive
range values. However, accounting for these errors is outside the scope of
this paper.

Six explanatory variables are used for modelling diurnal temperature
range: easting, northing, distance to the open sea and altitude, in addition
to the historical mean and variance of daily mean temperature at each loca-
tion. This is estimated using the records of daily temperature observations
from each station. Exploratory analysis finds evidence that the marginal
distribution of diurnal temperature range can be approximated as being
constant within each season (results not shown), but that it varies between
the seasons. Historical mean and variance of the daily mean temperature are
therefore computed for each season separately. The distance to the open sea
is derived from a digital elevation model of Norway, with resolution 50⇥ 50
m2, published by the Norwegian Mapping Authority (https://hoydedata.no).
Time series of daily mean temperature, along with longitude, latitude and
altitude are freely available from Norwegian Meteorological Institute (2019).
Easting and northing are based on UTM 32 coordinates.

Figure 1 shows the median of diurnal temperature range for each season
and each weather station. It reveals clear seasonal and spatial patterns.
In particular, the values appear higher during spring and summer than
during winter and autumn. Similar patterns are also found when examining

https://hoydedata.no
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Figure 3: Linear relationships between the six explanatory variables and the median
of diurnal temperature range (DTR) at the 112 weather stations in our data set. All
explanatory variables are standardised to have zero mean and a standard deviation
of one.

other quantiles. Histograms of diurnal temperature range for four selected
stations and seasons are presented in Figure 2. We observe considerable
differences in the shapes of the histograms.

To explore the relation between the explanatory variables and diurnal
temperature range, we fit a simple linear model with different quantiles of
diurnal temperature range against standardised versions of the explanatory
variables. These linear model fits are presented in Figure 3 for the median
of diurnal temperature range. Most of the estimated trends are significant
at the 5%-level. Especially for the mean and variance of historical daily
mean temperature, there is a strong linear relationship during winter and
autumn. Similar trends are found for all other examined quantiles.

3 Models

3.1 Marginal modelling with the FPL distribution

We assume that daily minimum and maximum temperature can be de-
scribed well by the generalised Pareto distribution. The Generalised Pareto
distribution is a common model for extreme observations (e.g. Coles, 2001),
and it is often used for modelling extreme temperature (e.g. Davison et al.,
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2019; Castro-Camilo et al., 2021). Additionally, Rohrbeck et al. (2021)
model daily temperature in the Red Sea by assuming that both the upper
and lower tails of daily temperature can be modelled using the generalised
Pareto distribution, and Stein (2021b) proposes to model climatological
phenomena using parametric distributions that behaves like the generalised
Pareto distribution in both tails, and uses this approach to model daily
average temperature near Calgary during winter. The generalised Pareto
distribution can be described through its quantile function (e.g. Hosking &
Wallis, 1987)

Q(p;µ, ⌘, ⇠) = inf {x 2 R : p  F (x;µ,�, ⇠)}

= µ+ ⌘

(⇣
1� (1� p)⇠

⌘
/⇠, ⇠ 6= 0

� log(1� p), ⇠ = 0,

where F is the cumulative distribution function, and µ, ⌘ and ⇠ acts as the
location, scale and shape parameters, respectively. Diurnal temperature
range is equal to the difference between daily maximum and daily minimum
temperature, and can therefore be modelled as the difference between the
quantiles of two generalised Pareto distributions. We model maximum daily
temperature as some quantile of a generalised Pareto distribution, while
minimum daily temperature is modelled as some quantile of a reflected
generalised Pareto distribution. If the random variable X has a quantile
function QX(p), then �X has the quantile function Q�X(p) = �QX(1� p).
This results in an expression for the diurnal temperature range:

Qrange = Qmax(p1;µ1, ⌘1, ⇠1)�Qmin(p2;µ2, ⌘2, ⇠2)

= µ1 +
⌘1

⇠1
(1� (1� p1)
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⌘2

⇠2
(1� p

⇠2
2 ).

In the case of ⇠1 = 0 or ⇠2 = 0 the expression is simplified, since

lim
�!0

(p� � 1)/� = log p.

We reparametrise by setting p1 = p, p2 = p
a, ⇠⇤2 = a⇠2 and ⌘⇤2 = a⌘2, where

a = log p2/log p. This gives
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Further manipulation of the expression yields
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which is equal to the quantile function of a five-parameter lambda (FPL)
distribution (Gilchrist, 2000),

Q(p;�) = �1 +
�2

2

(
(1� �3)

p
�4 � 1

�4
� (1 + �3)

(1� p)�5 � 1

�5

)
,

�2 > 0,�3 2 [�1, 1],

(1)

Consequently, we expect the FPL distribution to be a suitable model for
diurnal temperature range.

No analytic expressions for the probability density function or cumulative
distribution function of the FPL distribution exist, although the density
for a given p can be obtained as the reciprocal of the quantile derivative,
(dQ(p;�)/dp)�1. From the quantile function (1) of the FPL distribution it
is clear that �1 acts as a location parameter and �2 as a scale parameter
of the distribution. We notice that �4 = ⇠

⇤
2 and �5 = ⇠1, which means

that these two parameters control the behaviour of the left and right tails,
respectively. The final parameter �3 acts as a weight between the two tails.

The support of the FPL distribution can be both finite and infinite.
This makes the distribution flexible for modelling a variety of different
phenomena. The support is given by

[Q(0;�), Q(1,�)] = �1 +
�2

2

8
><

>:

[�1��3
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1+�3
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], �4,�5 > 0
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1+�3
�5

], �4 6 0,�5 > 0

.

Diurnal temperature range is always positive. In order to ensure a positive
support for the FPL distribution, one must enforce the inequality-constraints

�1 �
�2(1� �3)

2�4
> 0, �4 > 0. (2)

The parametrisation in (1) is intuitive in the sense that it stems from
the combination of two generalised Pareto distributions. However, for
performing numerical parameter estimation, other representations are more
appropriate. The location �1 and scale �2 are not clearly linked to any
central moments or quantiles of the FPL distribution. We thus propose
a reparametrisation scheme with a new location parameter that is equal
to the median of the FPL distribution, and a new scale parameter that is
equal to the inter-quartile range of the FPL distribution,

�
⇤
1 = Q(0.5;�)
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�2

2
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The new parameter vector is denoted �
⇤ = (�⇤1,�

⇤
2,�3,�4,�5). In order to

simplify parameter constraints during any numerical estimation procedures,
we further introduce the reparametrisation

�̃1 = �
⇤
1, �̃2 = log

⇣
e
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2 � 1

⌘
, �̃3 = log

✓
1� �3

1 + �3

◆
,

�̃4 = log
⇣
e
�4 � 1

⌘
, �̃5 = log

⇣
e
�5+0.5 � 1

⌘
,

(4)

This results in an unconstrained parameter vector �̃ 2 R5 and guarantees
that �2 > 0, �3 2 (�1, 1) and �4 > 0. We also restrict �5 to the interval
(�0.5,1), as this guarantees a finite mean and variance for the FPL distri-
bution (e.g. Coles, 2001; Tarsitano, 2010). Exploratory data analysis (results
not shown) finds that the right tail parameter in the diurnal temperature
range distribution tends to be considerably larger than -0.5. Davison et al.
(2019) model extreme temperatures in Spain with the generalised Pareto
distribution and find that the tail parameter, which we denote by �5, is
approximately equal to 0.4. Castro-Camilo et al. (2021) and Rohrbeck et al.
(2021) model Red Sea temperatures with the generalised Pareto distribution
and find that the tail parameter is larger than �0.1. O’Sullivan et al. (2020)
model temperature extremes in Dublin and find that the posterior median
of the tail parameter is larger than 0.1. Based on these results and our
exploratory data analysis, we are confident that the restriction of �5 > �0.5
should not lead to any loss in model performance.

The standard way of reparametrising a parameter ✓ that is bounded
away from zero is to set ✓̃ = log ✓. However, if ✓ attains a large value, a
small error in the estimate for ✓̃ leads to a considerable error in the estimate
for ✓. The function g(x) = log(ex � 1) has the property that g(x) ⇡ log x
for small x and g(x) ⇡ x for large x. This allows us to constrain the FPL
parameters without risking large reparametrisation instability because of
an exponential relation between � and �̃.

The reparametrisation to �̃ eases numerical inference methods, and
is used whenever we perform parameter estimation. However, the �

⇤

parametrisation is more intuitive, and is therefore primarily used when
describing our methods.

3.2 Distributional quantile regression

We wish to model the marginal distribution of diurnal temperature range
at locations without available temperature observations, using a regression
model with explanatory variables. As described in Section 2, the distribu-
tion of diurnal temperature range is very rich. Many of its distributional
properties seem to vary in space, and between seasons. Thus, it does not
seem good enough to use e.g. a generalised linear model (GLM) where we
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only allow the mean and variance of diurnal temperature range to vary in
space. We suggest that one should apply a distributional regression model,
where the entire distribution function is allowed to vary in space, (e.g. Klein
et al., 2015; Schlosser et al., 2019; Henzi et al., 2021) for modelling diurnal
temperature range. One way of performing distributional regression is to
apply a latent Gaussian model with an FPL likelihood, such that all five FPL
parameters are modelled as a linear combination of explanatory variables
and Gaussian white noise. However, this leads to an unnecessarily complex
model. Additionally, as described in Section 5, the flexibility of the five FPL
parameters might lead to something similar to identifiability problems, that
can be problematic when we perform regression directly on the parameters
and not on the distribution itself. Here, we propose a novel distributional
regression model for diurnal temperature range which is based on combining
quantile regression and marginal modelling with the FPL distribution, and
we use this for modelling the marginal distribution of diurnal temperature
range at locations with no temperature observations.

We first assume that any quantile in the distribution of diurnal tempera-
ture range can be modelled as a linear combination of explanatory variables.
Let yi(s) be observation i of diurnal temperature range at location s 2 S,
where S is the given study area. For any probability p 2 (0, 1), we assume
that the diurnal temperature range can be modelled as

yi(s) = x(s)T�p + ✏i,p(s), i = 1, . . . , n(s), (5)

with explanatory variables x(s) and regression coefficients �p. The error
terms ✏i,p(s) are assumed to be independent and distributed such that
P (✏i,p(s)  0) = p for all s 2 S and i = 1, . . . , n(s) (Koenker, 2005). We
are now able to estimate quantiles qp(s) = x(s)T�p of diurnal temperature
range for any p 2 (0, 1), at any location s with available explanatory
variables x(s).

In order to turn this into a distributional regression model, we further
propose to treat all qp(s) as quantiles of the FPL distribution at location s.
The only necessary assumption for performing quantile regression is that
P (yi(s)  x(s)T�p) = p, and there need not be any disagreements between
this and the assumption that the marginal distribution at any location
s is the FPL distribution. Consequently, we model the distribution of
diurnal temperature range at location s using the FPL distribution with the
parameters �

⇤ that minimise the distance between qp(s) and the quantile
function Q(p;�⇤) of the FPL distribution (1). With this approach, we are
able to describe the distribution of diurnal temperature range everywhere,
using a parametric model. This makes it easier to interpret the distributional
properties of diurnal temperature range than when we only use the semi-
parametric quantile regression model.
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A common problem with quantile regression is that the different esti-
mated quantile models may cross, such that the estimator for qpi(s) is larger
than the estimator for qpj (s) for pj > pi (Bondell et al., 2010; Rodrigues
& Fan, 2017; Cannon, 2018). However, by first performing quantile regres-
sion and then fitting the FPL distribution to the regression quantiles, this
problem is easily fixed, as the FPL quantile function always is monotonic
increasing. Consequently, there is no need to implement complicated quan-
tile regression methods that ensure non-crossing quantiles, and we can base
our modelling on the fast and simple regression model where each quantile
is modelled separately.

For simplicity, the distributional quantile regression model is referred to
as the regression model for the remainder of the paper.

4 Inference

4.1 Parameter estimation for the FPL distribution

We present three marginal parameter estimation methods for the FPL
distribution: the method of quantiles, maximum likelihood estimation and
the starship method.

The method of quantiles

The method of quantiles is an estimation method similar to the better
known method of moments, in which the distance between quantiles of
a parametric distribution and empirical quantiles from observed data is
minimised. Let y1, . . . , yn be independent and identically FPL distributed
random variables with quantile function Q(p;�⇤) and parameters �

⇤. A set
of m empirical quantiles bQ(pi) = bqpi , i = 1, 2, . . . ,m, are constructed from
the observations y. The method of quantiles estimator for �

⇤, is found by
minimising the absolute distance

L(�⇤) =
mX

i=1

|bqpi �Q(pi;�
⇤)| . (6)

There do not exist any straightforward expressions for the probability
density or the cumulative probability function of the FPL distribution.
However, a simple and closed-form expression exists for its quantile function.
This can make it more natural to perform parameter estimation based on
quantile matching instead of e.g. likelihood-based estimation methods. In
addition, Bignozzi et al. (2018) state that parameter estimation methods
based on quantile matching can be preferable when distributions are heavy-
tailed or their support varies with the parameters. Both of these conditions
hold for the FPL distribution. Additionally, Bhatti et al. (2018) find that the
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method of quantiles outperforms both the method of moments and maximum
likelihood estimation for parameter estimation under the Pareto distribution.
As the FPL distribution can be described as the difference between two
Pareto distributions, it should share some of the same properties. Tarsitano
(2005) applies the method of quantiles for parameter estimation with the
FPL distribution, using only five quantiles. He concludes that the method
has several advantages, while a theoretical justification for the choice of
quantiles is lacking. For a large set of observations y(1) 6 y(2) 6 . . . y(n), the
distribution function of y(i) is close to the empirical distribution function
bF (y(i)) = (i � 0.5)/n. Consequently, for a large set of n observations, we
perform the method of quantiles by setting pi = (i� 0.5)/n and bqpi = y(i)

for i = 1, 2, . . . , n, thus avoiding the issue of which quantiles to select. This
is somewhat similar to the method of least absolute deviations by Tarsitano
(2010). Koenker (2005) has shown that the method of quantiles estimator is
consistent, provided that all estimated quantiles bq are consistent. Note that
the order statistics of y are dependent. This must be taken into account if
one attempts to compute the variance of the estimator for �

⇤.

A weakness of the method of quantiles is that it might return a parameter
estimator c�⇤ such that Q(0; b�⇤) > y(1) or Q(1; b�⇤) < y(n). This problem is
addressed by introducing inequality constraints when minimising the loss
function in (6), demanding that Q(0;�⇤) < y(1) and y(n) < Q(1;�⇤). In
order to guarantee a positive support, the inequality constraints from (2) can
also be enforced. Note that �4 > 0 is automatically enforced by optimising
over the �̃ parametrisation. The positive support constraint is slightly
relaxed by only demanding that Q(10�4;�⇤) > 0, as we find that this
can considerably improve the model fit in certain cases. These constraints
are enforced by performing numerical optimisation using an augmented
Lagrangian formulation (e.g. Nocedal & Wright, 2006), implemented within
the R package nloptr (Birgin & Martínez, 2008; Johnson, 2020). Closed-
form expressions are available both for the quantile loss function and for
its gradient. However, in practice we find that the method of quantiles
performs better when not including gradient information in the optimiser.
Consequently, we minimise the augmented Lagrangian using the derivative-
free Nelder-Mead algorithm (Nelder & Mead, 1965), also implemented in
the nloptr package.

Due to the flexibility of the FPL distribution, the quantile loss (6) proves
to be difficult to minimise without a good initial value for the FPL parame-
ters. We utilise the connection between (�⇤1,�

⇤
2) and the quantiles of the

FPL distribution by setting the initial values equal to the empirical median
and inter-quartile range of y, respectively. Initial values for the remaining
three parameters are selected using a quick grid search. We compute the
quantile loss function for all combinations of �3 2 {�0.5,�0.25, 0, 0.25, 0.5},
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�4 2 {0.1, 0.2, 0.4, 0.8, 1, 1.5} and �5 2 {�0.4,�0.1, 0.1, 0.2, 0.4, 0.8, 1, 1.5}
and select the combination of parameters that minimises it as initial values.

Maximum likelihood estimation

No closed-form expression exists for the cumulative distribution function
of the FPL distribution. However, as mentioned in Section 3.1, for a given
probability p, the probability density function of the FPL distribution can
be obtained as the reciprocal of the quantile derivative

f(y;�) =
2

�2

n
(1� �3)p(y)

�4�1 + (1 + �3)(1� p(y))�5�1
o�1

,

with p(y) = F (y;�). A numerical approximation for the cumulative distri-
bution function of the FPL distribution is available from the R package gld
(King et al., 2020). For y = (y1, . . . , yn)

T this gives rise to the log-likelihood

`(�;y) = �n log
�2

2
�

nX

i=1

log
n
(1� �3)p(yi)

�4�1 + (1 + �3)(1� p(yi))
�5�1

o
.

A straightforward expression for the gradient of the log-likelihood cannot be
provided, as it requires computing the derivative of F (y;�) with respect to �.
Maximisation of the log-likelihood is performed using the same grid-search
and augmented Lagrangian as for the method of quantiles, where we include
the same inequality constraint to guarantee a positive support.

The starship method

A straightforward way of modelling with the FPL distribution is to use the
already implemented functions in the R package gld (King et al., 2020).
This package is mostly focused on the four-parameter generalised lambda
distribution, but it also includes one inference method for the FPL distribu-
tion, namely the starship method (Owen, 1988; King & MacGillivray, 1999).
The starship method is based on the fact that if y has distribution function
F (·;�⇤), the transformed variable u = F (y;�⇤) has a uniform distribution.
Parameters can therefore be estimated by minimising any goodness-of-fit
statistic between the uniform distribution and F (y;�⇤).

The starship suffers from the same problems as the maximum likelihood
estimator, namely that no closed-form expression exists for the cumulative
distribution function of the FPL distribution, which therefore has to be
numerically approximated. The implemented method in the gld package
performs minimisation using the Anderson-Darling statistic. However, the
gld implementation of the starship method is very computationally ineffi-
cient, so in order to compare it with the previously described methods for
large amounts of data, we implement our own version of the starship, based
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(yi(s),x(s))
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...
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x(s0)
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Figure 4: Diagram of the regression model. First, quantile regression (QR) is
performed for modelling different quantiles of diurnal temperature range yi(s) given
the explanatory variables x(s). Using the quantile regression model, the conditional
quantiles bqp1(s0), bqp2(s0) . . . , bqpm(s0) are estimated, given the explanatory variables
x(s0) at a specific location. Then, using the method of quantiles (MQ), the FPL
distribution is fitted to the conditional quantiles, resulting in the estimator b�⇤(s0)
for the FPL parameters.

on the gld implementation. This implementation performs minimisation
of the Anderson-Darling statistic using the same optimisation approach
as in the precious methods. On a sample of 104 observations, our version
of the starship estimates �

⇤ in approximately 50 seconds, while the gld
implementation uses approximately 330 seconds. The two implementations
seem to perform equally well numerically.

4.2 Parameter estimation in the regression model

Inference for the regression model is divided into two steps. The estimation
procedure is illustrated in Figure 4. First, quantile regression is performed
using the R package quantreg (Koenker, 2018), separately for each of the
probabilities pi = i/100, i = 1, 2, . . . , 99. Then, at any location s0 with
available explanatory variables where we wish to model diurnal temper-
ature range, we estimate the conditional quantiles bqpi(s0). The quantile
function of the FPL distribution is then fitted to the 99 estimated quantiles
bqp1(s0), bqp2(s0) . . . , bqp99(s0) using a marginal parameter estimation method.
There are no good ways of extending the maximum likelihood or starship
method to fit a quantile function to a set of quantiles. However, the method
of quantiles is perfect for this kind of parameter estimation problem. Con-
sequently, the method of quantiles is used for fitting the FPL distribution
to the 99 estimated quantiles, resulting in an estimator b�⇤(s0) for the FPL
parameters at s0. All 99 quantiles are modelled independently of each other,
meaning that numerical inference can be executed in parallel. Fitting the
FPL distribution to estimated quantiles at different locations is also an
independent operation that can be performed in parallel. The proposed
regression model is therefore highly parallelisable.
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4.3 Model evaluation

Model performance is evaluated using the continuous ranked probability
score (CRPS; Matheson & Winkler, 1976; Gneiting & Raftery, 2007). Given
a forecast distribution F and an observation y, the CRPS is equal to

S(F, y) =

Z 1

�1
(F (t)� I(t � y))2 dt = 2

Z 1

0
⇢p(y � F

�1(p)) dp, (7)

with ⇢p(u) = pu� I(u < 0)u, where I(·) is an indicator function. This is a
strictly proper scoring rule, meaning that if y has distribution function G,
then E[S(G, y)]  E[S(F, y)] for all forecast distributions F , with equality
only if F = G. Due to scarce usage of the FPL distribution in the literature,
to the best of our knowledge, a closed-form expression for the CRPS with
an FPL forecast distribution has not yet been provided. Consequently,
we derive the expression for the CRPS with an FPL forecast distribution.
When modelling diurnal temperature range with the FPL distribution, the
quantile formulation of the CRPS is especially useful. Given an FPL forecast
distribution F with quantile function Q, the CRPS can be expressed as

S(F, y) = 2

Z 1

0
⇢p(y �Q(p)) dp

= y(2F (y)� 1)� 2

Z 1

0
pQ(p) dp+ 2

Z 1

F (y)
Q(p) dp.

Both of these integrals are fairly straight-forward to compute with the FPL
quantile function, as they are simply polynomials in p. Solving the first
integral yields

Z 1

F (y)
Q(p) dp =(1� F (y))�1 +

�2

2

(
(1� �3)

 
1� F (y)�4+1

�4(�4 + 1)
� 1� F (y)

�4

!

� (1 + �3)

 
(1� F (y))�5+1

�5(�5 + 1)
� 1� F (y)

�5

!)
,

while solving the second integral yields

Z 1

0
pQ(p) dp =

�1

2
+
�2

2

✓
�(1� �3)

1

2(�4 + 2)
+ (1 + �3)

�5 + 3

2(�5 + 1)(�5 + 2)

◆
.

Thus, by numerically approximating F (y) we are able to estimate the CRPS
of the FPL distribution. In the special case of �4 = 0 or �5 = 0, the integrals
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are solved by using that
Z

log p dp / p(log p� 1),
Z

log(1� p) dp / (p� 1) log(1� p)� p,

Z
p log p dp / 1

2
p
2(2 log p� 1),

Z
p log(1� p) dp / 1

4

�
2(p2 � 1) log(1� p)� p(p+ 2)

�
.

The CRPS can be used for comparing competing forecasts. Given two
forecasts F1 and F2, and observations y = (y1, . . . yn)

T , we can compute
the mean CRPS

S(F,y) =
1

n

nX

i=1

S(F, yi),

and choose the forecast with the lowest mean CRPS. However, the mean
CRPS in itself does not provide much information about the goodness of
fit of a forecast. Given a forecast F and observations y with unknown
distribution function G, there is no way of knowing if there is a large
difference between S(F,y) and S(G,y), since G is unknown. Thus, we also
evaluate model performance by studying quantile-quantile-plots (QQ-plots)
and the probability integral transform (PIT).

If a random variable y has distribution function F , then the transformed
variable u = F (y) is uniformly distributed between zero and one. Given
a forecast distribution F and observations y one can therefore examine
deviations between the distribution of u = F (y) and the standard uni-
form distribution. Heinrich et al. (2020) propose to evaluate model fit
by examining the first two moments of u. Denote the error in the first
moment as eµ = E(u)� 0.5 and the error in the second central moment as
e� = SD(u)� 1/

p
12. It follows that eµ < 0 indicates a positive bias and

eµ > 0 indicates a negative bias. If e� < 0, the forecast distribution F is
overdispersive, and if e� > 0, it is underdispersive.

5 Simulation study

5.1 Setup

Simulation studies are performed to compare the different parameter esti-
mation methods for the FPL distribution. We draw 500 random sets of
FPL parameters �⇤. These are sampled such that they are of approximately
the same magnitude as the estimated FPL parameters for diurnal tempera-
ture range in Section 6 (see Table 4), while also ensuring that we have a
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positive and wide enough support. The exact sampling scheme is given in
Algorithm 1, with N (µ,�2) denoting a Gaussian distribution with mean µ

and variance �2 and U(a, b) denoting a uniform distribution with limits a

and b. For each set of FPL parameters we then sample n realisations from
the FPL(�⇤) distribution with n = 2i for i = 7, 8, . . . , 14. The parameter
estimation methods described in Section 4.1 are then applied for estimating
�
⇤. We evaluate the overall fit to data and the ability of recovering the

true parameter values. Overall model fit to data is evaluated using the
CRPS. Since the true value of �⇤ is known, we can compute the skill score
1� CRPS(F,G)/CRPS(F, y), where F is our estimated distribution, G is
the correct distribution and CRPS(F,G) is the expected value of the CRPS
with respect to G. Thus, a perfect forecast gives a skill score of zero, while
all other forecasts give a skill score larger than zero and smaller than one.
The ability to recovery the true values of �⇤ is evaluated using the mean
square error (MSE) between the true parameters �

⇤ and the estimated
parameters �̂

⇤, over all 500 repetitions,

MSE(�⇤
,�) =

1

500

500X

i=1

1

5

5X

j=1

⇣
�
⇤
j
(i) � �

(i)
j

⌘2
,

where �
(i) = (�(i)1 , . . .�

(i)
5 )

T
are the true FPL parameters in simulation

number i out of 500, and �
⇤(i) are the corresponding estimated parameters.

Algorithm 1 Sampling �
⇤

while TRUE do
Sample �⇤1 ⇠ N (5, 32)
Sample �⇤2 ⇠ U(1.5, 8)
Sample �3 ⇠ U(�0.9, 0.9)
Sample �4 ⇠ U(0.01, 0.9)
Sample �5 ⇠ U(�0.3, 0.7)
if Q(0,�⇤) > 0 then . Ensure a positive support

if Q(1,�⇤)�Q(0,�⇤) > 1 then . Ensure a wide enough support
break

end if
end if

end while
return �

⇤

5.2 Results

Table 1 displays the skill score, MSE and computation time for all methods.
As n grows, the computation times for the maximum likelihood and starship
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Table 1: Mean skill scores, MSE and computation times for the method of quantiles
(MQ), maximum likelihood (ML) and starship method, when performing parameter
estimation 500 times on n samples drawn from an FPL distribution. The skill
scores are multiplied by 103 to get more readable results. Computation times are
reported on a 2.4 gHz computation server.

Method n = 27 n = 28 n = 29 n = 210 n = 211 n = 212 n = 213 n = 214

Skill score (·103) ML 6.12 3.18 1.48 0.73 0.40 0.21 0.11 0.09

MQ 6.42 3.33 1.58 0.81 0.43 0.21 0.10 0.06

starship 6.12 3.18 1.49 0.75 0.40 0.26 0.20 0.21

MSE ML 0.17 0.14 0.06 0.03 0.02 0.02 0.02 0.01

MQ 14.01 207.16 201.66 6.87 32.20 3.85 5.04 0.47

starship 1.27 0.35 0.28 0.26 0.15 0.02 0.02 0.03

Time [s] ML 0.6 0.9 1.5 3.0 5.6 11.0 22.6 46.4

MQ 0.2 0.2 0.3 0.3 0.4 0.6 1.1 1.9

starship 0.8 1.1 1.8 3.3 6.5 14.1 30.4 63.9

methods grow considerably faster than the time for the method of quantiles.
This happens because the method of quantiles is based solely on analytical
expressions, while the other two methods require numerical estimation of
the likelihood or distribution function of the FPL distribution. The method
of quantiles has a worse skill score for small to medium sample sizes and
a slightly better skill score for large sample sizes, whereas the starship
method attains the worst skill score for large sample sizes. Interestingly,
the method of quantiles fails to recover the correct FPL parameters, and
has a much larger MSE than the other two methods. This demonstrates
the flexibility of the FPL distribution, as we are able to achieve a better
CRPS using the “wrong” parameter estimates. A closer examination of the
estimated parameters finds that the large increase in MSE is caused almost
solely by too large estimates of �4 and �5. In some situations it seems
that a large increase in �4 combined with a decrease in �3 yields almost no
change in the overall shape of the FPL distribution. This makes sense, as
increasing �4 leads to a thinner left tail, while decreasing �3 places more
weight on the left tail. Similarly, a large increase in �5 can be mitigated
by increasing �3. When modelling diurnal temperature range, model fit is
much more important than parameter recovery, as the FPL model is merely
an assumption, and possibly not the true underlying distribution of diurnal
temperature range. Thus, the low skill score and fast computation times of
the method of quantiles for large sample sizes make up for the fact that we
seem to lose the ability to always recover the true parameters.
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Figure 5: Estimated probability density functions using four different parametric
distribution for modelling diurnal temperature range. The observations of diurnal
temperature range are displayed using histograms.

6 Modelling diurnal temperature range in
southern Norway

Diurnal temperature range in southern Norway is modelled separately for
all seasons, using our two proposed models. Model calibration is evaluated
using QQ-plots and the PIT. The marginal model is compared against
several competing models using the CRPS. The regression model is tested
in a leave-one-out cross-validation study, and the results are compared with
the marginal model fits.

6.1 Marginal modelling

In order to evaluate the model performance of the FPL distribution for
diurnal temperature range, the distribution is used for modelling data from
southern Norway. Diurnal temperature range is modelled separately for all
seasons and weather stations, using the FPL distribution and three other
competing parametric distributions: the gamma distribution, lognormal
distribution and the generalised lambda (GL) distribution. The gamma- and
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Table 2: Mean CRPS over all 112 weather stations during each season. Four
different distributions are fitted to diurnal temperature range data. The FPL
distribution are fitted to data using the method of quantiles (MQ), maximum
likelihood (ML) estimation, and the starship method. The best mean CRPS for
each season is written in bold.

Season FPL (MQ) FPL (ML) FPL (starship) GL Gamma Lognormal

Winter 1.577 1.577 1.577 1.578 1.580 1.589

Spring 2.109 2.109 2.108 2.111 2.122 2.141

Summer 1.851 1.849 1.849 1.851 1.857 1.867

Autumn 1.715 1.715 1.715 1.717 1.720 1.732

lognormal distributions are fitted to data using maximum likelihood estima-
tion, implemented in the R package MASS (Venables & Ripley, 2002). The GL
distribution is a specialisation of the FPL distribution, parametrised with
four parameters, and it is fitted using maximum likelihood, implemented
in the gld package. The FPL distribution is fitted to diurnal temperature
range using all three inference methods described in Section 4. In-sample
model comparison is performed using the CRPS. This is computed numer-
ically for the GL distribution, using (7). For the gamma- and lognormal
distributions, CRPS is computed using the scoringRules package (Jordan
et al., 2019).

Table 2 displays the mean CRPS over all 112 weather stations for each
season and all our chosen models. Apart from the FPL results during
summer, all three model fits with the FPL distribution attain a lower mean
CRPS than the competing models. The differences in CRPS might seem
small, but a simple permutation test shows that there is a statistically
significant difference between the scores of the FPL and GL distributions,
except during summer when inference is performed with the method of
quantiles. The same permutation test finds no evidence that there is a
difference in CRPS when using the method of quantiles and the starship
method, but there is some evidence that both the starship and the method of
quantiles attains better model fits than the maximum likelihood estimation.
The mean computation time for estimating the FPL parameters at a single
location is approximately 0.3 seconds with the method of quantiles, 2.7
seconds with maximum likelihood estimation and 4.0 seconds with the
starship method, meaning that it takes two minutes to estimate parameters
for all stations and seasons with the method of quantiles, and thirty minutes
with the starship method. Figure 5 displays the fitted probability density
functions of all models at the four stations from Figure 2. The FPL
distribution is fitted to data using the method of quantiles. It seems that
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Figure 6: Upper plots: Histograms displaying observed diurnal temperature range
are plotted along with the probability density functions of the FPL distribution.
Middle plots: Histograms displaying the PIT of diurnal temperature range with the
estimated FPL parameters. Lower plots: QQ-plots displaying sample quantiles of
diurnal temperature range against distributional quantiles of the estimated FPL
distributions.

the flexibility of the FPL distribution makes it able to model the many
shapes of diurnal temperature range better than the competing models.
Especially in the lower right plot one can see how the added flexibility of
the FPL distribution allows it to provide a slightly better fit to data than
the GL distribution, which clearly is the strongest competitor. The FPL
distribution attains a lower CRPS than the competing models in all four
sub-plots.

The FPL model fits are further evaluated to assess absolute performance.
For the remainder of the paper we choose to use the method of quantiles for
fitting the FPL distribution to diurnal temperature range data, as all three
inference methods perform almost equally well, and the method of quantiles
is necessary for the regression model described in Section 3.2. Figure 6
displays different properties of the model fit of the FPL distribution at
the four stations from Figure 5. It is evident that the FPL distribution
provides a good model fit to observed diurnal temperature range data. The
model struggles slightly with the bimodal distribution at Hovden – Lundane,
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Table 3: Mean CRPS and PIT errors eµ and e� over all 112 weather stations,
computed for the marginal model and the regression model. The regression model is
fitted to data both in-sample, and out-of-sample using leave-one-out cross-validation.

Season Model CRPS eµ e�

Winter Marginal 1.58 0.00 · 10�2 0.00 · 10�2

Regression, in-sample 1.63 1.46 · 10�2 �0.30 · 10�2

Regression, out-of-sample 1.63 1.44 · 10�2 �0.35 · 10�2

Spring Marginal 2.11 0.06 · 10�2 �0.05 · 10�2

Regression, in-sample 2.29 1.10 · 10�2 �1.35 · 10�2

Regression, out-of-sample 2.31 1.08 · 10�2 �1.49 · 10�2

Summer Marginal 1.85 0.01 · 10�2 0.01 · 10�2

Regression, in-sample 2.12 1.70 · 10�2 �3.51 · 10�2

Regression, out-of-sample 2.16 1.58 · 10�2 �3.74 · 10�2

Autumn Marginal 1.71 0.03 · 10�2 �0.05 · 10�2

Regression, in-sample 1.76 0.97 · 10�2 �0.54 · 10�2

Regression, out-of-sample 1.77 0.94 · 10�2 �0.60 · 10�2

but has an excellent fit to the data at the other three stations. A visual
assessment of the model fit for all other stations finds that the results in
Figure 6 are representative for most of the available data. The mean PIT
errors eµ and e� are displayed in Table 3. Both are of magnitude 10�4 for
the marginal FPL model, implying high overall performance.

An overview of the estimated FPL parameters is given in Table 4. The
location and scale parameters are largest during summer and spring, and the
tail parameters �4 and �5 seem to take approximately the same values for all
seasons. The estimator for �5 is mostly far away from �0.5, indicating that
the restriction of �5 > �0.5 has not lead to a decrease in model performance.
The tail weight �3 seems to be almost evenly distributed between �1 and
1, but its distribution is clearly most focused on the positive side, where it
lends most weight to the right tail of the FPL distribution. When examining
the marginal parameter estimates in a map (results not shown) we find that
both �̂

⇤
1 and �̂4 increase when moving eastwards. The opposite is found

for �̂3, which attains its largest values to the west. �̂⇤2 and �̂5 take on low
values along the coast, and increase as we move further away from the sea,
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Table 4: The FPL parameters are estimated at all weather stations, using the
marginal model and the out-of-sample regression model. Median parameter es-
timates over all 112 locations are displayed, along with the 2.5% and the 97.5%
quantiles.

Winter Spring Summer Autumn

Model �̂ 2.5% 50.0% 97.5% 2.5% 50.0% 97.5% 2.5% 50.0% 97.5% 2.5% 50.0% 97.5%

Marginal �̂1 3.0 5.0 7.7 3.6 8.0 11.5 3.7 8.8 11.8 3.1 5.6 7.4

�̂2 1.9 3.7 7.0 2.3 5.7 8.1 1.9 4.9 7.1 1.9 4.4 6.9

�̂3 �0.6 0.2 1.0 �0.9 0.1 1.0 �0.6 0.4 1.0 �0.7 0.6 1.0

�̂4 0.0 0.4 0.8 0.0 0.4 1.2 0.0 0.2 0.5 0.0 0.2 1.1

�̂5 �0.1 0.1 0.3 �0.2 0.2 0.5 �0.1 0.3 0.6 0.0 0.2 0.5

Regression �̂1 2.9 4.8 7.1 3.4 7.8 12.5 4.6 8.3 11.2 3.3 5.5 7.6

�̂2 1.5 3.8 6.2 2.3 5.7 8.7 3.6 5.2 7.1 1.9 4.6 6.7

�̂3 �0.5 0.2 0.9 �0.5 0.5 1.0 0.0 0.6 0.9 �0.3 0.5 0.8

�̂4 0.0 0.4 0.6 0.0 0.3 0.7 0.0 0.1 0.5 0.0 0.4 0.8

�̂5 �0.3 0.0 0.3 �0.3 0.2 0.7 0.0 0.3 0.7 �0.2 0.2 0.4

and further to the east. There are some locations where the estimates for �4
and �5 are much larger than 1. This is most likely caused by the problems
discussed in Section 5, where a large change in a tail parameter combined
with a change in �3 results in little change in the overall shape of the FPL
distribution. The estimators for �⇤2 and �3 are also showing unusual values
at these locations.

6.2 Regression model

The regression model is applied for modelling diurnal temperature range
for each season separately, using all the explanatory variables introduced
in Section 2. Before we apply the regression model, each explanatory
covariate is standardised to have zero mean and a standard deviation of one.
Modelling is performed in-sample using all available data, and out-of-sample
in a leave-one-out cross-validation study. Thus, in the cross-validation study,
the regression coefficients �pi , i = 1, 2, . . . , 99, are estimated 112 times for
each season, each time by leaving one station out of the training data. The
FPL parameters are then estimated at the one station that was not included
in training the quantile regression models. Table 3 shows little difference in
performance between in-sample and out-of-sample estimation, indicating
that our model does not overfit to the data. For winter and autumn data,
the differences between the CRPS of the marginal model and the regression
model are small. However, during summer and spring, there is a considerable
difference in performance between the two models. The calibration of the
regression model is clearly worse than that of the marginal model for all
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Figure 7: Estimated regression coefficients b�0.5 for the median regression. The
parameter estimation is performed out-of-sample, resulting in 112 parameter esti-
mates within each season. The whiskers in the box-plot have a maximum length of
1.5 times the interquartile range. The y-axis has unit “standard deviations of y”,
meaning that if a regression coefficient is e.g. 0.4, then a change of one standard
deviation for the corresponding explanatory variable causes a change of 0.4 · SD(y)
in the median of y.

seasons. However, PIT errors with a magnitude of 10�2 is still good, even
though it is worse than a magnitude of 10�4. All estimated regression
coefficients for the 112 out-of-sample median regressions are displayed in
Figure 7. The variability in b�0.5 within each season is small, indicating that
the estimation procedure is robust against minor changes in the training
data. We see that the most influential explanatory variables across all
seasons are the distance to the open sea and the historical temperature
observation. There is a large difference between summer, spring and the
other two seasons for these explanatory variables. For example, a larger
mean temperature will lead to larger median range during summer, but
lower median range during all other seasons. This might be connected to
the difference in model performance during summer and spring. Similar
trends are found in the b�p for all other probabilities p.

Figure 8 displays the out-of-sample estimation results for the same
stations and seasons as in Figure 6. While the regression model is able to
capture the overall shapes at each location, some deviations are noticeable.
In particular, the estimated right tail is too heavy at all stations but Hovden
– Lundane, where it is too light. Apart from this, the model fits seem
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Figure 8: Upper plots: Histograms displaying observed diurnal temperature range
are plotted along with the probability density functions of the FPL distribution
from the out-of-sample regression model. Middle plots: Histograms displaying
the PIT of diurnal temperature range with the estimated FPL parameters. Lower
plots: QQ-plots displaying sample quantiles of diurnal temperature range against
distributional quantiles of the estimated FPL distributions.

adequate for the bulk of the data. As seen in Table 4, the estimated FPL
parameters from the out-of-sample regression model shares many similarities
with the parameter estimates from the marginal model. Most of the spatial
trends from the marginal model fits are also found when examining the
estimates from the regional model.

Figure 9 summarises the calibration of both the marginal model fits
and the out-of-sample regression model fits for summer and winter seasons
by displaying the PIT errors eµ and e� at all locations. For the out-of-
sample assessment of the regression model, the calibration of the estimated
distributions varies substantially between the two seasons. In winter, the
calibration is, expectedly, somewhat worse than that of the marginal model.
However, only a few stations show considerable lack of calibration. Both
positive and negative values of eµ are observed, indicating both negative
and positive biases. However, the values of e� are rather negative than
positive, indicating a slight tendency towards overdispersion or too large
spread. Similar patterns are observed for autumn (results not shown). The
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Figure 9: PIT mean errors eµ and standard deviation errors e� are displayed
for the regression model and the marginal model, during summer and winter. The
magnitude of each error is represented by the radius of each dot. Values of each
error are represented by the colour of each dot. The locations of the four stations
from Figures 2, 6 and 8 are presented in all the plots. These are: 1) Flesland, 2)
Hovden – Lundane, 3) Lyngør fyr and 4) Sande – Galleberg.

performance of the regression model in summer is considerably worse than
that in winter. There is a distinct jump in the values of eµ and e� as the
distance from the sea increases. The jump in eµ implies that we observe
mostly positive biases along the coast and negative biases at inland locations.
Figure 1 shows that there is a similar pattern of change in the median of
diurnal temperature range along the coast and further inland during summer
and spring. This indicates that the regression model is too smooth, and
fails to model the transition from coastal to inland climate. A similar jump
in eµ and e� can be seen for spring data, although the difference is not as
considerable as for the summer data.

Figure 3 hints that there is more information to gain from the climatolog-
ical explanatory variables describing the distribution of mean temperature
in winter and autumn than in summer and spring. In order to investigate
whether the seasonal difference in skill is due to this effect, we repeated the
regression analysis using only the four geographic and orographic explana-
tory variables. Under this model, the performance for winter and autumn
data is considerably worse, while it stays almost unchanged for spring and
summer data (results not shown). The magnitude of the PIT errors during
winter and autumn with this model is also comparable with those for spring
and summer data in the original model.

7 Conclusion and discussion

This paper proposes to use the five-parameter lambda (FPL) distribution
to model the distribution of diurnal temperature range. A distributional
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quantile regression model is also proposed, where diurnal temperature
range is modelled using a combination of quantile regression and marginal
modelling with the FPL distribution. Parameter estimation is performed
using the method of quantiles, which is a fast inference method that compares
well with the competing inference methods of maximum likelihood estimation
and the starship method. Diurnal temperature range from southern Norway
is modelled using the marginal FPL model and the regression model. The
marginal FPL model provides a good fit to diurnal temperature range data,
and the regression model shows promise and is able to capture much, but
not all, of the spatial trends in the distribution of diurnal temperature
range.

We propose a reparametrisation of the FPL distribution that allows
for easier inference by directly connecting the location �1 and scale �2 to
quantiles of the distribution. This allows us to select better initial values for
parameter estimation of the FPL parameters. The reparametrisation also
limits the parameter space of � so that �5 > �1/2. This does not appear
to influence our results.

Although the method of quantiles shows great success in fitting the FPL
distribution to data, we experience situations where the estimators for �4
and �5 become too large with respect to the true values, which the method
accounts for by providing biased estimates for �3. For large sample sizes
this does not seem to affect the model fit much, but for smaller sample sizes
it seems to negatively affect the performance. Further work should be put
into understanding the effect of the parameters of the FPL distribution,
and why the method of quantiles overestimates tail parameters in certain
situations.

Model evaluation is mainly performed using the probability integral
transform (PIT) and the continuous ranked probability score (CRPS). A
novel closed-form expression for the CRPS with an FPL forecast distribution
is developed, which makes model evaluation faster and simpler. Other scoring
rules may be more appropriate for evaluating model fit in larger and more
inhomogeneous regions (Bolin & Wallin, 2023), but we believe the CRPS to
be a good choice for model evaluation in the current setting.

While the regression model is not able to fully capture the spatial pat-
terns in diurnal temperature range for spring and summer, its performance
is promising, especially for winter and autumn data. It is our belief that
one can achieve better results with an improved selection of explanatory
variables and, potentially, further development of the distributional quantile
regression method. As an example, many of the weather stations with
high PIT errors eµ and e� are located along the coast. Consequently, it
might be reasonable to better distinguish between coastal observations and
inland observations, e.g., through the introduction of a binary explanatory
variable. A transformation of variables could also improve our models. The
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relationships between the median of diurnal temperature range and the
available explanatory variables shown in Figure 3 do not seem linear for
the geographical information. One might find possible transformations of
the explanatory variables which are able to improve the linear relation-
ships between the quantiles of diurnal temperature range and the available
explanatory variables. In addition to the explanatory variables used in
the current study, one might find important dependencies between diurnal
temperature range and other climate variables, such as daily precipitation,
wind speed and the degree of cloud cover. Especially precipitation and
cloud cover have been found to be highly negatively correlated with diurnal
temperature range (Zhou et al., 2009; Waqas & Athar, 2018). It is not
obvious how such explanatory variables should be incorporated in our model,
though. The regression model for diurnal temperature range only includes
spatial fixed effects. The inclusion of spatial random effects might improve
model performance (Lum & Gelfand, 2012; Self et al., 2021). Additionally,
attempts to estimate parameter uncertainty will be affected by the tem-
poral autocorrelation of diurnal temperature range, which is statistically
significant for lags up to approximately one week. Consequently, further
modelling attempts should also aspire to include a temporal framework.
A comprehensive modelling framework for temperature range should fur-
thermore include modelling components to account for data issues such as
data inhomogeneities and measurement errors, including recording precision.
This is particularly important in settings where long data series from various
data sources are combined into a single analysis, like in the unified Bayesian
approach that was introduced in the EUSTACE project (Rayner et al.,
2020). In this project temporal and spatial autocorrelations were handled
by latent random field components, and the data inhomogeneities were
directly estimated via independent random effect variables. That approach
allowed the propagation of uncertainty through the entire analysis system,
in contrast to more traditional data homogenisation methods that handle
this as a separate pre-processing step. In principle, the FPL model for
diurnal temperature range can be incorporated into the observation level of
such hierarchical models.

Two of the explanatory variables in the regression model are based on
historical daily mean temperature. For spatial interpolation one might
argue that observations of daily mean temperature are unavailable at most
locations where there are no observations of diurnal temperature range.
However, while the literature on modelling diurnal temperature range is
lacking, much effort and success has been put into the modelling of mean
temperature (e.g. Haylock et al., 2008; Maraun & Widmann, 2018). We
assume that there already exist satisfactory spatial and temporal models
for Norway, which are able to describe the historical mean and variance of
daily mean temperature between 1989 and 2018 with a high performance.
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The Nordic Gridded Climate Data Set version 2 (Lussana et al., 2018),
e.g., models daily mean temperature with high performance everywhere in
Norway, Finland and Sweden. Accordingly, all explanatory variables can be
provided at any location in Norway.

Better models for diurnal temperature range may be important for im-
proving interpolation and statistical downscaling of temperature projections
from climate models (e.g. Maraun & Widmann, 2018). The common ap-
proach today is to perform separate modelling of daily maximum, minimum
and mean temperature. However, this can lead to inconsistencies such as
predictions where the daily mean is larger than the daily maximum tempera-
ture (e.g. Lussana et al., 2019). In addition, the three temperature variables
are heavily dependent and should be modelled jointly, but multivariate
modelling is often too challenging and computationally demanding. An
alternative method for modelling these three temperature variables is to
transform minimum, maximum and mean temperature to diurnal tempera-
ture range, mean temperature, and the location of the daily mean inside the
temperature range. This would remove all ordering inconsistencies between
minimum, mean and maximum temperature, and it would considerably
reduce correlations between the three variables. Analysis of the data used
in this paper finds that the absolute values of pairwise sample correlations
between daily minimum, maximum and mean temperature mainly lie in the
interval [0.9, 1]. Sample correlations between diurnal temperature range,
daily mean temperature and the location of the mean inside the range,
on the other hand, are always below 0.5. Thus, appropriate statistical
models for diurnal temperature range and its relationship with daily mean
temperature can be of great interest as model components for multivariate
temperature modelling approaches. Further work should be conducted to
examine this approach.
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Abstract

A new method is proposed for modelling the yearly maxima of
sub-daily precipitation, with the aim of producing spatial maps of
return level estimates. Yearly precipitation maxima are modelled
using a Bayesian hierarchical model with a latent Gaussian field, with
the blended generalised extreme value (bGEV) distribution used as
a substitute for the more standard generalised extreme value (GEV)
distribution. Inference is made less wasteful with a novel two-step
procedure that performs separate modelling of the scale parameter of
the bGEV distribution using peaks over threshold data. Fast inference
is performed using integrated nested Laplace approximations (INLA)
together with the stochastic partial differential equation (SPDE) ap-
proach, both implemented in R-INLA. Heuristics for improving the
numerical stability of R-INLA with the GEV and bGEV distributions
are also presented. The model is fitted to yearly maxima of sub-daily
precipitation from the south of Norway, and is able to quickly produce
high-resolution return level maps with uncertainty. The proposed
two-step procedure provides an improved model fit over standard
inference techniques when modelling the yearly maxima of sub-daily
precipitation with the bGEV distribution.

1 Introduction

Heavy rainfall over short periods of time can cause flash floods, large
economic losses and immense damage to infrastructure. The World Economic
Forum states that climate action failure and extreme weather events are
perceived among the most likely and most impactful global risks in 2021
(World Economic Forum, 2021). Therefore, a better understanding of
heavy rainfall can be of utmost importance for many decision-makers, e.g.,
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those that are planning the construction or maintenance of important
infrastructure. In this paper, we create spatial maps with estimates of
large return levels for sub-daily precipitation in Norway. Estimation of
return levels is best described within the framework of extreme value theory,
where the most common methods are the block maxima and the peaks over
threshold (e.g. Coles, 2001; Davison & Huser, 2015). Due to low data quality
(see Section 2 for more details) and the difficulty of selecting high-dimensional
thresholds, we choose to use the block maxima method for estimating the
precipitation return levels. This method is based on modelling the maximum
of a large block of random variables with the generalised extreme value
(GEV) distribution, which is the only non-degenerate limit distribution for
a standardised block maximum (Fisher & Tippett, 1928). When working
with environmental data, blocks are typically chosen to have a size of one
year (Coles, 2001). Inference with the GEV distribution is difficult, partially
because its support depends on its parameter values. Castro-Camilo et
al. (2022) propose to ease inference by substituting the GEV distribution
with the blended generalised extreme value (bGEV) distribution, which
has the right tail of a Fréchet distribution and the left tail of a Gumbel
distribution, resulting in a heavy-tailed distribution with a parameter-free
support. Both Castro-Camilo et al. (2022) and Vandeskog et al. (2021)
demonstrate with simulation studies that the bGEV distribution performs
well as a substitute for the GEV distribution when estimating properties of
the right tail. Additionally, in this paper we develop a simulation study that
shows how the parameter-dependent support of the GEV distribution can
lead to numerical problems during inference, while inference with the bGEV
distribution is more robust. This can be of crucial importance in complex
and high-dimensional settings, and consequently we choose to model the
yearly maxima of sub-daily precipitation using the bGEV distribution.

Modelling of extreme daily precipitation has been given much attention
in the literature, and it is well established that precipitation is a heavy-tailed
phenomenon (e.g. Katz et al., 2002; Wilson & Toumi, 2005; Papalexiou
& Koutsoyiannis, 2013), which makes the bGEV distribution a possible
model for yearly precipitation maxima. Spatial modelling of extreme daily
precipitation has also received a great amount of interest. Cooley et al.
(2007) combine Bayesian hierarchical modelling with a generalised Pareto
likelihood for estimating large return values for daily precipitation. Similar
methods are also applied by Sang and Gelfand (2009), Davison et al. (2012),
Geirsson et al. (2015), and Opitz et al. (2018), using either the block
maxima or the peaks over threshold approach. Using a multivariate peaks
over threshold approach, Castro-Camilo and Huser (2020) propose local
likelihood inference for a specific factor copula model to deal with complex
non-stationary dependence structures of precipitation over the contiguous
U.S. Spatial modelling of extreme sub-daily precipitation is more difficult,
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due to less available data sources. Consequently, this is often performed
using intensity-duration-frequency relationships where one pools together
information from multiple aggregation times in order to estimate return
levels (Koutsoyiannis et al., 1998; Lehmann et al., 2016; Wang & So, 2016;
Ulrich et al., 2020). Spatial modelling of extreme hourly precipitation in
Norway has previously been performed by Dyrrdal et al. (2015). After
their work was published, the number of observational sites for hourly
precipitation in Norway has greatly increased. We aim to improve their
return level estimates by including all the new data that have emerged over
the last years. We model sub-daily precipitation using a spatial Bayesian
hierarchical model with a bGEV likelihood and a latent Gaussian field. In
order to keep our model simple, we do not pool together information from
multiple aggregation times, making our model purely spatial. The model
assumes conditional independence between observations, which makes it
able to estimate the marginal distribution of extreme sub-daily precipitation
at any location, but unable to successfully estimate joint distributions over
multiple locations. In the case of hydrological processes such as precipitation,
ignoring dependence might lead to an underestimation of the risk of flooding.
However, Davison et al. (2012) find that models where the response variables
are independent given some latent process can be a good choice when the
aim is to estimate a spatial map of marginal return levels.

High-resolution spatial modelling can demand a lot of computational
resources and be highly time-consuming. The framework of integrated nested
Laplace approximations (INLA; Rue et al., 2009) allows for a considerable
speed-up by using numerical approximations instead of sampling-based
inference methods like Markov chain Monte Carlo (MCMC). Inference
with a spatial Gaussian latent field can be even further sped up with the
so-called stochastic partial differential equation (SPDE; Lindgren et al.,
2011) approach of representing a Gaussian random field using a Gaussian
Markov random field that is the approximate solution of a specific SPDE.
Both INLA and the SPDE approach have been implemented in the R-INLA
library, which is used for performing inference with our model (Bivand et al.,
2015; Rue et al., 2017; Bakka et al., 2018). R-INLA requires a log-concave
likelihood to ensure numerical stability during inference. However, neither
the GEV likelihood nor the bGEV likelihood are log-concave, which can
cause inferential issues. We present heuristics for mitigating the risk of
numerical instability caused by a lack of log-concavity.

A downside of the block maxima method is that inference can be some-
what wasteful compared to the peaks over threshold method. Additionally,
most of the available weather stations in Norway that measure hourly pre-
cipitation are young and contain quite short time series. This data sparsity
makes it challenging to place complex models on the parameters of the bGEV
distribution in the hierarchical model. A promising method of accounting
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for data-sparsity is the recently developed sliding block estimator, which
allows for better data utilisation by not requiring that the block maxima
used for inference come from disjoint blocks (Bücher & Segers, 2018; Zou
et al., 2021). However, to the best of our knowledge, no theory has yet
been developed for using the disjoint block estimator on non-stationary time
series, or for performing Bayesian inference with the disjoint block estimator.
Vandeskog et al. (2021) propose a new two-step procedure that allows for
less wasteful and more stable inference with the block maxima method by
separately modelling the scale parameter of the bGEV distribution using
peaks over threshold data. Having modelled the scale parameter, one can
standardise the block maxima so the scale parameter can be considered as a
constant, and then estimate the remaining bGEV parameters. Bücher and
Zhou (2021) suggests that, when modelling stationary time series, the peaks
over threshold technique is preferable over block maxima if the interest
lies in estimating large quantiles of the stationary distribution of the times
series. The opposite holds if the interest lies in estimating return levels,
i.e. quantiles of the distribution of the block maxima. Thus, both methods
have different strengths, and by using this two-step procedure, one can take
advantage of the merits and improve the pitfalls of both methods. We apply
the two-step procedure for modelling sub-daily precipitation and compare
the performance with that of a standard block maxima model where all the
bGEV parameters are estimated jointly.

The remainder of the paper is organised as follows. Section 2 intro-
duces the hourly precipitation data and all explanatory variables used for
modelling. Section 3 presents the bGEV distribution and describes the
Bayesian hierarchical model along with the two-step modelling procedure.
Additionally, heuristics for improving the numerical stability of R-INLA
are proposed, and a score function for evaluating model performance is
presented. In Section 4 we perform modelling of the yearly precipitation
maxima in Norway. A cross-validation study is performed for evaluating
the model fit, and a map of return levels is estimated. Conclusions are
presented in Section 5.

2 Data

2.1 Hourly precipitation data

Observations of hourly aggregated precipitation from a total of 380 weather
stations in the south of Norway are downloaded from an open archive of
historical weather data from MET Norway (https://frost.met.no). The
oldest weather stations contain observations from 1967, but approximately
90 percent of the available weather stations are established after 2000.
Each observation comes with a quality code, but almost all observations

https://frost.met.no
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from before 2005 are of unknown quality. An inspection of the time series
with unknown quality detects unrealistic precipitation observation ranging
from �300 mm/hour to 400 mm/hour. Other unrealistic patterns, like
50 mm/hour precipitation for more than three hours in a row, or no pre-
cipitation during more than half a year, are also detected. The data set
contains large amounts of missing data, but these are often recorded as
0 mm/hour, instead of being recorded as missing. Thus, there is no way
of knowing which of the zeros represent missing data and which represent
an hour without precipitation. Having detected all of this, we decide to
remove all observations with unknown or bad quality flags, which accounts
for approximately 14% of the total number of observations. Additionally,
we clean the data by removing all observations from years with more than
30% missing data and from years where more than two months contain less
than 20% of the possible observations. This data cleaning is performed
to increase the probability that our observed yearly maxima are close or
equal to the true yearly maxima. Having cleaned the data, we are left
with 72% of the original observations, distributed over 341 weather stations
and spanning the years 2000 to 2020. The total number of usable yearly
maxima is approximately 1900. Figure 1 displays the distribution of the
number of usable yearly precipitation maxima per weather station. The
majority of the weather stations contain five or less usable yearly maxima,
and approximately 50 stations have more than 10 usable maxima. Figure 1
also displays the location of all the weather stations. A large amount of
the stations are located close to each other, in the southeast of Norway.
Such spatial clustering can be an indicator for preferential sampling. How-
ever, we do not believe that preferential sampling is an issue for our data.
The weather stations are mostly placed in locations with high population
densities, and to the best of our knowledge there is no strong dependency
between population density and extreme precipitation in Norway, as there
are large cities located both in dry and wet areas of the country. Even
though most stations are located in areas with high population densities,
there is still a good spatial coverage of the entire area of interest, also for
areas with low population densities.

The yearly maxima of precipitation accumulated over 1, 2, . . . , 24 hours
are computed for all locations and available years. A rolling window approach
with a step size of 1 hour is used for locating the precipitation maxima. As
noted by Robinson and Tawn (2000), a sampling frequency of one hour is
not enough to observe the exact yearly maximum of hourly precipitation.
With this sampling frequency, one only observes the precipitation during the
periods 00:00–01:00, 01:00–02:00, etc., whereas the maximum precipitation
might occur e.g. during the period 14:23–15:23. Approximately half of the
available weather stations have a sampling frequency of one minute, while
the other half only contain hourly observations. We therefore use a sampling
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Figure 1: a) A histogram displaying the number of usable yearly precipitation
maxima for all the weather stations used in this paper. b) The location of the 341
weather stations. The number of usable yearly precipitation maxima from each
station are displayed using different colours. Note that some points overlap in areas
with high station densities.

frequency of one hour for all weather stations, as this allows us to use all
the 341 weather stations without having to account for varying degrees of
sampling frequency bias in our model.

Dyrrdal et al. (2015) used the same data source for estimating return
levels of hourly precipitation. They fitted their models to hourly precipitation
maxima using only 69 weather stations from all over Norway. However, they
received a cleaned data set from the Norwegian Meteorological Institute,
resulting in time series with lengths up to 45 years. Our data cleaning
approach is more strict than that of Dyrrdal et al. (2015) in the sense that
it results in shorter time series by removing all data of uncertain quality.
On the other hand, we include more locations and get a considerably better
spatial coverage, by keeping all time series with at least one good year of
observations.

The main focus of this paper is the novel methodology for fast and
accurate estimation of return levels, and we believe that we have prepared
the data well enough to give a good demonstration of our proposed model
and to achieve reliable return level estimates for sub-daily precipitation. It
is trivial to add more, or differently cleaned data, to improve the return
level estimates at a later time.
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Table 1: Explanatory variables used for modelling sub-daily precipitation extremes.
The two rightmost columns show which explanatory variables are used for modelling
which parameters of the bGEV distribution for yearly precipitation (see Section 3.2).

Explanatory variable Description Unit xµ x�

Mean annual precipitation Mean annual precipitation for the years
1981–2010

mm X

Easting Eastern coordinate (UTM 32) km X X
Northing Northern coordinate (UTM 32) km X X
Altitude Height above sea level m X
Distance to the open sea Shortest distance to the open sea km X X

2.2 Explanatory variables

We use one climate-based and four orographic explanatory variables. These
are displayed in Table 1. Altitude is extracted from a digital elevation
model of resolution 50 ⇥ 50 m2, from the Norwegian Mapping Authority
(https://hoydedata.no). The distance to the open sea is computed using the
digital elevation model. Precipitation climatologies for the period 1981–2010
are modelled by Crespi et al. (2019). The climatologies do not cover the
years 2011–2020, from which most of the observations come. We assume
that the precipitation patterns have not changed overly much and that they
are still representative for the years 2011–2020. Hanssen-Bauer and Førland
(1998) find that, in most southern regions of Norway, the only season with
a significant increase in precipitation is Autumn. This strengthens our
assumption that the change in precipitation patterns is slow enough to not
be problematic for us.

Dyrrdal et al. (2015) include additional explanatory variables in their
model, such as temperature, summer precipitation and the yearly number
of wet days. They find mean summer precipitation to be one of the most
important explanatory variables. We compute these explanatory variables
at all station locations using the gridded seNorge2 data product (Lussana,
Saloranta, et al., 2018; Lussana, Tveito, & Uboldi, 2018). Our examination
finds that yearly precipitation, summer precipitation and the yearly number
of wet days are close to 90% correlated with each other. There is also
a negative correlation between temperature and altitude of around -85%.
Consequently, we choose to not use any more explanatory variables for
modelling, as highly correlated variables might lead to identifiability issues
during parameter estimation.

https://hoydedata.no
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3 Methods

3.1 The bGEV distribution

Extreme value theory concerns the statistical behaviour of extreme events,
possibly larger than anything ever observed. It provides a framework where
probabilities associated with these events can be estimated by extrapolating
into the tail of the distribution. This can be used for e.g. estimating large
quantiles, which is the aim of this work (e.g. Coles, 2001; Davison & Huser,
2015). A common approach in extreme value theory is the block maxima
method. Assume that the limiting distribution of the standardised block
maximum (Yk�bk)/ak is non-degenerate, where Yk = max{X1, X2, . . . , Xk}
is the maximum over k random variables from a stationary stochastic process,
and {bk} and {ak > 0} are some appropriate sequences of standardising
constants. Then, for large enough block sizes k, the distribution of the block
maximum Yk is approximately equal to the GEV distribution with (Fisher
& Tippett, 1928; Coles, 2001)

P (Yk  y) ⇡
(
exp

n
�[1 + ⇠(y � µk)/�k]

�1/⇠
+

o
, ⇠ 6= 0,

exp {� exp[�(y � µk)/�k]} , ⇠ = 0,
(1)

where (a)+ = max{a, 0}, �k > 0 and µk, ⇠ 2 R. In most settings, k is
fixed, so we denote � = �k and µ = µk. A challenge with the GEV
distribution is that its support depends on its parameters. This complicates
inference procedures such as maximum likelihood estimation (e.g. Smith,
1985; Bücher & Segers, 2017), and can be particularly problematic in a
covariate-dependent setting with spatially varying parameters, as it might
also introduce artificial boundary restrictions such as an unnaturally large
lower bound for yearly maximum precipitation. Castro-Camilo et al. (2022)
propose the bGEV distribution as an alternative to the GEV distribution in
settings where the tail parameter ⇠ is non-negative. The support of the bGEV
distribution is parameter-free and infinite. This allows for more numerically
stable inference, while also avoiding the possibility of estimated lower bounds
that are larger than future observations. The bGEV distribution function is

H(y;µ,�, ⇠, a, b) = F (y;µ,�, ⇠)v(y;a,b)G(y; µ̃, �̃)1�v(y;a,b)
, (2)

where F is a GEV distribution with ⇠ � 0 and G is a Gumbel distribution.
The weight function is equal to

v(y; a, b) = F�

✓
y � a

b� a
; c1, c2

◆
,

where F�(·; c1, c2) is the distribution function of a beta distribution with
parameters c1 = c2 = 5, which leads to a symmetric and computationally
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efficient weight function. The weight v(y; a, b) is zero for y  a and one for
y � b, meaning that the left tail of the bGEV distribution is equal to the
left tail in G, while the right tail is equal to the right tail in F . The choice
of the weight v(y; a, b) should not considerably affect inference if we let the
difference between a and b be small. The parameters µ̃ and �̃ are injective
functions of (µ,�, ⇠) such that the bGEV distribution function is continuous
and F (y;µ,�, ⇠) = G(y; µ̃, �̃) for y 2 {a, b}. Setting a = F

�1(pa) and
b = F

�1(pb) with small probabilities pa = 0.1, pb = 0.2 makes it possible to
model the right tail of the GEV distribution without any of the problems
caused by a finite left tail. See Castro-Camilo et al. (2022) for guidelines on
how to choose c1, c2, pa and pb.

In the supplementary material we present a simulation study where both
the GEV distribution and the bGEV distribution are fitted to univariate
samples from a GEV distribution. We demonstrate how a small change
in initial values can cause large numerical problems for inference with
the GEV distribution, and no noticeable difference for inference with the
bGEV distribution. The fact that considerable numerical problems can
arise for the GEV distribution in a univariate setting with large sample
sizes and perfectly GEV-distributed data strongly indicates that the GEV
distribution is not robust enough to be used reliably in complex, high-
dimensional problems with noisy data. The bGEV distribution is more
robust than the GEV distribution, and we therefore prefer it over the GEV
distribution for modelling precipitation maxima in Norway.

Although the bGEV distribution is more robust than the GEV distribu-
tion, it might still seem unnatural to model block maxima using the bGEV
distribution, when it is known that the correct limiting distribution is the
GEV distribution. However, we argue that the bGEV would be a good
choice for modelling heavy tailed block maxima even if it had not been more
robust than the GEV distribution. In multivariate extreme value theory it
is common to assume that the tail parameter ⇠ of the GEV distribution
is constant in time and/or space (e.g. Koutsoyiannis et al., 1998; Sang &
Gelfand, 2010; Opitz et al., 2018; Castro-Camilo et al., 2019). This assump-
tion is often made, not because one truly believes that it should be constant,
but because estimation of ⇠ is difficult, and models with a constant ⇠ often
are “good enough”. The tail parameter is incredibly important for the shape
of the GEV distribution, and small changes in ⇠ can lead to large changes
in return levels, and even affects the existence of distributional moments. A
model where ⇠ varies in space can therefore e.g. provide model fits with a
finite mean in one location and an infinite mean in the neighbouring location.
Such a model can also give scenarios where a new observation at one location
can change the existence of moments in other, possibly far away, locations.
Thus, even though it might seem unnatural to use a constant tail parameter,
these models often provide more natural fits to data than the models that
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allow ⇠ to vary in space. We claim that the bGEV distribution fulfils a
similar role as a model with constant ⇠, but for the model support instead of
the moments. When ⇠ is positive, the support of the GEV distribution varies
with its parameter values. In regression settings with covariates and finite
amounts of data one can therefore experience unnatural lower bounds that
are known to be wrong. Furthermore, if only one new observation is smaller
than the estimated lower limit, the entire model fit will be invalidated. We
therefore prefer the bGEV, which completely removes the lower bound while
still having the right tail of the GEV distribution, thus yielding a model that
is “good enough” for estimating return levels, but without the unwanted
model properties in the left tail of the GEV distribution.

Naturally, the bGEV distribution can only be applied for modelling
exponential- or heavy-tailed phenomena (⇠ � 0). However, it is well estab-
lished that extreme precipitation should be modelled with a non-negative
tail parameter. Cooley et al. (2007) performs Bayesian spatial modelling of
extreme daily precipitation in Colorado and find that the tail parameter is
positive and less than 0.15. Papalexiou and Koutsoyiannis (2013) examine
more than 15000 records of daily precipitation worldwide and conclude that
the Fréchet distribution performs the best. They propose that even when
the data suggests a negative tail parameter, it is more reasonable to use a
Gumbel or Fréchet distribution. Less information is available concerning
the distribution of extreme sub-daily precipitation. However, Koutsoyiannis
et al. (1998) argues that the distribution of precipitation should not have an
upper bound for any aggregation period, so ⇠ must be non-negative. Van
de Vyver (2012) estimate the distribution of yearly precipitation maxima
in Belgium for aggregation times down to 1 minute, and find that the
estimates of ⇠ increase as the aggregation times decreases, meaning that the
tail parameter for sub-daily precipitation should be larger than for daily
precipitation. Dyrrdal et al. (2016) estimate ⇠ for daily precipitation in
Norway from the seNorge1 data product (Tveito et al., 2005; Mohr, 2009)
and conclude that the tail parameter estimates are non-constant in space
and often negative. However, the authors do not provide confidence inter-
vals or p-values and do not state whether the estimates are significantly
different from zero. Based on our own exploratory analysis (results not
shown) and the overwhelming evidence in the literature, we assume that
sub-daily precipitation is a heavy-tailed phenomenon.

Following Castro-Camilo et al. (2022), we reparametrise the bGEV
distribution from (µ,�, ⇠) to (µ↵,�� , ⇠), where the location parameter µ↵

is equal to the ↵ quantile of the bGEV distribution if ↵ � pb. The scale
parameter �� , hereby denoted the spread parameter, is equal to the difference
between the 1��/2 quantile and the �/2 quantile of the bGEV distribution
if �/2 � pb. There is a one to one relationship between the new and the old
parameters. The new parametrisation is advantageous as it is considerably
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easier to interpret than the old parametrisation. The parameters µ↵ and ��
are directly connected to the quantiles of the bGEV distribution, whereas µ
and � have no simple connections with any kind of moments or quantiles.
Consequently, it is much easier to choose informative priors for µ↵ and �� .
Based on preliminary experiments, we find that ↵ = 0.5 and � = 0.8 are
good choices that makes it easy to select informative priors. This is because
the empirical quantiles close to the median have less variance. We have
also experienced that R-INLA is more numerically stable when the spread is
small, i.e. � is large.

3.2 Models

Let yt(s) denote the maximum precipitation at location s 2 S during year
t 2 T , where S is the study area and T is the time period in focus. We
assume a bGEV distribution for the yearly precipitation maxima,

[yt(s) | µ↵(s),��(s), ⇠(s)] ⇠ bGEV(µ↵(s),��(s), ⇠(s)),

where all observations are assumed to be conditionally independent given the
parameters µ↵(s), ��(s) and ⇠(s). Correct estimation of the tail parameter
is a difficult problem which highly affects estimates of large quantiles. The
tail parameter is assumed to be constant, i.e. ⇠(s) = ⇠. As discussed
in Section 3.1, this is a common procedure, as inference for ⇠ is difficult
with little data. The tail parameter is further restricted such that ⇠ < 0.5,
resulting in a finite mean and variance for the yearly maxima. This restriction
makes inference easier and more numerically stable. Exploratory analysis
of our data supports the hypothesis of a spatially constant ⇠ < 0.5 and
spatially varying µ↵(s) and ��(s) (results not shown). Two competing
models are constructed for describing the spatial structure of µ↵(s) and
��(s).

The joint model

In the first model, denoted the joint model, both parameters are modelled
using linear combinations of explanatory variables. Additionally, to draw
strength from neighbouring stations, a spatial Gaussian random field is
added to the location parameter. This gives the model

[yt(s) | µ↵(s),��(s), ⇠] ⇠ bGEV(µ↵(s),��(s), ⇠),

µ↵(s) = xµ(s)
T
�µ + uµ(s),

log (��(s)) = x�(s)
T
��,

(3)

where xµ(s) and x�(s) are vectors containing an intercept plus the explana-
tory variables described in Table 1, and �µ and �� are vectors of regression
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coefficients. The term uµ(s) is a zero-mean Gaussian field with Matérn
correlation function, i.e.,

Corr(uµ(si), uµ(sj)) =
1

2⌫�1�(⌫)

✓p
8⌫

d(si, sj)

⇢

◆⌫

K⌫

✓p
8⌫

d(si, sj)

⇢

◆
.

Here, d(si, sj) is the Euclidean distance between si and sj , ⇢ > 0 is the range
parameter and ⌫ > 0 is the smoothness parameter. The function K⌫ is the
modified Bessel function of the second kind and order ⌫. The Matérn family
is a widely used class of covariance functions in spatial statistics due to its
flexible local behaviour and attractive theoretical properties (Matern, 1986;
Stein, 1999; Guttorp & Gneiting, 2006). Its form also naturally appears as
the covariance function of some models for the spatial structure of point rain
rates (Sun et al., 2015). Efficient inference for high-dimensional Gaussian
random fields can be achieved using the SPDE approach of Lindgren et al.
(2011), which is implemented in R-INLA. It is common to fix the smoothness
parameter ⌫ instead of estimating it, as the parameter is difficult to identify
from data. The SPDE approximation in R-INLA allows for 0 < ⌫  1.
We choose ⌫ = 1 as this reflects our beliefs about the smoothness of the
underlying physical process. Additionally, Whittle (1954) argues that ⌫ = 1
is a more natural choice for spatial models than the less smooth exponential
correlation function (⌫ = 1/2), and ⌫ = 1 is also the most extensively tested
value when using R-INLA with the SPDE approach (Lindgren & Rue, 2015).

The joint model is similar to the models of Davison et al. (2012), Geirsson
et al. (2015), and Dyrrdal et al. (2015). However, they all place a Gaussian
random field in the linear predictor for the log-scale and for the tail parameter.
Within the R-INLA framework, it is not possible to model the spread or
the tail using Gaussian random fields. Based on the amount of available
data and the difficulty of estimating the spread and tail parameters, we
also believe that the addition of a spatial Gaussian field in either parameter
would simply complicate parameter estimation without any considerable
contributions to model performance. Consequently, we do not include any
Gaussian random field in the spread or tail of the bGEV distribution.

The two-step model

The second model is specifically tailored for sparse data with large block
sizes. In such data-sparse situations, a large observation at a single location
can be explained by a large tail parameter or a large spread parameter. In
practice this might cause identifiability issues between ��(s) and ⇠, even
though the parameters are identifiable in theory. In order to put a flexible
model on the spread while avoiding such issues, Vandeskog et al. (2021)
propose a model which borrows strength from the peaks over threshold
method for separate modelling of ��(s).
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For some large enough threshold xthr(s), the distribution of sub-daily
precipitation X(s) larger than xthr(s) is assumed to follow a generalised
Pareto distribution (Davison & Smith, 1990)

P (X(s) > xthr(s) + x | X(s) > xthr(s)) =

✓
1 +

⇠x

⇣(s)

◆�1/⇠

,

with tail parameter ⇠ and scale parameter ⇣(s) = �(s) + ⇠(xthr(s)� µ(s)),
where µ(s) and �(s) are the original GEV parameters from (1). Since
⇠ is assumed to be constant in space, all spatial variations in the bGEV
distribution must stem from µ(s) or �(s). We therefore assume that the
difference xthr(s)� µ(s) between the threshold and the location parameter
is proportional to the scale parameter �(s). This assumption leads to the
spread ��(s) being proportional to the standard deviation of all observations
larger than the threshold xthr(s). Based on this assumption, it is possible
to model the spatial structure of the spread parameter independently of the
location and tail parameter. Denote

��(s) = �
⇤
� · �⇤(s),

with �
⇤
� a standardising constant and �

⇤(s) the standard deviation of all
observations larger than xthr(s) at location s. Conditional on �

⇤(s), the
block maxima can be standardised as

y
⇤
t (s) = yt(s)/�

⇤(s).

The standardised block maxima have a bGEV distribution with a constant
spread parameter,

⇥
y
⇤
t (s) | µ⇤

↵(s),�
⇤
� , ⇠

⇤
⇠ bGEV(µ⇤

↵(s),�
⇤
� , ⇠),

where µ
⇤
↵(s) = µ↵(s)/�⇤(s). Consequently, the second model is divided into

two steps. First, we model the standard deviation of large observations at all
locations. Second, we standardise the block maxima observations and model
the remaining parameters of the bGEV distribution. We denote this as the
two-step model. The two-step model shares some similarities with regional
frequency analysis (Dalrymple, 1960; Hosking & Wallis, 1997; Naveau et al.,
2014; Carreau et al., 2016), which is a multi-step procedure where the data
are standardised and pooled together inside homogeneous regions. However,
we standardise the data differently and do not pool together data from
different locations. Instead, we borrow strength from nearby locations by
adding a spatial Gaussian random fields to our model and by keeping ⇠
constant for all locations.

The location parameter µ
⇤
↵(s) is modelled as a linear combination of

explanatory variables xµ(s) and a Gaussian random field uµ(s), just as



106 Methods

µ↵(s) in the joint model (3). For estimation of �⇤(s), the threshold xthr(s)
is chosen as the 99% quantile of all observed precipitation at location s. The
precipitation observations larger than xthr(s) are declustered to account for
temporal dependence, and only the cluster maximum of an exceedance is
used for estimating �⇤(s). This might sound counter-intuitive, as the aim
of the two-step model is to use more data to simplify inference. However,
even when only using the cluster maxima, inference is less wasteful than for
the joint model. By using all threshold exceedances for estimating �⇤(s),
we would need to account for the dependence within exceedance clusters,
which would add another layer of complexity to the modelling procedure.
Consequently, we have chosen to not model the temporal dependence and
only use the cluster-maxima for inference in this paper. To avoid high
uncertainty from locations with few observations, �⇤(s) is only computed
at stations with more than three years of data. In order to estimate �⇤(s)
at locations with little or no observations, a linear regression model is used,
where the logarithm of �⇤(s) is assumed to have a Gaussian distribution,

[log (�⇤(s)) | ⌘(s), ⌧ ] ⇠ N (⌘(s), ⌧�1),

with precision ⌧ and mean ⌘(s) = x�(s)
T
��. The estimated posterior mean

from the regression model is then used as an estimator for �⇤(s) at all
locations. Consequently, the complete two-step model is given as

[log (�⇤(s)) | ⌘(s), ⌧ ] ⇠ N (⌘(s), ⌧�1),

⌘(s) = x�(s)
T
��,⇥

y
⇤
t (s) | µ⇤

↵(s),�
⇤
� , ⇠

⇤
⇠ bGEV(µ⇤

↵(s),�
⇤
� , ⇠),

y
⇤
t (s) = yt(s)/�

⇤(s),

µ
⇤
↵(s) = xµ(s)

T
�µ + uµ(s).

(4)

Notice that the formulation of the two-step model makes it trivial to
add more complex components for modelling the spread. One can, therefore,
easily add a spatial Gaussian random field to the linear predictor of log(�⇤(s))
while still using the R-INLA framework for inference, which is not possible
with the joint model. In Section 4 we perform modelling both with and
without a Gaussian random field in the spread to test how it affects model
performance.

The uncertainty in the estimator for �⇤(s) is not propagated into the
bGEV model for the standardised response, meaning that the estimated
uncertainties from the two-step model are likely to be too small. This can
be corrected with a bootstrapping procedure, where we draw B samples
from the posterior of log(�⇤(s)) and estimate (µ⇤

↵(s),�
⇤
� , ⇠) for each of the

B samples. Vandeskog et al. (2021) show that the two-step model with 100
bootstrap samples is able to outperform the joint model in a simple setting.
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It might seem contradictory to employ a model based on exceedances
in our setting, since we claim that the data quality is too bad to use the
peaks over threshold model for estimating return levels. However, merely
estimating the standard deviation of all threshold exceedances is a much
simpler task than to estimate spatially varying parameters of the generalised
Pareto distribution, including the tail parameter ⇠. Thus, while we claim
that the available data is not of good enough quality to estimate return
levels in a similar fashion to Opitz et al. (2018), we also claim that it is of
good enough quality to perform the simple task of estimating the trends in
the spread parameter. The estimation of all remaining parameters, including
⇠, is performed using block maxima data, which we believe to be of better
quality.

3.3 INLA

By placing a Gaussian prior on �µ, both the joint and the two-step models
fall into the class of latent Gaussian models. This is advantageous as
it allows for inference using INLA with the R-INLA library (Rue et al.,
2009; Bivand et al., 2015; Rue et al., 2017). The extreme value framework
is quite new to the R-INLA package. Still, in recent years, some papers
have started to appear where it is used for modelling extremes with INLA
(e.g. Opitz et al., 2018; Castro-Camilo et al., 2019). R-INLA includes an
implementation of the SPDE approximation for Gaussian random fields
with a Matérn correlation function, which is used on the random field uµ(s)
for a considerable improvement in inference speed.

A requirement for using INLA is that the model likelihood is log-concave.
Unfortunately, neither the GEV distribution nor the bGEV distribution
have log-concave likelihoods when ⇠ > 0. This can cause severe problems
for model inference. However, we find that these problems are mitigated by
choosing slightly informative priors for the model parameters, which is pos-
sible because of the reparametrisation described in Section 3.1. Additionally,
we find that R-INLA is more stable when given a response that is standard-
ised such that the difference between its 95% quantile and its 5% quantile is
equal to 1. Based on the authors’ experience, similar standardisation of the
response is also a common procedure when using INLA for estimating the
Weibull distribution parameters within the field of survival analysis. We
believe that the combination of slightly informative priors and standardis-
ation of the response is enough to fix the problems of non-concavity and
ensure that R-INLA is working well with the bGEV distribution.
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3.4 Evaluation

Model performance can be evaluated using the continuous ranked proba-
bility score (CRPS; Matheson & Winkler, 1976; Gneiting & Raftery, 2007;
Friederichs & Thorarinsdottir, 2012),

CRPS(F, y) =
Z 1

�1
(F (t)� I(t � y))2dt = 2

Z 1

0
`p
�
y � F

�1(p)
�
dp, (5)

where F is the forecast distribution, y is an observation, I(·) is an indicator
function and `p(x) = x(p � I(x < 0)) is the quantile loss function. The
CRPS is a strictly proper scoring rule, meaning that the expected value of
CRPS(F, y) is minimised for G = F if and only if y ⇠ G. The importance
of proper scoring rules when forecasting extremes is discussed by Lerch
et al. (2017). From (5), one can see that the CRPS is equal to the integral
over the quantile loss function for all possible quantiles. However, we are
only interested in predicting large quantiles, and the model performance for
small quantiles is of little importance to us. The threshold weighted CRPS
(twCRPS; Gneiting & Ranjan, 2011) is a modification of the CRPS that
allows for emphasis on specific areas of the forecast distribution,

twCRPS(F, y) = 2

Z 1

0
`p
�
y � F

�1(p)
�
w(p)dp, (6)

where w(p) is a non-negative weight function. A possible choice of w(p)
for focusing on the right tail is the indicator function w(p) = I(p > p0).
As described by Bolin and Wallin (2023), the mean twCRPS is not robust
to outliers and it gives more weight to forecast distributions with large
variances, i.e. at locations far away from any weather station. A scaled
version of the twCRPS, denoted the StwCRPS, is created using theorem 5
of Bolin and Wallin (2023):

Sscaled(F, y) =
S(F, y)

|S(F, F )| + log (|S(F, F )|) , (7)

where S(F, y) is the twCRPS and S(F, F ) is its expected value with respect
to the forecast distribution,

S(F, F ) =

Z
S(F, y)dF (y).

The mean StwCRPS is more robust to outliers and varying degrees of
uncertainty in forecast distributions, while still being a proper scoring rule
(Bolin & Wallin, 2023).

Using R-INLA we are able to sample from the posterior distribution
of the bGEV parameters at any location s. The forecast distribution at
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location s is therefore given as

bFs(·) =
1

m

mX

i=1

F (·;µ(i)
↵ (s),�(i)� (s), ⇠(i)), (8)

where F is the distribution function of the bGEV distribution and the
samples (µ(i)

↵ (s),�(i)� (s), ⇠(i)) are drawn from the posterior distribution of
the bGEV parameters for i = 1, . . . ,m, where m is a multiple of the number
B of bootstrap samples. A closed-form expression is not available for the
twCRPS when using the forecast distribution from (8). Consequently, we
evaluate the twCRPS and StwCRPS using numerical integration.

4 Modelling sub-daily precipitation extremes in
Norway

The models from Section 3 are applied for estimating return levels in the
south of Norway. Table 1 shows which explanatory variables are used
for modelling the location and spread parameters in both models. All
explanatory variables are standardised to have zero mean and a standard
deviation of 1, before being applied for modelling. Inference for the two-step
model is performed both with and without propagation of the uncertainty in
�
⇤(s). The uncertainty propagation is achieved using 100 bootstrap samples,

as described in Section 3.2. Additionally, we modify the two-step model and
add a random Gaussian field u�(s) to the linear predictor of the log-spread,
to test if this can yield any considerable improvement in model performance.
Just as uµ(s), u�(s) has zero mean and a Matérn covariance function.

4.1 Prior selection

Priors must be specified before we can model the precipitation extremes.
From construction, the location parameter µ↵ is equal to the ↵ quantile of
the bGEV distribution. This allows us to place a slightly informative prior
on �µ, using quantile regression on y

⇤(s) (Koenker, 2005, 2018). We choose
a Gaussian prior for �µ, centred at the ↵ quantile regression estimates and
with a precision of 10. There is no unit on the precision in �µ because the
block maxima have been standardised, as described in Section 3.3. The
regression coefficients �� differ between the two-step and joint models. In
the joint model, all the coefficients in ��, minus the intercept coefficient,
are given Gaussian priors with zero mean and a precision of 10�3. The
intercept coefficient, here denoted �0,�, is given a log-gamma prior with
parameters such that exp(�0,�) has a gamma prior with mean equal to the
empirical difference between the 1� �/2 quantile and the �/2 quantile of
the standardised block maxima. The precision of the gamma prior is 10.
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In the two-step model, all coefficients of �� are given Gaussian priors with
zero mean and a precision of 10�3, while the logarithm of �⇤� is given the
same log-gamma prior as the intercept coefficient in the joint model.

The parameters of the Gaussian random fields uµ and u� are given
penalised complexity (PC) priors. The PC prior is a weakly informative
prior distribution, designed to punish model complexity by placing an
exponential prior on the distance from some base model (Simpson et al.,
2017). Fuglstad et al. (2019) develop a joint PC prior for the range ⇢ > 0 and
standard deviation ⇣ > 0 of a Gaussian random field, where the base model
is defined to have infinite range and zero variance. The prior contains two
penalty parameters, that can be decided by specifying the four parameters
⇢0, ↵1, ⇣0 and ↵2 such that P (⇢ < ⇢0) = ↵1 and P (⇣ > ⇣0) = ↵2. We choose
↵1 = ↵2 = 0.05. ⇢0 is given a value of 75 km for both the random fields,
meaning that we place a 95% probability on the range being larger than
75 km. To put this range into context, the study area has a dimension of
approximately 730⇥ 460 km2, and the mean distance from one station to
its closest neighbour is 10 km. ⇣0 is given a value of 0.5 mm for u�, meaning
that we place a 95% probability on the standard deviation being smaller
than 0.5 mm. This seems to be a reasonable value because the estimated
logarithm of �⇤(s) lies in the range between 0.1 mm and 3.5 mm for all
available weather stations and all examined aggregation times. For uµ we
set ⇣0 = 0.5, which is a reasonable value because of the standardisation of
the response described in Section 3.3.

A PC prior is also placed on the tail parameter ⇠. Opitz et al. (2018) de-
velop a PC prior for the tail parameter of the generalised Pareto distribution,
which is the default prior for ⇠ in R-INLA when modelling with the bGEV
distribution. However, to the best of our knowledge, expressions for the PC
priors for ⇠ in the GEV or bGEV distributions are not previously available
in the literature. In the supplementary material we develop expressions for
the PC prior of ⇠ 2 [0, 1) with base model ⇠ = 0 for the GEV distribution
and the bGEV distribution. Closed-form expressions do not exist, but the
priors can be approximated numerically. Having computed the PC priors
for the GEV distribution and the bGEV distribution, we find that they are
similar to the PC prior of the generalised Pareto distribution, which has a
closed-form expression and is already implemented in R-INLA. Consequently,
we choose to model the tail parameter of the bGEV distribution with the
PC prior for the generalised Pareto distribution (Opitz et al., 2018):

⇡(⇠) =
�p
2
exp

 
� �p

2

⇠

(1� ⇠)1/2

! 
1� ⇠/2

(1� ⇠)3/2

!
,

with 0  ⇠ < 1 and penalty parameter �. Even though the prior is defined
for values of ⇠ up to 1, a reparametrisation is performed within R-INLA
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such that 0  ⇠ < 0.5. Since the base model has ⇠ = 0, the prior places
more weight on small values of ⇠ when � increases. Based on the plots in
Figure S2.1 in the supplementary material, we find a value of � = 7 to give
a good description of our prior beliefs, as we expect ⇠ to be positive but
small.

4.2 Cross-validation

Model performance is evaluated using five-fold cross-validation with the
StwCRPS. The StwCRPS weight function is chosen as w(p) = I(p > 0.9).
Both in-sample and out-of-sample performance are evaluated. The mean
StwCRPS over all five folds are displayed in Table 2. The two-step model
outperforms the joint model for all aggregation times. This implies that infor-
mation about threshold exceedances can provide valuable information when
modelling block maxima. When performing in-sample estimation, the vari-
ant of the two-step model with a Gaussian field and without bootstrapping
always outperforms the other contestants. However, during out-of-sample
estimation, the model performs worse than its competitors. This indicates
a tendency to overfit when not using bootstrapping to propagate uncer-
tainty in �⇤(s) into the estimation of (µ⇤

↵(s),�
⇤
� , ⇠). The two variants of the

two-step model that use bootstrapping perform best during out-of-sample
estimation. While their model fits yield similar scores, their difference in
complexity is quite considerable, as one model contains two spatial random
fields, and the other only contains one. This shows that there is little need
for placing an overly complex model on the spread parameter. Consequently,
for estimation of the bGEV parameters and return levels, we choose to
use the two-step model with bootstrapping and without a spatial Gaussian
random field in the spread.

4.3 Parameter estimates

The parameters of the two-step model are estimated for different aggregation
times between 1 and 24 hours. Uncertainty is propagated using B = 100
bootstrap samples. Estimation of the posterior of (µ⇤

↵(s),�
⇤
� , ⇠) given some

value of �⇤(s) takes less than 2 minutes on a 2.4 gHz laptop with 16 GB
RAM, and the 100 bootstraps can be computed in parallel. On a moderately
sized computational server, inference can thus be performed in well under
10 minutes.

The estimated values of the regression coefficients �µ and ��, the spread
�
⇤
� and the standard deviation of the Gaussian field uµ(s) for the stan-

dardised precipitation maxima, are displayed in Table 3 for some selected
temporal aggregations. These estimates are computed by drawing 20 sam-
ples from each of the 100 posterior distributions. The empirical mean,
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Table 2: Mean StwCRPS with weight function w(p) = I(p > 0.9) for 5-fold cross-
validation performed using out-of-sample estimation and in-sample estimation.
The two-step method is tested with and without a Gaussian field in the spread and
bootstrapping for propagation of uncertainty. Cross-validation is performed for
precipitation aggregated over periods of 1 hour, 3 hours, 6 hours, 12 hours and 24
hours. The best scores are written in bold.

Model u�(s) Boot- 1 h 3 h 6 h 12 h 24 h
strap

Out-of- Joint �0.872 �0.597 �0.412 �0.149 0.0500

sample Two-step X X �0.905 �0.603 �0.427 �0.207 0.0425

Two-step X �0.893 �0.585 �0.414 �0.197 0.0635

Two-step X �0.876 �0.594 �0.429 �0.211 0.0456

Two-step �0.872 �0.584 �0.417 �0.196 0.0674

In- Joint �0.876 �0.608 �0.445 �0.230 0.0206

sample Two-step X X �1.004 �0.713 �0.564 �0.328 �0.1066

Two-step X �1.012 �0.721 �0.577 �0.333 �0.1161

Two-step X �0.889 �0.607 �0.453 �0.247 �0.0244

Two-step �0.886 �0.607 �0.454 �0.243 �0.0182

standard deviation and quantiles of these 2000 samples are then reported.
There is strong evidence that all the explanatory variables in x�(s) are af-
fecting the spread, with the northing being the most important explanatory
variable. There is considerably less evidence that all our chosen explana-
tory variables have an effect on the location parameter. However, as the
posterior distribution of �µ is estimated using 100 different samples from
the posterior of �⇤(s), it might be that the different regression coefficients
are more significant for some of the standardisations, and less significant for
others. The explanatory variable that has the greatest effect on the location
parameter seems to be the mean annual precipitation. Thus, at locations
with large amounts of precipitation, we expect the extreme precipitation to
be heavier than at locations with little precipitation. From the estimates for
��, we also expect more variance in the distribution of extreme precipitation
in the south. The standard deviation of uµ(s) is of approximately the same
magnitude as most of the regression coefficients in �µ.

Table 4 displays the posterior range of the uµ(s). For the available data,
the median number of neighbours within a radius of 50 km is 17, and the
median number of neighbours within a radius of 100 km is 36. Based on
these numbers, one can see that the Gaussian field is able to introduce
spatial correlation between a large number of different stations. The range
of the Gaussian field is considerably reduced as the temporal aggregation
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Table 3: Estimated regression coefficients �µ, �� and estimated standard deviation
SD(uµ) of the Gaussian field uµ(s) in the two-step model for yearly maximum
precipitation at different temporal aggregations.

Temporal Parameter Explanatory Mean SD 2.5% 50% 97.5%
aggregation variable quantile quantile quantile

1 hour �µ Intercept 0.669 0.066 0.518 0.675 0.794

Mean annual precipitation 0.071 0.012 0.044 0.072 0.091

Altitude �0.006 0.011 �0.026 �0.006 0.013

Easting �0.044 0.035 �0.118 �0.042 0.017

Northing 0.036 0.038 �0.036 0.036 0.111

Distance to the open sea �0.001 0.033 �0.072 0.002 0.055

SD(uµ) 0.084 0.023 0.047 0.085 0.127

�
⇤
� 0.118 0.002 0.113 0.118 0.123

�� Intercept 2.836 0.007 2.822 2.831 2.835

Easting 0.088 0.015 0.058 0.078 0.087

Northing �0.150 0.015 �0.177 �0.160 �0.151

Distance to the open sea �0.050 0.017 �0.080 �0.062 �0.051

3 hours �µ Intercept 0.847 0.025 0.800 0.846 0.895

Mean annual precipitation 0.120 0.012 0.096 0.122 0.139

Altitude �0.009 0.009 �0.027 �0.010 0.007

Easting 0.016 0.021 �0.025 0.017 0.057

Northing 0.022 0.018 �0.015 0.024 0.054

Distance to the open sea 0.017 0.018 �0.021 0.017 0.052

SD(uµ) 0.062 0.013 0.045 0.060 0.085

�
⇤
� 0.123 0.003 0.117 0.123 0.129

�� Intercept 3.207 0.017 3.177 3.190 3.208

Easting 0.031 0.014 0.003 0.021 0.030

Northing �0.138 0.014 �0.163 �0.147 �0.138

Distance to the open sea �0.057 0.016 �0.083 �0.068 �0.058

6 hours �µ Intercept 0.911 0.024 0.868 0.911 0.962

Mean annual precipitation 0.148 0.013 0.123 0.150 0.168

Altitude �0.012 0.009 �0.029 �0.011 0.005

Easting 0.040 0.021 �0.001 0.040 0.080

Northing 0.008 0.019 �0.029 0.009 0.042

Distance to the open sea 0.030 0.020 �0.011 0.031 0.067

SD(uµ) 0.067 0.011 0.051 0.065 0.090

�
⇤
� 0.125 0.004 0.118 0.125 0.133

�� Intercept 3.470 0.020 3.435 3.456 3.469

Easting �0.032 0.015 �0.062 �0.042 �0.033

Northing �0.095 0.014 �0.122 �0.105 �0.096

Distance to the open sea �0.065 0.016 �0.093 �0.077 �0.066
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Table 4: Estimated posterior mean and quantiles for the range ⇢ of the Gaussian
field uµ(s) and the tail parameter ⇠ in the two-step model for yearly maximum
precipitation at different temporal aggregations.

Parameter Temporal Mean 2.5% 50% 97.5%
aggregation quantile quantile quantile

⇢ 1 hour 235 34 255 478

3 hours 78 39 75 147

6 hours 60 32 57 104

12 hours 84 31 83 145

24 hours 55 32 50 105

⇠ 1 hour 0.178 0.136 0.179 0.211

3 hours 0.090 0.057 0.089 0.120

6 hours 0.047 0.028 0.046 0.072

12 hours 0.032 0.010 0.031 0.048

24 hours 0.029 0.006 0.029 0.051

increases. It seems that, for 1 hour precipitation, the regression coefficients
are unable to explain some kind of large-scale phenomenon that considerably
affects the location parameter µ↵(s). To correct this, the range of uµ(s)
has to be large. For longer aggregation periods, this phenomenon is not as
important anymore, and the regression coefficients are able to explain most
of the large-scale trends. Consequently, the range of uµ(s) is decreased.
The posterior means of uµ(s) for three different temporal aggregations
are displayed over a 1 ⇥ 1 km2 gridded map in Figure 2. It is known
that extreme precipitation dominates in the southeast of Norway for short
aggregation times because of its large amount of convective precipitation
(see, e.g, Dyrrdal et al., 2015). Based on Figure 2 it becomes evident that our
explanatory variables are unable to describe this regional difference when
modelling hourly precipitation, and uµ(s) has to do the job of separating
between the east and the west. As the temporal aggregations increase
from one hour to three and six hours, the difference between east and west
diminishes, and it seems that the explanatory variables do a better job of
explaining the trends in the location parameter µ↵(s).

The posterior distribution of ⇠ is also described in Table 4. The tail
parameter seems to decrease quickly as the aggregation time increases, and
it is practically constant for precipitation over longer periods than 12 hours.
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Figure 2: Estimated posterior mean (PM) of the Gaussian field uµ(s) for three
different temporal aggregations of precipitation, with unit mm.

This makes sense given the observation of Barbero et al. (2019) that most
24 hour annual maximum precipitation comes from rainstorms with lengths
of less than 15 hours. Thus, the tail parameter for 24 hour precipitation
should be close to the tail parameter for 12 hour precipitation. For 12 hours
and up, the tail parameter is so small that one may wonder if a Gumbel
distribution would not have given a better fit to the data. However, this is
not the case for the shorter aggregation times, where the tail parameter is
considerably larger.

4.4 Return levels

We use the two-step model for estimating large return levels for the yearly
precipitation maxima. Posterior distributions of the 20 year return levels are
estimated on a grid with resolution 1⇥ 1 km2. The posterior means and the
widths of the 95% credible intervals are displayed in Figure 3. For a period
of 1 hour the most extreme precipitation is located southeast in Norway,
while for longer periods, the extreme precipitation is moving over to the
west coast. These results are expected since we know that the convective
precipitation of the southeast dominates for short aggregation periods. At
the same time, the southwest of Norway generally has more precipitation,
making it the dominant region for longer aggregation times. The spatial
structure and magnitude of the 20 year return levels for hourly precipitation
are similar to the estimates of Dyrrdal et al. (2015), but with considerably
thinner credible intervals. This makes sense as more data are available, and
the two-step model is able to perform less wasteful inference. In addition,
our model is much more simple, as they include a random Gaussian field
in all three parameters, while we only include a random Gaussian field in
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Figure 3: Estimated posterior mean (PM) and width of the 95% credible intervals
(WCI) for the 20 year return levels of sub-daily precipitation. Different aggregation
times are displayed in different columns. All numbers are given with unit mm.

the location parameter. This can also lead to less uncertainty in the return
level estimates.

5 Conclusion

The blended generalised extreme value (bGEV) distribution is applied
as a substitute for the generalised extreme value (GEV) distribution for
estimation of the return levels of sub-daily precipitation in the south of
Norway. The bGEV distribution simplifies inference by introducing a
parameter-free support, but can only be applied for modelling of heavy-
tailed phenomena. Sub-daily precipitation maxima are modelled using a
spatial Bayesian hierarchical model with a latent Gaussian field. This is
implemented using both integrated nested Laplace approximations (INLA)
and the stochastic partial differential equation (SPDE) approach, for fast
inference. Inference is also made more stable and less wasteful by our
novel two-step modelling procedure that borrows strength from the peaks
over threshold method when modelling block maxima. Like the GEV
distribution, the bGEV distribution suffers from a lack of log-concavity,
which can cause problems when using INLA. We are able to mitigate any
problems caused by a lack of log-concavity by choosing slightly informative
priors and standardising the data. We find that the bGEV distribution
performs well as a model for extreme precipitation. The two-step model
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successfully utilises the additional information provided by the peaks over
threshold data and is able to outperform models that only use block maxima
data for inference.
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Supplementary material
S1 Simulation study

A simulation study is conducted for comparing the performance of the gen-
eralised extreme value (GEV) distribution and blended generalised extreme
value (bGEV) distribution in a univariate setting. Our penultimate goal
when modelling block maxima is to estimate return levels. Thus, the two
distributions are compared by evaluating the performance of their return
level estimators.

We sample n 2 {25, 50, 100, 500, 1000} i.i.d. “block maxima” from a GEV
distribution resembling the estimated distribution of the yearly maxima
of hourly precipitation. From Table 3 and Table 4 in “Modelling sub-
daily precipitation extremes with the blended generalised extreme value
distribution” we find that the posterior mean of the intercept in �µ is

https://github.com/siliusmv/inlaBGEV
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E[�µ,0] = 0.661, and the posterior mean of the intercept in �� is E[��,0] =
2.835. Consequently, we set ↵ = 0.5, � = 0.8, µ↵ = E[�µ,0] · exp(E[��,0]) ⇡
11.26, and �� = E[�⇤� ] · exp(E[��,0]) ⇡ 2.01. The tail parameter is set equal
to the posterior mean from Table 4: ⇠ = 0.178. Using the n block maxima,
we compute maximum likelihood estimators for the parameters of the GEV
and bGEV distributions, which are further used for computing return
level estimators for periods of length 25, 50, 100, 250 and 500. The actual
maximum likelihood estimation is performed on the (µ,�, ⇠) parametrisation,
in which µ ⇡ 10.05 and � ⇡ 3.21. Optimisation is performed using the
optim function in R, where the true values of (µ,�, ⇠) are used as initial
values. The entire procedure is repeated 500 times for each value of n. This
allows us to estimate the distribution of the maximum likelihood estimators
for all return levels in question.

Figure S1 displays the distribution of all return level estimators using
both the GEV and the bGEV distributions. The difference between the
distributions of the GEV estimators and the bGEV estimators are negligible
for small values of n. For large return periods and values of n some
slight differences are appearing. However, in practical situations one rarely
encounters as much as 1000 block maxima, and the blocks are almost never
large enough for the limit distribution to hold exactly. Thus, the differences
in distribution can be considered negligible for large values of n for almost
all real-life settings. Larger differences in model fit could theoretically occur
for small blocks where the block maxima deviate further from the GEV
distribution. However, in such settings, both the GEV and the bGEV
distribution would be misspecified, and we have no reason to believe that
the misspecification in the GEV distribution would be strictly better or
worse than the misspecification in the bGEV distribution. Therefore, our
results imply that we do not lose anything in performance by modelling
GEV data with the bGEV distribution instead of the GEV distribution.

In most real-life settings we do not have as much prior knowledge about
the true underlying distribution, and we will likely choose less optimal initial
values and/or prior distributions. To examine the effects of choosing less
optimal initial values, we repeat the maximum likelihood estimation on the
exact same data used for Figure S1, using different initial values. Figure S2
displays the distributions of the return level estimators when we use an
initial value of 0.9 instead of 3.2 for �, without changing the initial values for
µ or ⇠. For small values of n the two distributions yield comparable results.
However, for large values of n, the performance of the GEV distribution
quickly deteriorates, and the return level estimators are shifted to the left.
The bGEV estimators, however, seem to have identical distributions in
Figures S1 and S2, and are not affected by the slight change of initial
values. This demonstrates how inference with the bGEV distribution is
more robust than inference with the GEV distribution. The parameter-
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Figure S1: Distributions of return level estimators computed from model fits with
the GEV and bGEV distributions to simulated data from a GEV distribution. The
dark vertical lines display the true return levels. Return periods are denoted as T ,
with unit “block sizes”, and the number of block maxima used for fitting the GEV
and bGEV distributions is denoted as n.
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dependent support of the GEV complicates likelihood-based inference and
makes it more difficult to locate the global maximum of the likelihood, even
in simple and univariate settings with unrealistically large amounts of data
that are perfectly GEV-distributed.

In such a simple setting, it is relatively easy to see that we chose bad
initial values for (µ,�, ⇠). However, when modelling block maxima with
a large number of covariates and in high-dimensional settings, it becomes
considerably more difficult to choose good enough initial values and/or prior
distributions. Additionally, it is not trivial to examine a maximum likelihood
estimator or posterior distribution and find out if the inference procedure
was successful or not. The GEV return level estimators in Figure S2 take on
reasonable values and are large enough to seem realistic. Without knowing
the truth, it would not be trivial for a practitioner to detect that they are
faulty, and caused by numerical problems. Thus, if one performs likelihood-
based inference using the GEV distribution, one should always perform
extensive checks to evaluate whether the fit is reasonable, or if it is caused
by numerical problems. The increased robustness of the bGEV distribution
provides more safety, and most practitioners can be more confident in their
model fits after fitting the bGEV distribution to block maxima data instead
of the GEV distribution.

Similarly, while attempting to model return levels for precipitation in
Norway using the gev family in R-INLA, we experienced that e.g. adding or
removing one covariate from the model could completely alter the model
fits if our priors were too wide or the data were not correctly standardised.
Examining which of the fits were the best required comprehensive and
time-demanding cross-validation studies, and it was difficult to find out
if the best model fit was “good enough”, or if a slight change in priors or
covariates would yield considerably better model fits. These problems were
considerably mitigated by switching to the bgev family, which resulted in
more stable inference using less informative priors, and less optimal initial
values.

S2 PC prior for the tail parameter

In order to compute the PC prior for the GEV and bGEV distribution with
⇠ � 0 and base model ⇠ = 0, one must first compute KLD(⇡⇠,⇡0) for the
GEV distribution and the bGEV distribution. Notice that the base model
is identical for both distributions. Writing the GEV distribution function
as F (x) = exp(�h(x)) gives the probability density function

⇡⇠(x) = � exp(�h(x))h0(x), h(x) = (1 + ⇠(x� µ)/�)�1/⇠
+ .
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Figure S2: Distributions of return level estimators computed from model fits with
the GEV and bGEV distributions to simulated data from a GEV distribution, when
using bad initial values. The dark vertical lines display the true return levels.
Return periods are denoted as T , with unit “block sizes”, and the number of block
maxima used for fitting the GEV and bGEV distributions is denoted as n.
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The KLD for the GEV distribution is equal to

KLD(⇡⇠,⇡0) =

Z
⇡⇠(x) log

✓
⇡⇠(x)

⇡0(x)

◆
dx

=

Z
�e

�h(x)
h
0(x)

✓
�h(x) + log(��h0(x)) + exp
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�x� µ

�

◆
+

x� µ

�

◆
dx.

The fourth term of the KLD is simply equal to the expectation of (x�µ)/�,
which is known. The first term is easily solvable with the substitution
u = h(x). Using the same substitution for the second term with the
knowledge that log(��h0(x)) = (1 + ⇠) log(h(x)) gives the integral
Z

�e
�h(x)

h
0(x) log(��h0(x)) =

Z 1

0
e
�u(1 + ⇠) log(u) du = �(1 + ⇠)�,

where � is the Euler-Mascheroni constant. We are unable to find a closed-
form expression for the third term. However, using substitution with
u = h(x) gives
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which is finite for ⇠ > 0. With a change of variables, this integral is
transformed to have finite limits,
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This can easily be numerically approximated. Summarising, the KLD for
the GEV is finite for 0  ⇠ < 1 and equal to

KLD(⇡⇠,⇡0) =� 1� (1 + ⇠)� + ⇠
�1(�(1� ⇠)� 1)

+

Z 1

0
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(S1)

The PC prior has probability density function ⇡(d) = � exp(��d) with
d =

p
2KLD(⇡⇠,⇡0). Transforming the PC prior from a distribution on d

to a distribution on ⇠ gives

⇡(⇠) = � exp (��d(⇠))
����
@d(⇠)

@⇠

����

=
�

d(⇠)
exp (��d(⇠))

����
@

@⇠
KLD(⇡⇠,⇡0)

����

(S2)

Consequently, the derivative of the KLD must also be computed. Using
derivation under the integral sign gives

@

@⇠
KLD(⇡⇠,⇡0) = �� � �(1� ⇠) (1� ⇠)

⇠
� �(1� ⇠)� 1

⇠2
+

Z 1

0
g(v; ⇠)dv,
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where  (·) is the digamma function, and

g(v; ⇠) = exp

 
1� (� log v)�⇠

⇠

!
�1 + (� log v)�⇠ (1 + ⇠ log(� log v))

⇠2
.

This integral must also be numerically approximated.
When computing the KLD for the bGEV distribution, the integral for

the KLD is divided into three parts:

KLD(⇡⇠,⇡0) =

Z pa

�1
⇡⇠(x) log

✓
⇡⇠(x)

⇡0(x)

◆
dx

+

Z pb

pa

⇡⇠(x) log

✓
⇡⇠(x)

⇡0(x)

◆
dx+

Z 1

pb

⇡⇠(x) log

✓
⇡⇠(x)

⇡0(x)

◆
dx

= KLDGumbel(⇡⇠,⇡0) + KLDBlending(⇡⇠,⇡0) + KLDFréchet(⇡⇠,⇡0).

A closed-form expression can be found for the Gumbel part of the KLD,
where we express the Gumbel distribution function as G(x) = exp(�h2(x))
and use the same substitution techniques as for the KLD computations with
the GEV distribution. We get

KLDGumbel(⇡⇠,⇡0) = ��u(� log pa; 2) + pa log(� log pa)� Ei(log pa)

+ �u(� log pa;C1 + 1)e�C2 � C1 (pa log(� log pa)� Ei(log pa))

+ pa

✓
C2 + log ⇠ + log

✓
log

✓
log pa
log pb

◆◆◆

� pa log
⇣
(� log pb)

�⇠ � (� log pa)
�⇠
⌘
,

where

C1 =
1

⇠

(� log pb)
�⇠ � (� log pa)

�⇠

log
⇣
log pa
log pb

⌘ ,

and
C2 = C1 log(� log pa) +

1

⇠

⇣
(� log pa)

�⇠ � 1
⌘
.

Here, �u(x;↵) =
R1
x t

↵�1
e
�tdt is the upper incomplete gamma function,

and Ei(x) =
R x
�1(et/t)dt is the exponential integral, which can be evaluated

using the GNU Scientific Library (Hankin, 2006; Galassi et al., 2007). The
Fréchet part of the KLD is found in the same way as (S1), only using
different integration limits. For 0  ⇠ < 1 we get

KLDFréchet(⇡⇠,⇡0) = ��l(� log pb; 2) + (⇠ + 1) (�pb log(� log pb)

+Ei(log pb)� �) +
1

⇠
(�l(� log pb; 1� ⇠)� (1� pb))

+

Z 1

pb

exp

✓
1

⇠

⇣
1� (� log u)�⇠

⌘◆
du,
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Figure S3: PC priors with base models ⇠ = 0 and different penalty parameters �
for the GEV (solid line), bGEV (dashed line) and generalised Pareto distribution
(dotted line).

where �l(x;↵) = �(↵)� �u(x;↵) is the lower incomplete gamma function.
The integral in the expression above must once again be evaluated numeri-
cally. We are unable to find an expression for the KLD integral between
the pa quantile and the pb quantile. Thus, we use numerical integration
with µ = 0 and � = 1 to compute KLDBlending(⇡⇠,⇡0). The value of the
integral does not depend on the values of µ and �, but we are unable to
compute it without choosing some value for them. Being unable to find
an expression for the KLD of the bGEV distribution, we must also use
numerical derivation to estimate the derivative of the KLD, needed in (S2).

The PC priors for the GEV, bGEV and generalised Pareto distributions
are displayed in Figure S3 for different values of the penalty parameter �.
For all the chosen values of � the three distributions are so similar that
their effect on a posterior distribution probably will be close to identical.
The PC prior for the generalised Pareto distribution exists in closed-form
and is already implemented in R-INLA, while the other PC priors must be
computed numerically and are not implemented in R-INLA. Consequently,
we choose to use the PC prior of the generalised Pareto distribution for
modelling the tail parameter of the bGEV distribution.
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Abstract

A successful model for high-dimensional spatial extremes should,
in principle, be able to describe both weakening extremal dependence
at increasing levels and changes in the type of extremal dependence
class as a function of the distance between locations. Furthermore,
the model should allow for computationally tractable inference us-
ing inference methods that efficiently extract information from data
and that are robust to model misspecification. In this paper, we
demonstrate how to fulfil all these requirements by developing a com-
prehensive methodological workflow for efficient Bayesian modelling
of high-dimensional spatial extremes using the spatial conditional
extremes model while performing fast inference with R-INLA. We then
propose a post hoc adjustment method that results in more robust
inference by properly accounting for possible model misspecification.
The developed methodology is applied for modelling extreme hourly
precipitation from high-resolution radar data in Norway. Inference is
computationally efficient, and the resulting model fit successfully cap-
tures the main trends in the extremal dependence structure of the data.
Robustifying the model fit by adjusting for possible misspecification
further improves model performance.

Keywords: Spatial conditional extremes, Robust Bayesian inference, Com-
putational statistics, R-INLA

1 Introduction

The effects of climate change and the increasing availability of large and
high-quality data sets has lead to a surge of research on the modelling of
spatial extremes (e.g., Opitz et al., 2018; Shooter et al., 2019; Castro-Camilo
et al., 2019; Koch et al., 2021; Simpson & Wadsworth, 2021; Vandeskog
et al., 2022; Richards et al., 2022; Koh et al., 2023). Modelling spatial
extremes is challenging for two main reasons: 1) classical models are often
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not flexible enough to provide realistic descriptions of extremal dependence,
and 2) inference can be computationally demanding or intractable, so
modellers must often rely on less efficient inference methods; see Huser and
Wadsworth (2022) for a review of these challenges. In this paper, we propose
a comprehensive methodological workflow, as well as practical strategies, on
how to perform efficient and flexible high-dimensional modelling of spatial
extremes.

An important component of spatial extreme value theory is the character-
isation of a spatial process’ asymptotic dependence properties (e.g., Coles et
al., 1999). Two random variables with a positive limiting probability to expe-
rience their extremes simultaneously are denoted asymptotically dependent.
Otherwise, they are denoted asymptotically independent. As demonstrated
by Sibuya et al. (1960), two asymptotically independent random variables
may still be highly correlated and thus exhibit large amounts of so-called
sub-asymptotic dependence. Thus, correct estimation of both asymptotic
and sub-asymptotic dependence properties is of utmost importance when
assessing the risks of spatial extremes.

Most classical models for spatial extremes are based on max-stable
processes (Davison et al., 2012; Davison et al., 2019). These allow for
rich modelling of asymptotic dependence, but are often too rigid in their
descriptions of asymptotic independence and sub-asymptotic dependence.
Other approaches have been proposed, such as scale-mixture models (Engelke
et al., 2019; Huser & Wadsworth, 2019), which allow for rich modelling
of both asymptotic dependence and independence, and a more flexible
description of sub-asymptotic dependence. However, these models require
that all location pairs share the same asymptotic dependence class, which is
problematic as one would expect neighbouring locations to be asymptotically
dependent and far-away locations to be asymptotically independent. Max-
mixture model (Wadsworth & Tawn, 2012) allow for even more flexible
modelling of sub-asymptotic dependence, and for changing the asymptotic
dependence class as a function of distance. However, it is often difficult to
estimate the key model parameter, which describes the transition between
extremal dependence classes. Additionally, these models must often rely
on less efficient inference methods. Further improvements are given by
the kernel convolution model of Krupskii and Huser (2022), more recent
scale-mixture models such as that of Hazra et al. (2021), and the spatial
conditional extremes model of Wadsworth and Tawn (2022), which all allows
for flexible modelling of different extremal dependence classes as a function
of distance. The spatial conditional extremes model allows for a particularly
simple way of modelling spatial extremes. It is based on the conditional
extremes model of Heffernan and Tawn (2004) and Heffernan and Resnick
(2007), which describes the behaviour of a random vector conditional on
one of its components being extreme, and it can be interpreted as a semi-
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parametric regression model, which makes it intuitive and simple to tailor
or extend. Due to its high flexibility and conceptual simplicity, this is our
chosen model for high-dimensional spatial extremes.

To make the spatial conditional extremes model computationally efficient
in higher dimensions, Wadsworth and Tawn (2022) propose to model spatial
dependence using a residual random process constructed from a Gaussian
copula and delta-Laplace marginal distributions. However, inference for
Gaussian processes typically requires computing the inverse of the covariance
matrix, whose cost scales cubicly with the model dimension. Thus, Simpson
et al. (2023), propose to exchange the delta-Laplace process with a Gaus-
sian Markov random field (Rue & Held, 2005) created using the so-called
stochastic partial differential equations (SPDE) approach of Lindgren et al.
(2011). Furthermore, in order to perform spatial high-dimensional Bayesian
inference, Simpson et al. (2023) modify the spatial conditional extremes
model into a latent Gaussian model, which allows for performing inference
using the integrated nested Laplace approximation (INLA; Rue et al., 2009),
implemented in the R-INLA software (Rue et al., 2017). This allows for a
considerable improvement in the Bayesian modelling of high-dimensional
spatial extremes. However, there is still much room for improvement. In this
paper, we thus build upon the modelling framework of Simpson et al. (2023)
and develop a more general methodology for modelling spatial conditional
extremes with R-INLA. We also point out a theoretical weakness in the
constraining methods proposed by Wadsworth and Tawn (2022) and used
by Simpson et al. (2023), and we demonstrate a computationally efficient
way of fixing it.

As most statistical models for extremes are based on asymptotic argu-
ments and assumptions, a certain degree of misspecification will always
be present when modelling finite amounts of data. Additionally, model
choices made for reasons of computational efficiency, such as adding Markov
assumptions to a spatial random field, may lead to further misspecification.
This complicates Bayesian inference and can result in misleading posterior
distributions (Ribatet et al., 2012; Kleijn & van der Vaart, 2012). One
should therefore strive to make inference more robust towards misspecifi-
cation when modelling high-dimensional spatial extremes. Shaby (2014)
proposes a method for more robust inference through a post hoc transforma-
tion of posterior samples created using Markov chain Monte Carlo (MCMC)
methods. Here, we develop a refined version of his adjustment method, and
we use it for performing more robust inference with R-INLA.

As extreme behaviour is, by definition, rare, inference with the condi-
tional extremes model often relies on a composite likelihood that combines
data from different conditioning sites under the working assumption of
independence (Heffernan & Tawn, 2004; Simpson & Wadsworth, 2021;
Wadsworth & Tawn, 2022; Richards et al., 2022). However, composite likeli-
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hoods can lead to large amounts of misspecification (Ribatet et al., 2012),
and Simpson et al. (2023) thus abstain from using a composite likelihood to
avoid the problems that occur when performing Bayesian inference with a
composite likelihood using R-INLA. We show that the post hoc adjustment
method accounts for the misspecification from the composite likelihood,
thus allowing for more efficient inference using considerably more data.

To sum up, in this paper we develop a general workflow for performing
high-dimensional modelling of spatial extremes using the spatial conditional
extremes model. We improve upon the work of Simpson et al. (2023) by
developing a more general, flexible and computationally efficient methodol-
ogy for modelling spatial conditional extremes with R-INLA and the SPDE
approach. Then, we make inference more robust towards misspecification by
extending the post hoc adjustment method of Shaby (2014), and we further
apply this adjustment method for more efficient inference by combining
information from multiple conditioning sites.

The remainder of the paper is organised as follows: In Section 2, the
spatial conditional extremes model is presented as a flexible choice for
modelling spatial extremes. Modifications and assumptions that allow
for computationally efficient inference with improved data utilisation are
also presented. Then, in Section 3, we develop a general methodology
for implementing a large variety of spatial conditional extremes models in
R-INLA. Section 4 examines the problems that can occur when performing
Bayesian inference based on a misspecified likelihood, and demonstrates how
to perform more robust inference with R-INLA by accounting for possible
misspecification. In Section 5, a simulation study is presented where we
demonstrate and validate our entire workflow for high-dimensional modelling
of spatial extremes. Then, in Section 6, our proposed workflow is applied
for modelling extreme hourly precipitation from high-resolution radar data
in Norway. Finally, we conclude in Section 7 with some discussion and
perspectives on future research.

2 Flexible modelling with spatial conditional
extremes

2.1 The spatial conditional extremes model

Let Y (s) be a random process defined over space (s 2 S ⇢ R2) with Laplace
margins. For this random process, Wadsworth and Tawn (2022) assume the
existence of standardising functions a(s; s0, y0) and b(s; s0, y0) such that,
for a large enough threshold t,

[Y (s) | Y (s0) = y0 > t]
d
= a(s; s0, y0)+b(s; s0, y0)Z(s; s0), s, s0 2 S, (1)
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where Z(s; s0) is a random process satisfying Z(s0; s0) = 0 almost surely,
and a(s; s0, y0)  y0, with equality when s = s0. The degree of asymptotic
dependence may be measured through the extremal correlation coefficient

�(s1, s2) = lim
p!1

�p(s1, s2) = lim
p!1

P(Y (s1) > F
�1
Y (p) | Y (s2) > F

�1
Y (p)),

where F
�1
Y (p) is the marginal quantile function of the process Y (s). If

�(s1, s2) > 0, then Y (s1) and Y (s2) are asymptotically dependent, whereas
if �(s1, s2) = 0, they are asymptotically independent. It is known that Y (s)
and Y (s0), defined in (1), are asymptotically dependent when a(s; s0, y0) =
y0 and b(s; s0, y0) = 1, while they are asymptotically independent when
a(s; s0, y0) < y0 (Heffernan & Tawn, 2004). However, under asymptotic
independence, the convergence of �p(·) to �(·) is slower for larger values of
a(·) and b(·).

Wadsworth and Tawn (2022) provide some guidance on parametric
functions for a(·) and b(·) together with parametric distributions for Z(·)
that cover a large range of already existing models. For modelling a(·) they
specifically propose the parametric function

a(s; s0, y0) = y0↵(ks� s0k) = y0 exp {�[max(0, ks� s0k��)/�a]
a} , (2)

with parameters � � 0 and �a,a > 0. This function yields a model
with asymptotic dependence for locations closer to the conditioning site
than a distance �, while displaying asymptotic independence for distances
larger than �, with a weakening sub-asymptotic dependence as we move
further away from s0. To the best of our knowledge, this model (and
its sub-models) has been adopted by a majority of spatial conditional
extremes modellers. Several forms are proposed for b(·), including the
form b(s; s0, y0) = y

�
0 , when � = 0. This allows for modelling asymptotic

independence with positive dependence, with the � parameter helping to
control the speed of convergence of �p(s1, s2) to �(s1, s2). A weakness of
this form is that it enforces the same positive dependence for all distances,
including large distances where the observations should be independent of
Y (s0). To remedy this issue, Wadsworth and Tawn (2022) also propose the
model b(s; s0, y0) = 1+ a(s; s0, y0)

� , which converges to one as the distance
increases. Alternatively, Shooter, Tawn, et al. (2021) and Richards et al.
(2022) have proposed different models on the form b(s; s0, y0) = y

�(ks�s0k)
0 ,

where they let the function �(d) converge to zero as the distance d ! 1.
Clearly, the best model for the standardising functions a(·) and b(·)

depends on the application. Therefore, in Section 3, we develop a general
methodology for implementing the conditional spatial extremes model in
R-INLA for any kind of functions a(·) and b(·). In addition, we provide
practical guidance and diagnostics for selecting appropriate standardising
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functions in our simulation study in Section 5 and data application in
Section 6.

2.2 Modifications for high-dimensional modelling

To perform high-dimensional inference, Wadsworth and Tawn (2022) propose
to model Z(·) as a random process with a Gaussian copula and delta-Laplace
marginal distributions. Their proposed model for Z(·) has later seen usage
by, e.g., Shooter, Ross, Ribal, et al. (2021), Shooter, Tawn, et al. (2021), and
Shooter et al. (2022) and Richards et al. (2022). However, in order to perform
Bayesian inference with R-INLA, Simpson et al. (2023) modify (1) into a
latent Gaussian model by adding a Gaussian nugget effect and requiring
Z(·) to be a fully Gaussian random field. This gives the model

[Y (s) | Y (s0) = y0 > t]
d
= a(s; s0, y0) + b(s; s0, y0)Z(s; s0) + ✏(s; s0), (3)

where ✏(s; s0) is Gaussian white noise with constant variance, satisfying
✏(s0; s0) = 0 almost surely. They further assume that Z(·) has zero mean
and a Matérn covariance structure, so that it can be approximated using
the SPDE approach of Lindgren et al. (2011), which speeds up inference by
approximating the precision matrix of Z(·) with a sparse and low-rank matrix.
However, making the precision matrix too sparse and/or low-rank leads to
some model misspecification, which is further amplified by the fact that Y (s)
has Laplace marginal distributions, but is modelled using a fully Gaussian
random field. We here nevertheless adopt the modelling assumptions of
Simpson et al. (2023), as we find them necessary for performing truly
high-dimensional Bayesian inference with R-INLA. However, unlike Simpson
et al. (2023), we then account for the possible misspecification of these
assumptions using the robustifying approach described in Section 4.

2.3 Efficient data utilisation with a composite likelihood

The spatial conditional extremes model consists in modelling a spatial
process conditional on extreme behaviour at a predefined conditioning site.
However, inference is often made challenging because the conditioning site
contains few observed extremes. To strengthen inference it is therefore
common to assume stationarity, in the sense that all parameters of a(·),
b(·), Z(·) and ✏(·) are independent of the conditioning site. Under such
stationarity, it is possible to combine information from multiple conditioning
sites into one global model fit, using the composite likelihood of Heffernan
and Tawn (2004) and Wadsworth and Tawn (2022). Given observations
Y = {yi(sj) : i = 1, 2, . . . , n, j = 1, 2, . . . ,m} from n time points and m
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locations, the composite log-likelihood may be expressed as

`c(✓;Y) =
nX

i=1

mX

j=1

`(✓;yi,�j | yi(sj))I(yi(sj) > t), (4)

where `(·) is the log-likelihood of the conditional extremes model, yi,�j is
an (m� 1)-dimensional vector containing observations from time point i,
for all locations except sj , I(·) is the indicator function and ✓ contains all
parameters of the spatial conditional extremes model. If m is too large, one
may choose to build the composite likelihood using only a subset of the
available conditioning sites, and yi,�j may be modified to contain only a
subset of the available observations from time point i, which may vary with
both i and j.

The composite likelihood is not a valid likelihood, since multiple of the
terms in (4) may contain the same observations. Incorrectly interpreting
the composite likelihood as a true likelihood is therefore tantamount to
specifying a model in which [yi,�j | yi(sj)] is (wrongly) assumed to be
independent from [yi,�k | yi(sk)] for all time points i and locations pairs
(sj , sk) with yi(sj) > t and yi(sk) > t. Performing inference with the
composite likelihood can therefore lead to considerable misspecification,
which should be accounted for before drawing conclusions from the model
fit. In Section 4, we therefore show how to robustify inference by accounting
for the possible model misspecification. To the best of our knowledge, our
paper is the first attempt to perform Bayesian inference for the spatial
conditional extremes model based on a composite likelihood.

3 Fast inference using R-INLA

3.1 Latent Gaussian model framework

R-INLA performs inference on latent Gaussian models of the form

[yi | u,✓1]
i.i.d.⇠ ⇡(yi | ⌘i(u),✓1), i = 1, 2, . . . , n,

[u | ✓2] ⇠ N (µ(✓2),Q
�1(✓2)),

⇣
✓
>
1 ,✓

>
2

⌘>
⇠ ⇡(✓1)⇡(✓2),

where u is a latent Gaussian field with mean µ(✓2) and precision matrix
Q(✓2), and the hyperparameters ✓ = (✓>

1 ,✓
>
2 )

> are assigned priors ⇡(✓1)
and ⇡(✓2). Observations y = (y1, . . . , yn)> are linked to the latent field
through the linear predictor ⌘ = (⌘1(u), . . . , ⌘n(u))> = Au, where A is a
known design matrix. This linear predictor defines the location parameter
of the likelihood ⇡(y | ⌘,✓1), via a possibly non-linear link function. All
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observations are assumed to be conditionally independent given ⌘ and ✓1,
so that ⇡(y | ⌘,✓1) =

Qn
i=1 ⇡(yi | ⌘i(u),✓1). For computational reasons,

when using R-INLA, the likelihood must be chosen from a predefined set of
likelihood functions. The linear predictor can be decomposed into N � 1
components, ⌘ = A

(1)
u
(1) + · · ·+A

(N)
u
(N), where each component repre-

sents, e.g., an intercept term, a linear combination of regression coefficients,
an SPDE component, etc. All of these components must either be predefined
in R-INLA or defined by the user, using the rgeneric framework or the
recently added cgeneric framework.

The spatial conditional extremes model in (3) corresponds to a latent
Gaussian model where the likelihood is Gaussian with variance ✓1, say, and
the linear predictor is equal to a(s; s0, y0) + b(s; s0, y0)Z(s; s0), with ✓2

containing the parameters of a(·), b(·) and Z(·). For most forms of a(·)
and b(·), R-INLA does not contain suitable predefined model components for
describing the linear predictor, so we must define these manually. In order
to define a new R-INLA component u

(N+1), with parameters ✓
(N+1), using

one of the rgeneric/cgeneric frameworks, one must provide functions
written in R of C, respectively, that compute the precision matrix mean and
prior density of u(N+1) for any value of ✓(N+1). The cgeneric framework
yields considerably faster inference than the rgeneric framework, but it
requires knowledge of the lower-level C programming language. In this paper,
we propose a method for defining model components for a(s; s0, y0) and
b(s; s0, y0)Z(s; s0) using the rgeneric/cgeneric frameworks, for any kind
of functions a(·) and b(·). In the online supplementary material, we provide
the necessary code for defining the models used in Section 5 and 6 with the
cgeneric framework.

3.2 Defining b(s; s0, y0)Z(s; s0) in R-INLA

The SPDE approach creates a Gaussian Markov random field bZ(s) that is
an approximation to a Gaussian random field Z(s) with Matérn covariance
function

Cov(Z(s), Z(s0)) =
�
2

2⌫�1�(⌫)
(ks� s

0k)⌫K⌫(ks� s
0k), (5)

where �
2 is the marginal variance, ⌫ > 0 is a smoothness parameter,

⇢ =
p
8⌫/ is a range parameter and K⌫ is the modified Bessel function

of the second kind and order ⌫. The smoothness parameter ⌫ is difficult
to estimate from data and is therefore often given a fixed value (Lindgren
& Rue, 2015). The SPDE approximation bZ(s) is constructed as a linear
combination of Gaussian Markov random variables on a triangulated mesh,
i.e., bZ(s) =

PM
i=1 �i(s)Wi, where W1, . . . ,WM are random variables from a

Gaussian Markov random field, and �i, . . . ,�M are piecewise linear basis
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functions. In order to approximate the non-stationary Gaussian random
field b(s; s0, y0)Z(s) with the SPDE approach, for any function b(s; s0, y0),
we modify the weights Wi to get

bZb(s; s0, y0) =
MX

i=1

�i(s)b(si; s0, y0)Wi (6)

where s1, . . . sM are the locations of the M mesh nodes. This shares some
similarities with the approach of Ingebrigtsen et al. (2014) for implementing
non-stationary SPDE fields. Since bZb(·) is a linear combination of Gaussian
random variables, its variance equals

Var
⇣
bZb(s; s0, y0)

⌘
=

MX

i,j=1

�i(s)�j(s)b(si; s0, y0)b(sj ; s0, y0)Cov (Wi,Wj) ,

which is unequal to b(s; s0, y0)2�2, the variance of b(s; s0, y0)Z(s). However,
if s coincides with a mesh node, then one of the basis functions equals 1,
while the others equal 0, giving Var

⇣
bZb(s; s0, y0)

⌘
= b(s; s0, y0)2Var(Wi),

which is much closer to the correct variance. On the contrary, if s is far
away from a mesh node, the variance of bZb(s; s0, y0) may be considerably
different from b(s; s0, y0)2�2. If possible, it is therefore recommended to use
a fine mesh, so all observation locations are close enough to a mesh node.

The process bZb(·) approximates the unconstrained Gaussian random field
b(s; s0, y0)Z(s). However, in order to define the conditional extremes model
in R-INLA, we need to approximate the constrained field b(s; s0, y0)Z(s; s0),
where Z(s0; s0) = 0 almost surely. Wadsworth and Tawn (2022) describe
two different methods for turning an unconstrained Gaussian field Z(s)
into a constrained field Z(s; s0). The first one is to constrain the field
by conditioning, i.e., Z(s; s0) = [Z(s) | Z(s) = 0]; and the second one
is to constrain it by subtraction, i.e., Z(s; s0) = Z(s) � Z(s0). In their
case studies, Wadsworth and Tawn (2022) use the first method, while
Simpson et al. (2023) use the second method. We argue that constraining by
subtraction yields unrealistic dependence structures, and should be avoided
if other alternatives are available. A quick computation indeed shows
that if Z(s; s0) is a stationary random process that has been constrained
through subtraction, then the limiting correlation between Z(cs; s0) and
Z(�cs; s0), as c ! 1 equals 1/2. Furthermore, the limiting correlation of
Z(s0+�s; s0) and Z(s0��s; s0) as k�sk! 0 is often negative and equals
0 if the unconstrained random field had an exponential correlation function
or �1 if the unconstrained field had a Gaussian correlation function. Thus,
with the subtraction approach, points that are infinitely far away from each
other are strongly correlated while points that are infinitesimally close to
each other might be negatively correlated or independent.
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R-INLA contains an implementation for constraining a random field
by conditioning on linear combinations of itself (Rue et al., 2009). One
can therefore easily constrain bZb(·) by conditioning using the extraconstr
option in R-INLA. Unfortunately, this conditioning method requires the
computation of an (n⇥ k)-dimensional dense matrix, where n is the number
of rows of the precision matrix and k is the number of added constraints.
In practice, we therefore experience that constraining by conditioning with
R-INLA requires considerably more computational resources, and that it
quickly turns intractable for large data sets.

We propose a third method for constraining the residual field with
R-INLA. It is known that, for a Gaussian random vector y = (y>

1 ,y
>
2 )

>

with zero mean and precision matrix

Q =

✓
Q11 Q12

Q21 Q22

◆
,

the conditional distribution of [y1 | y2 = 0] is Gaussian with zero mean
and precision matrix Q11 (Rue & Held, 2005). Thus, if we ensure that a
mesh node coincides with s0, we can constrain Z(·) by removing all rows
and columns of Q that correspond to the mesh node at s0. This is easily
achievable using the rgeneric/cgeneric framework, and it requires no
extra computational effort.

3.3 Defining a(s; s0, y0) in R-INLA

All components of the latent Gaussian field in R-INLA must be Gaussian
random variables, but a(s; s0, y0) is a deterministic function and not a
random variable. However, clearly, the deterministic vector a can be
approximated well by the Gaussian random vector a+ ✏, where ✏ has zero
mean and covariance matrix �2I, with I being the identity matrix and �2
being a small, fixed marginal variance. Thus, using the rgeneric/cgeneric
framework, we can approximate any deterministic function a(s; s0, y0) with a
latent Gaussian random field with mean a(s; s0, y0) and diagonal covariance
matrix �2I. Here, we choose �2 = exp(�15).

4 Robust inference using post hoc adjustments

4.1 Adjusting posterior samples

It is well known that all models are wrong, in the sense that the data,
to a certain extent, always deviate from the model assumptions. This is
particularly true when modelling extremes, where most models are based on
imposing asymptotically justified assumptions onto finite amounts of data. It
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is also particularly true when modelling high-dimensional data, because high-
dimensional models often are based on strict assumptions of (un)conditional
independence and Gaussianity, in order to make inference computationally
tractable, and because the amount of misspecification naturally tends to
increase with the data size and dimensionality while keeping everything
else constant. Accounting for this misspecification should therefore be an
important step in any successful modelling strategy for high-dimensional
spatial extremes.

Given n independent realisations Y = {y1, . . . ,yn} of a random vector
Y with true distribution G, and a chosen likelihood L(✓;Y) =

Qn
i=1 L(✓;yi),

it is well known that the maximum likelihood estimator b✓ for ✓ is asymp-
totically Gaussian, i.e.,

I(✓⇤)1/2
⇣
b✓ � ✓

⇤
⌘
 N (0, I), as n ! 1,

under some weak regularity conditions (White, 1982), where I is the identity
matrix and ✓

⇤ minimises the Kullback-Leibler divergence (KLD; Kullback &
Leibler, 1951) between L(✓; ·) and the likelihood of the true distribution G.
Furthermore, I(✓) is the so-called Godambe sandwich information matrix
(Godambe, 1960), i.e.,

I(✓) = H(✓)J(✓)�1
H(✓), (7)

with H(✓) = �E
⇥
r2

✓`(✓;Y)
⇤

and J(✓) = Cov (r✓`(✓;Y)), where `(·) =
log(L(·)) is the log-likelihood, and all expectations are taken with respect
to G. If L(✓⇤; ·) is equal to the likelihood of the true distribution G, then
J(✓⇤) = H(✓⇤), and I(✓⇤) reduces to H(✓⇤).

From a Bayesian perspective, given a prior ⇡(✓) and appropriate reg-
ularity conditions, it is also known that the posterior density, ⇡(✓ | Y) /
L(✓;Y)⇡(✓), converges asymptotically to a Gaussian density with mean
✓
⇤ and covariance matrix H(✓⇤)�1 (Berk, 1966; Kleijn & van der Vaart,

2012). As the sample size increases and the effect of the prior distribution
diminishes, credible intervals and confidence intervals should be expected to
coincide. However, if the likelihood is misspecified so that I(✓⇤) 6= H(✓⇤),
then the resulting asymptotic (1� ↵)-credible interval differs from all well-
calibrated asymptotic (1 � ↵)-confidence intervals, and we say that they
attain poor frequency properties. Ribatet et al. (2012) illustrate how easily
a misspecified likelihood function can lead to misleading inference through
posterior intervals with poor frequency properties.

Several approaches have been proposed for robustifying inference under
a misspecified likelihood (Chandler & Bate, 2007; Pauli et al., 2011; Ribatet
et al., 2012; Syring & Martin, 2018), but all these methods are based on
modifying the likelihood function before inference, which is impossible to
do within the R-INLA framework. However, Shaby (2014) proposes a post



144 Robust inference using post hoc adjustments

hoc adjustment method that properly accounts for misspecification in the
likelihood by an affine transformation of posterior samples when performing
MCMC-based inference. Since this is a post hoc adjustment method, it
is possible to extend it for usage with R-INLA. Given a sample ✓ from
a posterior distribution based on a misspecified likelihood, the adjusted
posterior sample is defined as

✓adj = ✓
⇤ +C(✓ � ✓

⇤), (8)

where the matrix C is chosen such that the asymptotic distribution of ✓adj,
as n ! 1, is Gaussian with mean ✓

⇤ and covariance matrix I(✓⇤)�1. This
can be achieved by setting C =

�
M

�1
1 M2

�>, where M
>
1 M1 = H(✓⇤)�1

and M
>
2 M2 = I(✓⇤)�1. The matrix square roots M1 and M2 can be

computed using, e.g., singular value decomposition.
A problem with the adjustment method of Shaby (2014) is that it

distorts the contributions of the prior distribution. Using the formula for
the probability density function of a transformed random variable, one can
show that the distribution of the adjusted samples is

⇡(✓adj | Y) / L(✓⇤ +C
�1(✓adj � ✓

⇤);Y)⇡(✓⇤ +C
�1(✓adj � ✓

⇤)).

However, the prior distribution reflects our prior knowledge about ✓, and it
should ideally not be affected when adjusting for the misspecification in L.
If the prior is not overly informative and the sample size is large enough, this
may not matter, as the contribution of the prior will be minimal. However, if
that is not the case, we propose to additionally adjust the prior distribution
before inference as

⇡adj(✓) = ⇡(✓⇤ +C(✓ � ✓
⇤)) · |C|, (9)

such that the adjusted posterior samples have distribution

⇡(✓adj | Y) / L(✓⇤ +C
�1(✓adj � ✓

⇤);Y)⇡(✓adj).

Using the rgeneric/cgeneric framework, one can easily define a model in
R-INLA with the adjusted prior distribution ⇡adj(✓).

As mentioned in Section 2.3, composite likelihoods are not valid likeli-
hood functions. However, the theory in this section holds true for a wide
class of loss functions that includes negative composite log-likelihoods. Thus,
we can still perform the adjustment method if we exchange `(✓;Y) with
the composite log-likelihood in (4), and ⇡(✓ | Y) with the pseudo-posterior
distribution ⇡c(✓ | Y) / Lc(✓;Y)⇡(✓), where Lc(·) = exp(`c(·)).
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4.2 Estimating C and ✓
⇤

Here, we detail how to estimate the KLD minimiser ✓
⇤ and the matrix C

when inference is based on the composite log-likelihood in (4). Our approach
can also be applied in settings where inference is based on valid likelihood
functions or other types of loss functions.

The KLD minimiser ✓
⇤ can be estimated by the mode of the posterior

⇡c(✓ | Y), denoted ✓̂
⇤. The estimator ✓̂⇤ indeed provides a good approxima-

tion to ✓
⇤ if the prior is not overly informative and the sample size is large

enough, but other estimators, such as the maximum likelihood estimator,
may be more suitable if this does not hold.

In order to estimate C one must first estimate H(✓⇤) and J(✓⇤). The
first step towards estimating J(✓⇤) is to compute the log-likelihood gradients
r✓`(✓̂⇤;yi,�j | yi(sj)) for all combinations of j = 1, 2, . . . ,m and i =
1, 2, . . . , n that give yi(sj) > t. These gradients can be computed analytically
or estimated using numerical derivation methods. We then estimate J(✓⇤)
with

Ĵ(✓̂⇤) =
X

i,j

X

(i0,j0)2�(i,j)

{I(yi(sj) > t)I(yi0(sj0) > t)

⇥r✓`(✓̂
⇤;yi,�j | yi(sj))

⇣
r✓`(✓̂

⇤;yi0,�j0 | yi0(sj0))
⌘>},

(10)

where �(i, j) is the set of neighbours of (i, j), i.e., (i0, j0) 2 �(i, j) if and only
if r✓`(·;yi0,�j0 | yi0(sj0)) is correlated with r✓`(·;yi,�j | yi(sj)). Summing
over all non-correlated pairs of tuples introduces unnecessary noise that could
cause the estimator to approximately equal zero (Lumley & Heagerty, 1999).
In practice one can often compute (10) using a sliding window approach.
This is an improvement over the proposed estimation methods of Shaby
(2014), which require either that all log-likelihood terms are independent or
that it is possible to simulate data from the true and unknown distribution
of the data.

Estimation of H(✓⇤) is often easier than that of J(✓⇤), since the former
is a matrix of expected values, whereas the latter is a covariance matrix.
The law of large number implies that, for n and m large enough, a good
estimator for H(✓⇤) is simply Ĥ(✓̂⇤) = �r2

✓`c(✓̂
⇤;Y). Thus, all we need for

estimating H(✓⇤) is to compute the Hessian of the composite log-likelihood
terms at ✓̂⇤. For users of R-INLA, this is especially simple, since the program
returns the inverse of the Hessian matrix

H̃(✓̂⇤) = �r2
✓⇡c(✓̂

⇤ | Y) = �r2
✓`c(✓̂

⇤;Y)�r2
✓ log ⇡(✓̂

⇤).

Thus, if the prior is not overly informative and the sample size is large
enough, we can set estimate H(✓⇤) with H̃(✓̂⇤). If this is not the case, we
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can still estimate H(✓⇤) by simply subtracting the contribution of the prior
distribution from H̃(✓̂⇤).

If we adjust the prior distribution as in (9), it may be necessary to
run R-INLA twice: once for estimating ✓

⇤ and C, and once for performing
inference with the adjusted prior.

A small numerical example is shown in the supplementary material,
for demonstrating that the adjustment method is able to recover the fre-
quency properties of a posterior distribution that is based on a misspecified
likelihood.

5 Simulation study

We now conduct a simulation study to demonstrate our proposed workflow
for modelling spatial extremes. Given a set of extreme realisations from
simulated data we show how to compute relevant statistics of the data and
how to use these for making an informed decision about the appropriate
models for the standardising functions a(s; s0, y0) and b(s; s0, y0). Then, we
discuss details on how to define the SPDE mesh and on performing inference
with R-INLA and the composite likelihood. Finally, we adjust the posterior
distribution for possible misspecification and we evaluate the performance
of the model fit.

We sample n = 104 realisations of a spatial Gaussian random field
Y = {Yi(s) : i = 1, . . . , n, s 2 S}, observed on a regular grid S with
resolution 1 ⇥ 1 and size 100 ⇥ 100. The spatial Gaussian random field
has a Matérn covariance function (5) with parameters �2 = 1, ⌫ = 1 and
⇢ = 40, and an additional nugget effect with variance 0.12. All the samples
are created using an SPDE approximation. In order to model threshold
exceedances with the spatial conditional extremes model, we transform
the observations to have Laplace marginals using the probability integral
transform. We then choose a threshold t equal to the 99.9% quantile of the
Laplace distribution.

As a first step, we examine extremal dependence in the available data. If
we (correctly) assume stationarity and isotropy, we can denote the extremal
correlation coefficient as �p(s1, s2) ⌘ �p(d), where d = ks1 � s2k. We
estimate �p(d) empirically using a sliding window approach, i.e., for any value
of d, we iterate over all location pairs (s, s0) 2 S2 satisfying |d�ks�s

0k|< �,
for some small tolerance � > 0, and then we count the number of times that
Y (s) > F

�1(p) given that Y (s0) > F
�1(p), where F

�1(·) is the quantile
function of the Laplace distribution. We here choose � = 0.5. Estimators for
�p(d) are displayed in the top-left subplot of Figure 1. Since the data have
a Gaussian copula, we know that �(d) = 0 for all d > 0, meaning that �p(d)
is far away from its limit �(d) at small distances. Even if �(d) is unknown
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Figure 1: Empirical estimators of �p(d), µ(d; y0) and ⇣(d; y0) (top to bottom) from
three different data sources. The leftmost column displays empirical estimators using
the original data, while the two rightmost columns displays empirical estimators
using data simulated from the adjusted and the unadjusted model fits, respectively.

in practice, we can here observe a clear trend of weakening dependence at
increasing threshold levels, implying that the limit has not yet been reached.
This demonstrates the need for a model that allows for flexible modelling of
sub-asymptotic dependence, such as the spatial conditional extremes model.

To perform inference with the spatial conditional extremes model from (3),
we must decide upon models for a(s; s0, y0) and b(s; s0, y0). The limiting
forms of these functions as t ! 1 are already known for a spatial Gaussian
random field (Wadsworth & Tawn, 2022). However, we here assume that
the distribution of the data is unknown. Additionally, since we have chosen
a finite threshold t where �p(d) is far away from its limit �(d), other models
for a(·) and b(·) may fit the data better than the known limiting forms. To
examine the shape of the standardising functions, we (correctly) assume
stationarity in the sense that all model parameters are independent of the
choice of conditioning sites, and we assume that a(s; s0, y0) and b(s; s0, y0)
only depend on the distance d = ks � s0k and threshold exceedance y0,
meaning that we can define the standardising functions as a(d; y0) and
b(d; y0) analogously. With these assumptions, we can visualise the forms
of a(d; y0) and b(d; y0) by empirically computing conditional means and
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Figure 2: Given a conditioning site s0 (displayed with (N)), locations used for
inference are displayed as big black dots (•) and locations in S that are not used
for inference are displayed as small dots (·). The SPDE mesh is displayed using
black lines.

variances of the data. In our model, all random variables with distance d

from s0 have conditional mean µ(d; y0) = a(d; y0) and conditional variance
⇣
2(d; y0) = �

2(d)b2(d; y0) + ⌧
�1, where �2(d) is the variance of the residual

field at distance d from the conditioning site, and ⌧ is the precision of the
nugget effect. Similarly to b�p(d), the empirical conditional moments of the
data can be computed using a sliding window approach. However, this
time, the window must slide over both values of d and y0. We choose a
rectangular window with a width of 1 in the d-direction and a width of 0.1
in the y0-direction. The conditional moment estimators are displayed in
the leftmost column of Figure 1. The conditional mean, bµ(d; y0), is equal
to y0 at d = 0, and then seems to decay exponentially towards zero as d

increases. This fits well with the proposed model in (2) if we set � = 0.
The conditional variance is zero at d = 0, and then it increases as we move
away from the conditioning site and towards “the edge of the storm”. Here,
⇣(d; y0) is at its largest, as it is uncertain if observations are “inside the
storm”, i.e., extreme, or “outside the storm”, i.e., non-extreme. This is also
where ⇣(d; y0) varies the most as a function of y0. Moving further away from
the conditioning site, ⇣(d; y0) decreases to a constant, as we are certainly
“outside the storm”, so the variance should not depend on y0 anymore. This
fits well together with a model where b(d; y0) = y

�(d)
0 and where �(d) decays

to zero as the distance increases. We choose to follow Richards et al. (2022)
in assuming that �(d) = �0 exp(�(d/�b)

b), with 0 < �0 < 1 and �b,b > 0.
As seen in Figure 1, the largest changes in µ(d; ·) and ⇣(d; ·) seem to

occur when d is small. However, the majority of locations in S are located far
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Table 1: Prior distributions for all model parameters. N (µ,�2) denotes the Gaus-
sian distribution with mean µ and variance �2. We give ⌧ a penalised complexity
(PC) prior such that P(⌧�1/2

> 1) = 0.95. Additionally, ⇢ and � are given the joint
PC prior of Fuglstad et al. (2019) such that P(⇢ < 60) = 0.95 and P(� > 4) = 0.05.

⌧ ⇠ PC(1, 0.95), log(�) ⇠ N (3, 42), log() ⇠ N (0, 32),
� ⇠ PC(4, 0.05), ⇢ ⇠ PC(60, 0.95), log( �0

1��0
) ⇠ N (0, 22),

log(�b) ⇠ N (3, 42), log(b) ⇠ N (0, 32),

away from s0. To account for this and give more weight to close-by locations,
we discard some of the observations far away from s0 during inference, which
also leads to increased inference speed. Figure 2 shows an example of the
locations used to perform inference for one specific conditioning site. We
stress that these locations can vary for each conditioning site used during
inference.

The SPDE approach for modelling Zb(·) requires that we define a trian-
gulated mesh. Our proposed constraining method from Section 3.2 requires
that a mesh node is located at each conditioning site used for inference.
Furthermore, the mesh should be quite dense close to the conditioning sites
to correctly capture the changes in b(·). Therefore, we define the mesh
so that a mesh node is placed at each location used for inference. This
can be problematic when performing inference with a composite likelihood
that depends on multiple conditioning sites, meaning that the mesh has
to be dense “everywhere” in S, which leads to computationally demanding
inference. Consequently, we choose to model Zb(·) with a different mesh
for each conditioning site used in the composite likelihood. Modelling dif-
ferent realisations of a random field with different mesh designs is not a
readily available option in R-INLA, but this can be easily implemented using
the rgeneric/cgeneric framework. An example of a mesh design for one
specific conditioning site is displayed in Figure 2.

Our chosen models for a(·) and b(·) are implemented using the cgeneric
framework, and inference is performed with R-INLA. The chosen priors for
all the model parameters are described in Table 1. The priors are weakly
informative, but with quite large variances. Using all locations in S as
conditioning sites in the composite likelihood is computationally demanding,
so we define a regular sub-grid S0 with resolution 6 ⇥ 6 and build the
composite likelihood using these |S0|= 256 conditioning locations. The
post-hoc adjustment procedure from Section 4 is then applied to robustify
the model fit. Due to the large amount of available data we do not find it
necessary to adjust the prior distribution as proposed in (9).

Figure 3 displays the adjusted and unadjusted posterior distributions
of all model parameters. We see that the working assumption of indepen-
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Figure 3: Posterior distributions for all model parameters from the adjusted (solid)
and the unadjusted (dashed) model fits.

dence in the composite likelihood leads to overconfidence and too focused
posterior distributions, and that the adjustment method therefore increases
the posterior variance to account for this misspecification. To examine
the performance of our model fits, we simulate 105 extreme spatial fields
from each fitted model, and compute b�p(d), bµ(d; y0) and b⇣(d; y0) using the
simulated extremes. The estimators are displayed in the two rightmost
columns of Figure 1. The properties of the model fits are similar to those of
the original data. There are some noticeable differences in the estimated
conditional variance, which probably stems from a too simple model for
b(d; y0). However, tailoring the perfect model choice for b(d; y0) is not the
focus of this simulation study. Although adjusting posteriors plays a big role
in properly quantifying posterior uncertainty, there are no clear differences
between the point estimates from the two model fits in Figure 1. This is
not very surprising, as these estimators are different types of sample means,
that might be less affected by changes in the posterior variances.

Finally, we wish to quantitatively compare the adjusted model fit with
the unadjusted model fit, to find out which one performs best. We choose
not to compare the fits by evaluating frequency properties, as in the toy
example in the supplementary material, because accurate estimation of ✓⇤

and the repetition of the high-dimensional simulation study hundreds of
times is too computationally demanding with our computational resources.
Additionally, such comparisons are impossible to perform for most real-life
applications with finite amounts of available data. Instead, we choose to
compare the model fits by computing log-scores (e.g., Gneiting & Raftery,
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2007) for a test data set that has not been used during inference. Marginal
composite likelihoods may be estimated using Monte Carlo estimation:
given ns samples ✓1, . . .✓ns from the posterior distribution ⇡(✓ | Y), the
marginal composite likelihood for a new set of observations Y0 is estimated
as bLc(Y0) =

1
ns

Pns
i=1 Lc(✓i;Y0), where Lc(·) is the composite likelihood for

the spatial conditional extremes model. We then denote log(bLc(Y0)) as the
estimated log-score. We sample 5⇥ 104 new realisations of data from the
true model and locate all threshold exceedances from the 256 conditioning
sites used for performing inference. Log-scores are then estimated using
ns = 1000 posterior samples. This results in a log-score of �2502219 for the
adjusted model fit, and �2504558 for the unadjusted model fit, meaning
that the adjusted model fit attains the highest log-score, with a difference of
2338. Nonparametric bootstrapping of the 5⇥ 104 realisations of the spatial
Gaussian random field is performed to examine if the difference in log-score
is significant. Using 5000 bootstrap samples, we find that the adjusted
log-score always is larger than the unadjusted log-score, with a difference
between 1000 and 4500. We conclude that the adjusted posterior performs
better than the unadjusted posterior, even though they both provide good
point estimates and reasonable fits to the simulated data.

6 Case study: Extreme precipitation in Norway

We apply our proposed methodology to the modelling of extreme hourly pre-
cipitation in Norway. Data are presented in Section 6.1 and the inference is
described in Section 6.2. Results are presented and evaluated in Section 6.3.

6.1 Data

We consider 1 ⇥ 1 km2 maps of mean hourly precipitation, produced by
the Norwegian Meteorological Institute by processing raw reflectivity data
from the weather radar located in Rissa (63�4102600N, 10�1201400E) in central
Norway. Such maps are available online (https://thredds.met.no), dating
back to 1 January 2010. We extract data from a rectangular domain, close
to the Rissa radar, of size 31 ⇥ 31 km2. Denote the set of all grid points
in the rectangular domain as S. We then have |S|= 961 unique locations
containing hourly precipitation estimates. A map containing S and the
Rissa radar is displayed in Figure 4. For each s 2 S, we extract all hourly
observations from the summer months (June, July and August) for the years
2010–2021. Removal of missing data gives a total of 25,512 observations
at each location. The number of observations with positive precipitation
amounts at each location varies from 6,000 to 17,000. These large differences
are likely numerical artefacts from the processing method of the Norwegian

https://thredds.met.no
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Figure 4: Elevation (m) map, over the Fosen area in central Norway. The study
area S is located inside the black rectangle, and the Rissa radar is displayed using
a triangle (N).

Meteorological Institute. Consequently, we set all observations smaller than
0.1 mm precipitation equal to 0. This gives a total of between 3,500 and
4,500 positive precipitation observations at each location.

6.2 Modelling and inference

The conditional extremes model in (3) is defined for a random process with
Laplace margins. Thus, in order to perform inference with the conditional
extremes model, we standardise the marginal distributions of the precipita-
tion data using the probability integral transform. This is described in the
supplementary materials.

Initial data exploration shows that the threshold t must be very large for
a model on the form a(d; y0) = ↵(d)y0 and b(d; y0) = y

�(d)
0 to provide a good

fit. Consequently, we choose a threshold equal to the 99.97% quantile of the
Laplace distribution, which yields between 0 and 5 threshold exceedances
at each conditioning site. See the supplementary materials for more details
and discussion on this choice. Estimators for �p(d), µ(d; y0) and ⇣(d; y0)
using this threshold are displayed in the leftmost column of Figure 5. Based
on the lack of changes in b⇣(·; y0) as y0 varies, we choose to model b(d; y0) as
a function not depending on y0. We choose the model

b(d; y0) ⌘ b(d) = 1 + b0 exp {�(d/�b)
b} ,
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Figure 5: Empirical estimators for �p(d), µ(d; y0) and ⇣(d; y0) from three different
data sources. The leftmost column displays empirical estimators using the original
data, while the two rightmost columns displays empirical estimators using simulated
data from the adjusted and the unadjusted model fits, respectively.

with positive parameters b0, �b and b, while we use the model (2) for a(·),
just as in Section 5.

With only one or two threshold exceedances at most conditioning sites,
separate inference for each conditioning site would be highly challenging.
Inference is therefore performed using R-INLA and the composite likelihood,
based on every single conditioning site in S. However, we remove the two
last years of the data before performing inference, so these can be used for
comparing the performance of the adjusted and the unadjusted model fits.
Just as in Section 5, some of the observations far away from the conditioning
sites are discarded during inference, and we also define different triangulated
meshes for each conditioning site. The Matérn smoothness parameter ⌫
is fixed to a value of 1.5. Prior distributions are set equal to those in
Table 1, except that we exchange the parameter �0 from Section 5 with the
parameter b0, where we place a Gaussian prior on log(b0) with zero mean
and a variance of 42. Finally, the post hoc adjustment method is performed
on the output of R-INLA. Once more, we have a large enough sample size
that we choose not to adjust the prior distribution as in (9). Estimates for
✓
⇤ and H(✓⇤) are provided directly from R-INLA, while J(✓⇤) is estimated
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Figure 6: Posterior distributions for all model parameters of the adjusted (solid)
and the unadjusted (dashed) model fits.

using (10) with a sliding window that has a width of 10 hours.

6.3 Results

We simulate 105 extreme realisations from the adjusted and unadjusted
model fits. Statistics of the simulated data are displayed in the two rightmost
columns of Figure 5. There are noticeable differences between the samples
from the two model fits. However, both model fits seem to capture a large
part of the trends in the transformed precipitation data well. Interestingly,
the adjusted conditional second moments b⇣(d; y0) are more different from
those of the original data than those of the unadjusted model fit. However,
this is not reflected in the estimated extremal correlation coefficients, b�p(d).
As our main goal is to capture the trends in �p(d), we see that the adjusted
model fit seems to outperform the unadjusted one overall, especially for
higher values of p. None of the model fits fully capture the rate of weakening
dependence with increasing thresholds, which probably requires a more
complex model for b(d; y0). As discussed in the supplementary materials,
this is outside the scope of this paper and it would require further investiga-
tion in future research. However, any such model extension can easily be
implemented using our proposed R-INLA methodology.

Posterior distributions for all parameters of the two model fits are
displayed in Figure 6. There are considerable differences between the
adjusted and the unadjusted posterior distributions. The latter one again
too focused due to the working assumption of independence in the composite
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likelihood.
To further compare the two model fits, composite log-scores are computed

using the last two years of the available data. These are estimated using
ns = 1000 posterior samples. This results in a composite log-score of
�96520 for the unadjusted model fit, and �88029 for the adjusted model fit,
meaning that the adjusted model fit seems to perform considerably better.
Nonparametric bootstrapping of all time points in the test data is performed
to examine if the difference is significant. Using 5000 bootstrap samples, we
find that the difference in composite log-score is significantly different from
zero at a 0.1% significance level, so we conclude that the adjusted model fit
outperforms the unadjusted model fit.

7 Conclusion

We propose an efficient workflow for robust modelling of spatial high-
dimensional extremes using the spatial conditional extremes model with a
composite likelihood and R-INLA, and a post hoc adjustment method that
corrects for possible model misspecification. The workflow is demonstrated
and shown to perform well in a large-scale simulation study, where we also
propose a methodology for selecting appropriate forms for the standardising
functions a(s; s0, y0) and b(s; s0, y0). Finally, the workflow is applied for
modelling spatial high-dimensional extremes of Norwegian precipitation
data. The methodology performs well, and we are able to capture the main
extremal dependence trends in the data.

In developing our workflow, we describe a flaw in previously-used con-
straining methods for the residual field in the spatial conditional extremes
model, and we develop a novel constraining method that is fast and easy to
use when performing inference with R-INLA. We also propose and demon-
strate a general methodology for defining and implementing a large variety of
spatial conditional extremes models in R-INLA using the rgeneric/cgeneric
frameworks. Additionally, we propose an improved extension to the post
hoc adjustment method that allows for correct model contributions from
the prior distribution.

For transforming precipitation data onto Laplace marginals, a nonpara-
metric method is used for estimating the marginal distributions of the
original data. This method can be problematic if the aim is to estimate
properties of the original and untransformed process. Further work should
therefore focus on improving the transformation method when modelling
extremes with the spatial conditional extremes model. Additionally, even
though the spatial conditional extremes model provides good fits to the data
in both the simulation study and the case study, there are still some small
differences between properties of the data and properties of the model fits.
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These differences can probably be reduced by choosing better, possibly more
complex, parametric or semiparametric forms for a(s; s0, y0) and b(s; s0, y0),
such as, e.g., a(s; s0, y0) = ↵(s; s0, y0)y0 or b(s; s0, y0) = y

�(s;s0,y0)
0 . Further

work should therefore focus on the theoretical properties of more complex
models for a(·) and b(·), and on how to best perform model selection with
the spatial conditional extremes model. Finally, the selection of a threshold
t for the spatial conditional extremes model can have great importance for
the resulting model fit, as seen in the case study. However, to the best of our
knowledge, little attention has so far been given to the problem of threshold
selection in this context. Further work should therefore focus on methods
for choosing thresholds that are large enough to provide a somewhat correct
model fit and small enough to perform inference with low uncertainty.
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Supplementary material
S1 Post hoc adjustment toy example

Shaby (2014) demonstrates that his proposed adjustment method is able to
properly recover the correct frequency properties of the posterior distribution.
Here, we show that the same holds when extending the post hoc method
for adjusting model fits from R-INLA, by examining posterior frequency
properties after modelling a spatial Gaussian random field with an SPDE
approximation of low rank.

Inside the spatial domain S = [0, 25]⇥ [0, 25] we sample n independent
realisations of a spatial Gaussian random field with a Matérn covariance
function, which we observe at 400 random locations. The Matérn covariance

https://github.com/siliusmv/spatialConditionalExtremes
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Table S1: Coverage percentages for unadjusted and adjusted credible intervals
using the SPDE approach with a coarse mesh.

Aim ⌧ ⌧adj ⇢ ⇢adj � �adj

90% 48% 93% 91% 90% 90% 90%
95% 55% 97% 95% 95% 95% 96%
99% 69% 99% 99% 98% 100% 99%

function is

Cov(Z(s), Z(s0)) =
�
2

2⌫�1�(⌫)
(ks� s

0k)⌫K⌫(ks� s
0k), (S1)

where �2 is the marginal variance, ⌫ > 0 is the smoothness parameter
and ⇢ =

p
8⌫/ is the range parameter of Z(s). Furthermore, K⌫ is the

modified Bessel function of the second kind and order ⌫. Our spatial
Gaussian random field has variance parameter �2 = 1, range parameter
⇢ = 12 and known smoothness parameter ⌫ = 1.5. We also add a Gaussian
nugget effect with a precision of ⌧ = 100 to the random field. Parameter
estimation is then performed using an SPDE approximation of low rank,
i.e., based on a coarse triangulated mesh used to discretise the spatial
domain. Such low-rank approximations are typically unable to capture
all the variability in the data, which means that the nugget effect has to
explain a large percentage of the variance, leading to underestimation of
the precision ⌧ . Thus, we expect the KLD minimiser ✓

⇤ to be different
from the true parameters ✓ = (⌧, ⇢,�)T . To estimate the unknown KLD
minimiser ✓⇤, we simulate n = 104 realisations of the Gaussian Matérn field
and compute the maximum likelihood estimator for the misspecified SPDE
model. This gives ✓

⇤ = (⌧⇤, ⇢⇤,�⇤) ⇡ (13.0, 14.5, 1.2)T . As expected, ⌧ is
severely underestimated, while ⇢ and � are slightly overestimated.

For examination of frequency properties, we then sample n = 200 new
realisations of the spatial field, and perform Bayesian inference using R-INLA.
We assign ⌧ a gamma prior with shape 1 and scale 2⇥104, while ⇢ and � are
given a joint penalised complexity (PC) prior (Simpson et al., 2017; Fuglstad
et al., 2019), setting P(⇢ < 12) = 0.5 and P(� > 1) = 0.5. Inference is
performed, the posterior distribution is adjusted as described in Section 4.2
of the main paper, and credible intervals are created for both the adjusted
and the unadjusted model fits. For this simple toy example, we do not focus
on adjusting the prior distribution as described in Section 4.1. We repeat
this procedure 300 times, each time sampling n = 200 new realisations
which we observe at the same 400 locations. Coverage frequencies can then
be evaluated by examining how many of the 300 credible intervals include
the KLD minimiser ✓

⇤.
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Table S1 displays the estimated coverage probabilities detailing how
often the parameters of ✓⇤ are included in their respective credible intervals.
The adjustment of the posterior yields a considerable improvement for ⌧ .
The unadjusted frequency properties of ⇢ and �, however, are already good,
and our adjustment method does not deteriorate the credible intervals for
these parameters.

S2 Case study prerequisites

In order to perform inference with the conditional extremes model for a
random process X(s), one must first standardise it to a random process
Y (s) with Laplace margins. This is performed using the probability integral
transform (Keef et al., 2013):

Y (s) =

(
log

�
2FX(s)(X(s))

 
, X(s) < FX(s)(1/2)

� log
�
2
⇥
1� FX(s)(X(s))

⇤ 
, X(s) � FX(s)(1/2),

where FX(s) is the marginal distribution function of the random variable
X(s). We estimate the marginal distribution functions as the site-wise em-
pirical distribution function of X(s). However, independent standardisation
of data at each location can lead to an unrealistic lack of smoothness in the
transformed process Y (s). Therefore, we apply a sliding window approach
for computing the empirical distribution function, where the distribution
at location s is estimated as the empirical distribution function of pooled
data from all locations s

0 such that ks� s
0k r for some radius r. Based

on exploratory analysis we find r = 5 km to yield a realistic degree of
smoothness in the estimated marginal distributions of X(s) (results not
shown).

A problem when modelling precipitation is that the empirical distribution
has a point mass at zero. This leads to Y (s) having a truncated Laplace
distribution with a point mass, which can cause problems during inference.
In order for Y (s) to follow a non-truncated Laplace distribution, we choose
to remove all zeros from the process X(s) and only focus on positive
precipitation. This makes us unable to model the absence of precipitation,
which can lead to a slight overestimation of return levels for spatially
aggregated precipitation. However, applying the fitted model for estimating
properties of the untransformed process X(s) is outside the scope of this
paper. We believe that our choice of removing all zeros and estimating
marginals using empirical distribution functions of the positive precipitation
values is acceptable given the aim of our paper. In future research, we plan
to properly model precipitation intermittence by appropriately accounting
for the point mass at zero.
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Figure S1: Empirical estimators for µ(d; y0) and ⇣(d; y0) using the transformed
precipitation data for y0 > 4 (99% quantile of the Laplace distribution)

Similarly to the simulation study in Section 5 of the main paper, we
examine extremal correlation coefficients and empirical conditional moments
of the data in order to propose a good model for the extremes. The spatial
domain in the case study is small enough that we can assume stationarity in
the data, meaning that we can employ the same estimation methods as in the
simulation study. Empirical conditional moments of the data are displayed
in Figure S1. These estimators imply that the threshold t must be chosen
quite large for performing successful modelling with the spatial conditional
extremes model. If the threshold is chosen too low, we experience crossing
in the conditional mean, i.e., for y1 6= y2, bµ(d; y1) is both smaller and larger
than bµ(d; y2) depending on the value of d. This means that a model for a(·)
on the form a(d; y0) = ↵(d)y0 becomes unsuitable. Furthermore, there is a
clear change in the shape of the conditional variance as y0 increases, and
the spread in variance at “the edge of the storm” is so large that a model
on the form b(d; y0) = y

�(d)
0 would require �(d) ⇡ 2 for small distances

d. However, �(d) > 1 leads to an ill-defined model (Wadsworth & Tawn,
2022). A more flexible model of the form a(d; y0) = ↵(d, y0)y0, that allows
crossing, and b(d; y0) = y

�(d,y0)
0 , that allows �(d, y0) > 1 for small values of

y0, would probably fit well to the data, and could easily be implemented
within the rgeneric/cgeneric framework. However, developing complex
new variants of the spatial conditional extremes model is outside the scope of
this paper. Consequently, we instead choose a large threshold t equal to the
99.97% threshold of the Laplace distribution, which removes the problems
of crossing and excessively large values of �(d). As we have approximately
4000 positive observations at each location, this corresponds to a mean of
1.2 threshold exceedances at each conditioning site. In practice, it yields
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between 0 and 5 threshold exceedances at each conditioning site.
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This note uses the same notation as Paper 3.
As discussed by Besag (1974), if one defines a joint distribution by

specifying a set of conditional distributions, the resulting joint distribution
may become self-inconsistent. This means that joint probabilities may not
be well defined, because different ways of integrating over the conditional
distributions can yield different answers. Since the conditional extremes
distribution is defined through a set of conditional distributions, its joint
distribution may therefore become self-inconsistent. This self-inconsistency
is examined by Heffernan and Tawn (2004) and Liu and Tawn (2014), who
show that it is impossible to achieve self-consistency for finite thresholds t,
given extremal independence, i.e., a(s; s0, y0) < y0, when the distribution of
the residual field Z(·) is smooth. The consequence of this self-inconsistency
is that probabilities for events where more than one random variable is
extreme are ill-defined. As an example, assume that the bivariate vector
(X,Y )> can be described by the conditional extremes model with threshold
t. The probability P(X > t, Y > t) that both components exceed the
threshold can, e.g., be computed as

Z 1

t

Z 1

t
⇡(x | y)⇡(y)dydx, or

Z 1

t

Z 1

t
⇡(y | x)⇡(x)dxdy,

where ⇡(·) denotes different kinds of probability density functions. Due
to the lack of self-consistency between conditional models for ⇡(x | y) and
⇡(y | x), these two integration paths might provide different answers.

The lack of self-consistency causes problems when one attempts to
simulate from the global conditional extremes distribution, which in the
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bivariate case is the joint distribution of [(X,Y ) | max(X,Y ) > t]. In
order to sample from this distribution, one must first choose one specific
integration path and define it as the “correct one”. Then, one must sample in
a way that corresponds to this integration path. Consequently, two different
simulation algorithms for the global conditional extremes distribution may
produce samples with considerably different properties. As an example, for
a d-dimensional random vector X, the simulation algorithm of Keef et al.
(2013) is based on estimating probabilities as

P(X 2 · | max(X) > t) =
dX

i=1

⇡
(1)
i

P(X 2 ·, Xi = max(X) | Xi > t)

P(Xi = max(X) | Xi > t)
, (2)

where ⇡(1)i = P(Xi = max(X) | max(X) > t), while the Wadsworth and
Tawn (2022) algorithm is based on estimating probabilities as

P(X 2 · | max(X) > t) =

P
K

Pd
i=1 ⇡

(2)
i P(X 2 · \RK | Xi > t)/|K|

P
K

Pd
i=1 ⇡

(2)
i P(X 2 RK | Xi > t)/|K|

,

(3)
where ⇡(2)i = P(Xi > t)/

Pd
j=1 P(Xj > t), K is an element in the power set

of {1, 2, . . . , d}, and

RK = {x = (x1, . . . , xd)
> 2 Rd : xi > t 8 i 2 K,xj  t 8 j 62 K}.

These two algorithms clearly correspond to two different integration paths,
and may therefore provide different results, when combined with different
conditional extremes models.

We compute P(X > t, Y > t | max(X,Y ) > t) using the two integration
paths (2) and (3), for the symmetrical conditional extremes model where
X and Y have exponential marginals and the conditional distribution of
[X | Y > t] is Gaussian with mean µ+ ↵Y and variance �2Y 2�, and vice
versa for [Y | X > t]. If µ = 0, � = 1, ↵ = 0.9, � = 0.8 and t = 4,
then equation (2) gives a probability of 0.17, whereas equation (3) gives a
probability of 0.37. We also estimate the probability using Monte Carlo
simulation and find, as expected, that the Keef et al. (2013) algorithm agrees
with (2), while the Wadsworth and Tawn (2022) algorithm agrees with (3).
This massive difference in computed probabilities could potentially have
severe consequences for, e.g., infrastructure built to withstand a certain
return level of hourly precipitation. As none of the possible integration
paths are neither more nor less correct than the others, it is our opinion that
one should be extremely careful when estimating return levels by sampling
from the conditional extremes model where the conditioning variable is
unknown, i.e., [X | max(X) > t]. Instead, we believe that one should
prefer to estimate return levels by first choosing a specific conditioning
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site/variable, e.g., Xi, and then sampling from the conditional extremes
distribution of [X | Xi > t], which is both proper and self-consistent.
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Abstract

We develop a methodology for modelling and simulating high-
dimensional spatial precipitation extremes, using a combination of the
spatial conditional extremes model, latent Gaussian models and inte-
grated nested Laplace approximations (INLA). The spatial conditional
extremes model requires data with Laplace marginal distributions,
but precipitation distributions contain point masses at zero that com-
plicate necessary standardisation procedures. We propose to model
conditional extremes of nonzero precipitation only, while separately
modelling precipitation occurrences. The two models are then com-
bined to create a complete model for extreme precipitation. Nonzero
precipitation marginals are modelled using a combination of latent
Gaussian models with gamma and generalised Pareto likelihoods. Four
different models for precipitation occurrence are investigated. New
empirical diagnostics and parametric models are developed for de-
scribing components of the spatial conditional extremes model. We
apply our framework to simulate spatial precipitation extremes over a
water catchment in Central Norway, using high-density radar data.
Inference on a 6000-dimensional data set is performed within hours,
and the simulated data capture the main trends of the observed data
well.

Keywords: Extreme precipitation, Spatial conditional extremes, INLA,
Computational statistics
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1 Introduction

Europe is currently experiencing one of its most flood-intense periods within
the last 500 years (Blöschl et al., 2020), and floods are projected to become
more frequent and damaging in the future due to ongoing climate changes
(Yin et al., 2018; Allan et al., 2020). Thus, flood mitigation has the potential
of avoiding numerous fatalities and large economical losses (Jongman, 2018).
Flood impacts are often assessed using hydrological impact studies that rely
on climate variables such as temperature and precipitation as input, typically
provided from interpolated observational data sets or climate projections
from general circulation models and regional climate models (Hanssen-Bauer
et al., 2015; Giorgi, 2019). However, precipitation is a localised phenomenon
with much space-time variability, which the observational data sets and
climate projections are unable to capture due to computational constraints
and sparsity of observations in space and time (Westra et al., 2014; Lopez-
Cantu et al., 2020). The observational data sets may also be too short in time
to fully capture the risks and consequences of floods, as the most devastating
extreme weather events with high flood risk may simply have not happened
yet. Stochastic weather generators that simulate realistic climate data have
therefore become an important climate impact assessment method, which
allows for better exploration of complex weather phenomena by providing
longer time series, or by capturing important small-scale spatio-temporal
variability that happens “inside the grids” of too coarse climate projections
and interpolated data sets (Ailliot et al., 2015; Maraun & Widmann, 2018).

The spatial distribution of precipitation is important for assessing flood
risk, but most stochastic weather generators are purely temporal, and the
spatial stochastic weather generators tend to focus on simulating “non-
extreme” precipitation. Thus, little focus has been given to the simulation of
extreme high-resolution precipitation data in space or space-time. Palacios-
Rodríguez et al. (2020) simulate high-resolution spatio-temporal precipita-
tion extremes, but their method is based on resampling transformations of
observed extreme events, which makes it impossible to generate events with
completely new behaviour. Richards et al. (2022, 2023) develop promis-
ing spatial simulations of extreme hourly precipitation, but their method
is based on an inefficient inference scheme that becomes troublesome for
higher-dimensional problems. In this paper we develop a framework for
high-dimensional spatial modelling and simulation of extreme precipitation,
which we apply to a data set of high-resolution hourly precipitation data
from a weather radar in Norway.

Weather radars observe precipitation by sending out radio signals and
measuring how much of the signal is reflected back. This makes it possible to
create high-resolution spatio-temporal precipitation data sets. The data sets
do not capture marginal distributions as well as, e.g., rain gauge data, but
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they provide reliable descriptions of spatio-temporal dependence (Bournas
& Baltas, 2022). To the best of our knowledge, radar data are currently
among the best available products for capturing the small-scale spatio-
temporal dependence structure of precipitation. Yet, not many have taken
advantage of this, and we are not aware of any previous attempts in the
literature of spatial or spatio-temporal modelling of precipitation extremes
based on radar data. We believe that radar data have been under-used in
the literature, and in this paper we attempt to demonstrate the potential
of radar data by using them for producing high-resolution simulations of
extreme hourly precipitation.

Our method builds upon extreme value theory (Davison & Huser, 2015),
which has shown great success at modelling and assessing environmental
risks such as extreme temperature (Castro-Camilo et al., 2021; Simpson &
Wadsworth, 2021), precipitation (Huser & Davison, 2014; Opitz et al., 2018;
Richards et al., 2022) and wind (Castro-Camilo et al., 2019). An important
part of extreme value theory is the modelling of extremal dependence,
often described by conditional exceedance probabilities. Given a spatial
random field, X(s) with s 2 S ⇢ R2, we define the conditional exceedance
probability

�p(s1, s2) = P(X(s1) > F
�1
s1 (p) | X(s2) > F

�1
s2 (p)),

where F�1
s is the quantile function of X(s), and the tail correlation coefficient

�(s1, s2) = limp!1 �p(s1, s2). Two random variables, X(s1) and X(s2),
are called asymptotically dependent if �(s1, s2) > 0, and asymptotically
independent otherwise. Classical models for spatial extremes are based
on max-stable processes (Davison et al., 2019), which focus on modelling
pointwise maxima and assume that � is positive while �p is nearly constant
with level p ⇡ 1. However, experience has shown that environmental data
often exhibit weakening dependence as events become more extreme (Huser
et al., 2021), i.e., �p continuously decreases as p ! 1. Thus, alternative
models that focus on capturing the so-called subasymptotic dependence
structure explained by �p are crucial for correctly assessing the risks of
spatial extremes in environmental data. A spatial process used for modelling
climate data should also be able to exhibit both asymptotic dependence at
short distances and asymptotic independence at large distances, but most
classical extreme models are unable to describe nontrivial changes in the
asymptotic dependence class as a function of distance (Huser & Wadsworth,
2022). This has led to a surge of new models for spatial extremes with more
flexible subasymptotic and asymptotic dependence structures, including
inverted max-stable processes and max-mixture models, (Wadsworth &
Tawn, 2012), max-infinitely divisible processes (Huser et al., 2021), scale-
mixture models (Huser et al., 2017; Engelke et al., 2019; Huser & Wadsworth,
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2019), kernel convolution models (Krupskii & Huser, 2022) and the spatial
conditional extremes model (Wadsworth & Tawn, 2022).

Statistical modelling of spatial dependence often leads to computationally
demanding inference. This is particularly true for spatial extreme value
models, where a majority of the most popular models have to rely on low-
dimensional composite likelihood methods for achieving computationally
tractable inference (Padoan et al., 2010; Castruccio et al., 2016). The
Gaussian random field is popular in traditional spatial and spatio-temporal
statistics, as it has nice theoretical properties while allowing for fast and
realistic modelling of complex processes (Gelfand et al., 2010). In particular,
the latent Gaussian modelling framework has shown great success within
a large range of applications (Banerjee et al., 2014), by yielding flexible
and realistic models that utilise assumptions of Gaussianity and conditional
independence for performing fast inference using integrated nested Laplace
approximations (INLA; Rue et al., 2009). Yet, latent Gaussian models
have not achieved similar success for modelling spatial extremes, as their
dependence structures are unsuitable for most classical spatial extreme value
models (Davison et al., 2012). However, Gaussian dependence structures
are becoming more suitable for some newer breeds of spatial extreme value
models, such as the spatial conditional extremes model (Wadsworth & Tawn,
2022). Indeed, the model only requires a few minor alterations to become
a latent Gaussian model, which makes it possible to perform fast high-
dimensional inference with INLA (Simpson et al., 2023; Vandeskog, Martino,
& Huser, 2022). In this paper, we build upon the work of Vandeskog,
Martino, and Huser (2022) and we develop new empirical diagnostics and
parametric models for describing components of the spatial conditional
extremes model, as well as improved models for the marginal distributions
and a new methodology for describing precipitation zeros.

The spatial conditional extremes model describes the distribution of a
spatial random field {Y (s)}s2S⇢R2 , with Laplace marginal distributions,
given that it exceeds a large threshold ⌧ at some preselected location s0 2 S.
The model states that, for ⌧ large enough, the process [Y (s) | Y (s0) = y0],
with y0 > ⌧ , is approximately equal in distribution to a spatial random field
that only depends on y0 through a location parameter a(s; s0, y0) and a
scale parameter b(s; s0, y0) > 0. An important part of the modelling process
is therefore to choose a suitable class of functions for a(·) and b(·), and to
choose a threshold ⌧ that is high enough to yield little model bias, but also
small enough to efficiently utilise the data. To the best of our knowledge,
this threshold selection problem has not yet attracted much focus in the
literature. In this paper we develop new empirical diagnostics for finding
reasonable values of the threshold ⌧ and the forms of a(·) and b(·), and
we propose a new class of parametric functions for a(·) and b(·) that can
provide suitable fits to data at much lower thresholds than used previously
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(e.g., Vandeskog, Martino, & Huser, 2022), thus allowing us to utilise more
of the data for more efficient inference, without too much model bias.

To fit the spatial conditional extremes model, one must first standardise
the data to have Laplace marginal distributions. However, the marginal
distributions of hourly precipitation contain a point mass at zero, which
makes it impossible to directly transform them to the Laplace scale using the
probability integral transform. Richards et al. (2022, 2023) solve this problem
by censoring all zeros, but this leads to less efficient inference techniques
such as low-dimensional composite likelihoods, and it cannot easily be
combined with the INLA framework. Inspired by the so-called Richardson-
type stochastic weather generators (Richardson, 1981), we instead propose
to model the conditional extremes of nonzero precipitation intensity, while
separately modelling the distribution of precipitation occurrences in space.
We then combine the two models to describe the full distribution of spatial
conditional precipitation extremes.

To transform nonzero precipitation data onto the Laplace scale, we
must first estimate their marginal distributions in space and time. In the
spatial conditional extremes literature, this is commonly achieved using
the empirical distribution functions at each location, possibly combined
with a generalised Pareto (GP) distribution for describing the upper tails
(Simpson & Wadsworth, 2021; Richards et al., 2022; Wadsworth & Tawn,
2022; Shooter et al., 2022). However, empirical distribution functions can
be unsuitable if the marginal distributions of the data vary in space and
time, which is often the case for precipitation and other climate variables.
Since both the total amount and the spatial distribution of precipitation
are important properties for assessing flood risk, we here focus equally
much on describing properties of the marginal and the spatial precipitation
distribution. Therefore, following Opitz et al. (2018) and Castro-Camilo
et al. (2019), we apply a complex spatio-temporal model based on two
different latent Gaussian models for describing the marginal distributions.
The first model describes the bulk of the data using a gamma likelihood,
while the second model describes the upper tails using a GP likelihood.

To the best of our knowledge, there have not been any previous attempts
to model precipitation occurrences in space given that extreme precipitation
has been observed at a chosen conditioning site. We here propose multiple
competing models for describing conditional precipitation occurrences. The
probit model is a common regression model for describing binary data
(Fahrmeir et al., 2013; Verdin et al., 2015), and we propose to model
precipitation occurrences using both the standard probit model and a
spatial version of it. We show that both probit models are latent Gaussian
models and perform fast inference for them using INLA. However, our
probit models produce occurrence processes that are independent of the
precipitation intensity process, which is unrealistic. The probit model also



176 Data

struggles to capture some other important spatio-temporal properties of
smooth high-resolution precipitation data. Thus, we propose an additional
third model, denoted the threshold model, which is designed to capture
the dependence on the precipitation intensity process and to better capture
the spatial smoothness properties of precipitation occurrences. For better
baseline comparisons, we also propose an occurrence model in which “no
precipitation” is interpreted as a tiny but positive amount of precipitation,
or in other words, that it always rains.

To sum up, in this paper we develop a framework for modelling and
simulating extreme precipitation in space, based on latent Gaussian models
and the spatial conditional extremes model. This is applied for simulating
precipitation extremes using a high-resolution data set of hourly precipita-
tion from a weather radar in Norway. We separately model precipitation
occurrences and intensities to avoid problems with the point mass at zero
precipitation. The spatial distribution of precipitation occurrences is de-
scribed using four competing models, while the marginal distributions of
nonzero precipitation are modelled by merging two latent Gaussian models,
with a gamma likelihood and a GP likelihood, respectively. We employ a
latent Gaussian model version of the spatial conditional extremes model
for describing the extremal dependence of the nonzero precipitation. We
also develop new empirical diagnostics for choosing model components of
the spatial conditional extremes model, and we use these for proposing new
parametric functions for the model components, which allow for better data
utilisation through a lower threshold. The remainder of the paper is organ-
ised as follows: The weather radar data are presented in Section 2. Then,
Section 3 describes our general framework for modelling spatial extreme
precipitation, and in Section 4, we apply our framework for modelling and
simulating extreme precipitation using the chosen radar data. The paper
concludes with a final discussion in Section 5.

2 Data

The Rissa radar is located in the Fosen region in Central Norway. It scans
the surrounding area multiple times each hour by sending out radio waves
and measuring how much is reflected back. The Norwegian Meteorolog-
ical Institute processes the observed reflectivity data and uses them to
create gridded 1⇥ 1 km2 resolution maps of estimated hourly precipitation,
measured in mm/h (Elo, 2012). These precipitation maps are freely avail-
able, dating back to 1 January 2010, from an online weather data archive
(https://thredds.met.no).

We use the radar precipitation maps for modelling and simulating
extreme hourly precipitation over the Stordalselva catchment, located close

https://thredds.met.no
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Figure 1: Left plot: Map of Norway with a square defining the spatial domain S.
Right plot: Elevation map of S. The Rissa radar is displayed at the bottom of the
map, and the five conditioning sites used in Section 4 are enumerated and marked
by black circles. The Stordalselva catchment is displayed using a black polygon.

to the Rissa radar. To achieve this, we download all data for 2010–2022
inside a spatial domain S of size 91⇥ 71 = 6461 km2, centred around the
Stordalselva catchment. Figure 1 displays the domain S and the locations
of the Rissa radar and the Stordalselva catchment. The spatial conditional
extremes model allows one to model and simulate extremes occurring at any
site of interest, by conditioning on that site experiencing extreme behaviour
(see Section 3 for more details). For the sake of illustration, we choose
five such conditioning sites, somewhat equally spaced throughout the water
catchment, for modelling and simulating extreme precipitation in Section 4.
These sites are also displayed in Figure 1. There are considerable differences
between extreme summer precipitation and extreme winter precipitation
in Norway (Dyrrdal et al., 2015), and we therefore choose to only model
summer precipitation from June, July and August, which is when most of
the intense precipitation events occur in Norway. There are some distortions
in the data close to the Rissa radar, so we remove all observations from
locations that are within 5 km from the radar.

It can be difficult to distinguish between little and no precipitation
using reflectivity data, and the estimated precipitation data contain both
exact zeros and values with magnitudes as small as 10�5 mm/h. In the
Supplementary Material, we show that there are large differences in the
proportions of exact zeros for different times, due to an upgrade of the
weather radar in 2018, but that the proportion of observations smaller than
0.1 mm/h is approximately constant in time. We therefore round every
observation smaller than 0.1 mm/h down to zero.
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3 Model framework

3.1 Model overview

We model the spatial extremal dependence structure of the hourly precipita-
tion process, Xt(s), at location s 2 S ⇢ R2 and time t 2 T ⇢ N, using the
spatial conditional extremes model (Wadsworth & Tawn, 2022). The model
describes the conditional distribution of Xt(s) given that Xt(s0) > ⌧t(s0),
where s0 is some chosen conditioning site and ⌧t(s) is a large threshold that
may vary in space and time. The conditioning site can be located anywhere
in S, which makes us free to place s0 at a specific location of interest, for
modelling and simulating only the extremes that we care about.

To use the spatial conditional extremes model, we must first transform
Xt(s) into a standardised process X̃t(s), with Laplace marginal distributions
at all locations and time points in S ⇥ T , using the probability integral
transform X̃t(s) = F

�1[Fs,t(Xt(s))], where F
�1 is the quantile function of

the Laplace distribution and Fs,t is the cumulative distribution function
of Xt(s) (Keef et al., 2013). However, the marginal distribution of hourly
precipitation contains a point mass at zero, which means that the marginal
distribution of X̃t(s) also contains a point mass, making it different from
the Laplace distribution in its lower tail. Richards et al. (2022, 2023) tackle
this problem by left-censoring all zeros. This yields promising results, but
the censoring makes high-dimensional inference computationally intractable
without the use of low-dimensional composite likelihoods. Moreover, this ap-
proach is still computationally demanding as it relies on evaluating bivariate
Gaussian distributions many times. We therefore propose another approach
for modelling Xt(s) with the spatial conditional extremes model. Assume
that hourly precipitation can be represented as Xt(s) = X

+
t (s)It(s), where

X
+
t (s) = [Xt(s) | Xt(s) > 0] represents precipitation intensity and It(s)

is a binary random process that equals 1 when Xt(s) > 0 and 0 when
Xt(s) = 0. So-called Richardson-type stochastic weather generators de-
pend on this formulation by first simulating the precipitation occurrence
It(s) and then simulating the precipitation intensity X

+
t (s) if It(s) = 1

(Richardson, 1981). We build upon this approach by, instead of modelling
[Xt(s) | Xt(s) > ⌧t(s)], performing separate modelling of the conditional
intensity process [X+

t (s) | Xt(s) > ⌧t(s)] and the conditional occurrence
process [It(s) | Xt(s) > ⌧t(s)], and then setting

[Xt(s) | Xt(s) > ⌧t(s)] =
⇥
X

+
t (s)It(s) | Xt(s) > ⌧t(s)

⇤
. (1)

The marginal distribution F
+
s,t, of X+

t (s), does not contain a point mass,
so it can more easily be transformed into the Laplace distribution. Thus,
we describe the conditional intensity process with the spatial conditional
extremes model, while the conditional occurrence process is described with a
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suitable binary model. Our model for F+
s,t is described in Section 3.3. Then,

our model for the conditional intensity process is described is Section 3.4, and
our model for the conditional occurrence process is described in Section 3.5.
Most of our models fall within the framework of latent Gaussian models,
which are introduced in Section 3.2.

3.2 Latent Gaussian Models

A latent Gaussian model assumes that the observations y = (y1, y2, . . . , yn)
>

are conditionally independent given a latent Gaussian random field x =
(x1, x2, . . . , xm)> and a set of hyperparameters ✓1, namely

[y | x,✓1] ⇠
nY

i=1

⇡(yi | ⌘i(x),✓1), [x | ✓2] ⇠ N (µ(✓2),Q
�1(✓2)),

where the likelihood
Qn

i=1 ⇡(yi | ⌘i(x),✓1) is a parametric distribution with
parameters ⌘i(x) and ✓1, the linear predictor ⌘i(x) is a linear combination
of the elements in x and the latent field x is conditionally Gaussian with
mean vector µ and precision matrix Q, given the hyperparameters ✓2. The
prior distributions of ✓1 and ✓2 are ⇡(✓1) and ⇡(✓2), respectively.

The latent Gaussian modelling framework is highly flexible, as the likeli-
hood can stem from an essentially arbitrary parametric distribution, while
information from explanatory variables and a large variety of dependency
structures can be incorporated into the linear predictor ⌘i(x). Additionally,
non-Gaussian structures can be incorporated into the model through the
likelihood and the hyperparameters ✓1 and ✓2, which can be given any kind
of prior distributions. Another advantage of the latent Gaussian model
framework is that it allows for fast approximate inference using INLA, which
is implemented in the R-INLA package (van Niekerk et al., 2021, 2023). The
package contains a large range of pre-implemented model components for
the linear predictor, including splines, AR-models, random walk models
and the so-called stochastic partial differential equation (SPDE) model of
Lindgren et al. (2011), which produces sparse approximations of Gaussian
random fields with Matérn autocorrelation function

�(d) =
1

2⌫�1�(⌫)
(d)⌫K⌫(d), (2)

where d is the distance between two locations, ⌫ > 0 is the smoothness
parameter, ⇢ =

p
8⌫/ is the range parameter and K⌫ is the modified Bessel

function of the second kind and order ⌫. Thus, R-INLA and the latent
Gaussian model framework make it easy to quickly develop and perform
inference with complex models for a large variety of applications.
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3.3 Modelling the marginals

We model marginal distributions of the intensity process X
+
t (s) by first

modelling the bulk of the data with the gamma distribution, and then the
upper tail with the GP distribution. Specifically, we model margins as

F
+
s,t(x) =

(
Gs,t(x) x 6 ut(s),

Gs,t(ut(s)) + (1�Gs,t(ut(s)))Hs,t(x� ut(s)) x > ut(s),
(3)

where Gs,t and Hs,t are cumulative distribution functions of the gamma
and GP distributions respectively, both with parameters that might vary
in space and time, while ut(s) is the pu-quantile of Gs,t, for some large
probability pu. This “split-modelling” approach is a common choice for
modelling precipitation when aiming to describe both the bulk and the
upper tail of the distribution (e.g., Opitz et al., 2018). We use the gamma
and GP parametrisations of Castro-Camilo et al. (2019), which give a
probability density function for the gamma distribution on the form

g(x) =
x
�1

�()

✓
G

�1(↵;, 1)

 ↵

◆

exp

✓
G

�1(↵;, 1)

 ↵

◆
, x > 0, , ↵ > 0

where  is the standard shape parameter, ↵ is a fixed probability, G�1(↵;, 1)
is the ↵-quantile of a gamma distribution with shape  and scale 1, and
 ↵ is the ↵-quantile of the gamma distribution. Using this parametrisation
for the likelihood of our latent Gaussian model lets us directly estimate the
↵-quantile of the data through the parameter  ↵. The GP distribution has
cumulative distribution function

H(x) =

8
<

:
1�

⇣
1 +

n
(1� �)�⇠ � 1

o
x
��

⌘�1/⇠

+
, ⇠ 6= 0,

1� (1� �)x/�� , ⇠ = 0,
�� > 0, ⇠ 2 R,

with (a)+ = max(0, a), where ⇠ is the tail parameter of the GP distribution,
� is a fixed probability and the parameter �� equals the �-quantile of the
GP distribution. The support of the GP distribution is (0,1) for ⇠ > 0,
while it is

⇣
0,��

n
1� (1� �)�⇠

o⌘
for ⇠ < 0.

We estimate the parameters of Gs,t and Hs,t separately, with two dif-
ferent latent Gaussian models. For the parameters of Gs,t, we use a latent
Gaussian model with a gamma likelihood, where the shape parameter  is
a hyperparameter that is constant in space and time, while  ↵ is allowed
to vary in space and time through the linear predictor ⌘ = log ↵. Setting
↵ = pu lets us directly estimate the threshold ut(s), while estimating the
parameters of Gs,t. The value of pu, the components of ⌘ and the priors
for ✓ vary depending on the application, and are therefore described in
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Section 4.1. After having performed inference with R-INLA, we estimate the
parameters of Gs,t as the posteriors means of  and  ↵.

Having estimated the threshold ut(s), we then model the distribution
Hs,t of the threshold exceedances [X+

t (s) � ut(s) | X+
t (s) > ut(s)] with

the GP distribution. Here, we apply a latent Gaussian model with a GP
likelihood, where the tail parameter ⇠ is a hyperparameter that is constant
in space and time, while the linear predictor is ⌘ = log ��, where we set
� = 0.5, so that �� is the GP median. Once more, the parameters of Hs,t are
estimated as the posterior means of ⇠ and �� . Note that the GP likelihood
within R-INLA only allows for modelling ⇠ > 0. However, this should not
be too problematic when modelling hourly precipitation data, as there is
considerable evidence in the literature that precipitation is heavy-tailed, and
thus it should be modelled with a non-negative tail parameter, especially
for short temporal aggregation times (Cooley et al., 2007; Van de Vyver,
2012; Papalexiou & Koutsoyiannis, 2013; Huser & Davison, 2014).

3.4 Spatial modelling of the conditional intensity process

We transform the precipitation intensities X
+
t (s) into the standardised

process Yt(s), with Laplace marginal distributions, using the probabil-
ity integral transform, Yt(s) = F

�1[F+
s,t(X

+
t (s))]. Given a conditioning

site s0 and a threshold ⌧t(s0), we then model the spatial distribution of
Yt(s) given that Xt(s0) > ⌧t(s0), which is the same conditioning event as
Yt(s0) > F

�1[F+
s0,t(⌧t(s0))]. We assume that the notion of “extremes” can

vary across time and space on the original precipitation scale, but not on
the transformed Laplace scale. We therefore set ⌧t(s0) equal to a chosen
quantile of F+

s0,t, which gives the constant threshold ⌧ = F
�1[F+

s0,t(⌧t(s0))]
on the Laplace scale. The spatial conditional extremes model of Simpson
et al. (2023) now states that, for ⌧ large enough, the conditional process
[Yt(s) | Yt(s0) = y0 > ⌧ ] is Gaussian,

[Yt(s) | Yt(s0) = y0 > ⌧ ]
d
= a(s; s0, y0)+b(s; s0, y0)Zt(s; s0)+"t(s; s0), (4)

where a(·) and b(·) are two standardising functions, Zt(s; s0) is a spatial
Gaussian random field with Zt(s0; s0) = 0 almost surely, and "t(s; s0) is
Gaussian white noise with "t(s0; s0) = 0 almost surely. This is the same
as a latent Gaussian model with a Gaussian likelihood and latent field
a(·) + b(·)Z(·), which means that computationally efficient approximate
inference can be performed using INLA. Simpson et al. (2023) demonstrate
how to perform efficient high-dimensional inference by using R-INLA and
modelling Zt(s; s0) with the SPDE approximation. Vandeskog, Martino,
and Huser (2022) build upon their work and develop a methodology for
implementing computationally efficient parametric models for a(s; s0) and
b(s; s0) in R-INLA and a method for efficient constraining of Zt(s; s0) such
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that Zt(s0; s0) = 0 almost surely. We apply their methodology for mod-
elling the spatial distribution of conditional precipitation extremes, while
developing new diagnostics and models for the standardising functions a(·)
and b(·).

3.5 Spatial modelling of the conditional occurrence process

Four competing models are applied to describe the spatial distribution of
conditional precipitation occurrences, [It(s) | Xt(s0) > ⌧t(s0)]. One of these
is the relatively common spatial probit model, which assumes that It(s)
depends on an underlying latent Gaussian process Zt(s) such that It(s) = 1
when Zt(s) + "t(s) > 0 and It(s) = 0 otherwise, where "t(s) is zero-mean
Gaussian white noise. Thus, the process It(s) is conditionally independent
given Zt(s), with success probability

P [It(s) = 1 | Zt(s)] = �(Zt(s)/�),

where �(·) is the cumulative distribution function of the standard normal
distribution and �

2 is the variance of "t(s). This means that the probit
model is in fact a latent Gaussian model with a Bernoulli likelihood, and that
we can perform fast inference using INLA. Within R-INLA, we decompose
Zt(s) into Zt(s) = µ(s) + Z

⇤
t (s), where Z

⇤
t (s) is a zero-mean Gaussian

random field, and µ(s) describes the mean of Zt(s). For faster inference,
we model Z⇤

t (s) with the SPDE approximation. Assuming stationarity, we
enforce It(s0) = 1 by modelling µ(s) as a function of the distance d between
s and s0, i.e., µ(d) ⌘ µ(s) with d = ks � s0k. Then we ensure that µ(0)
is positive and large, while also enforcing that Z

⇤
t (s0) = 0 almost surely,

using the constraining method of Vandeskog, Martino, and Huser (2022).
This does not guarantee that P(It(s0) = 1) = 1 exactly, but if µ(0) is large
enough, then P(It(s0) = 1) ⇡ 1 for most practical purposes. The exact
structure of µ(s) varies depending on the application in question.

The spatial probit model can produce realistic realisations of the spatial
binary process, but it can also struggle in situations where the binary field is
smooth, in the sense that the variance of "t(s) is considerably smaller than
the variance of Zt(s). To ensure smooth model realisations, the variance
of Zt(s)/� must become so large that the probability �(Zt(s)/�) always is
close to either 0 or 1, and this large variance can make it difficult to reliably
estimate trends in the mean µ(s). For this reason, we also attempt to model
the conditional occurrence process using a probit model without any spatial
effects, i.e., where we remove Z

⇤
t (s). This model typically fails at providing

realistic-looking realisations of smooth binary processes, but it can perform
considerably better at capturing trends in the mean structure.

Our probit models are independent of the conditional intensity model,
so it is possible for the simulated occurrence samples to create highly non-
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smooth precipitation realisations where areas with large precipitation values
suddenly contain a “hole” of zeros close to the most extreme observations.
This is an unrealistic behaviour that we wish to avoid. Our third modelling
strategy is therefore based on the assumption that the occurrence process
is dependent upon the intensity process such that only the smallest values
of X+

t (s) gets turned into zeros. Thus, the third approach, denoted the
threshold model, estimates the overall probability p of observing zeros in
the data, and then set It(s) equal to zero whenever X

⇤
t (s) is smaller than

its estimated p-quantile. Lastly, for improved base-line comparisons, we add
a fourth occurrence model, which interprets “no precipitation” as a tiny but
positive amount of precipitation, i.e., It(s) ⌘ 1. We denote this the nonzero
model.

4 Simulating extreme hourly precipitation

We apply the models from Section 3 to the data from Section 2 for modelling
and simulating spatial realisations of extreme hourly precipitation. In
Section 4.1 we model and standardise the marginal distributions of the data.
Then, in Section 4.2 and Section 4.3, we model the conditional intensities and
occurrences of extreme precipitation, respectively. Finally, in Section 4.4,
we combine all the model fits for simulating spatial realisations of extreme
hourly precipitation.

4.1 Modelling the marginals

We model the marginal distribution F
+
s,t of nonzero precipitation using the

gamma-GP split-model from Section 3.3, where we choose ↵ = pu = 0.95.
We attempt to model the linear predictor using a separable space-time
model where the spatial effect is modelled with a spatial Gaussian random
field, described using the SPDE approximation, and the temporal effect is
modelled with a Gaussian smoothing spline, also described using the SPDE
approximation. However, we find that the spatial effect is estimated to be
almost constant, and that a purely temporal model using only the Gaussian
smoothing spline performs better. We therefore decide to use the purely
temporal model, where the linear predictor is equal to a temporal Gaussian
smoothing spline. A model based on splines is unsuitable for prediction
outside the observed spatio-temporal domain, but the aim of this paper is
modelling, and not forecasting, so we find it to be a good model choice.

We place the weakly informative penalised complexity (PC) prior (Simp-
son et al., 2017) of Fuglstad et al. (2019) on the range ⇢ =

p
8⌫/ and

variance �2 such that the prior probability that ⇢ exceeds 28 days is 5%
and the prior probability that � exceeds a value of 3 is 5%. The smoothness
parameter ⌫ can be difficult to estimate (Lindgren & Rue, 2015), so we fix
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Figure 2: Estimators for the 95%-quantile of hourly precipitation intensity (A)
and the median of precipitation threshold exceedances (B) for each summer day
during 2010–2022. In black: empirical estimators created using a sliding window
of width of one week. In red: posterior means estimated using the latent Gaussian
models with a gamma likelihood (A) and a GP likelihood (B).

it to ⌫ = 1.5. Due to the large amounts of data, we speed up inference by
only using observations from a spatial subgrid of the data with resolution
2⇥ 2 km2.

Inference is performed with R-INLA, in approximately half an hour, when
using only one core on a 2.6 gHz Linux server. The posterior mean of the
shape parameter  equals 0.69, and the posterior mean of the threshold
ut(s) is displayed in Subplot A of Figure 2, together with the empirical 95%-
quantiles of the precipitation intensities, pooled across space. The smoothing
spline seems to capture the temporal trends of the data well. We evaluate
the model fit using quantile-quantile (QQ) plots. These are displayed in the
Supplementary Material, and they show an almost perfect correspondence
between model quantiles and empirical quantiles. We conclude that the
model fit is satisfactory.

Having estimated ut(s), we then model the threshold exceedances
[X+

t (s)� ut(s) | X+
t (s) > ut(s)] with the GP distribution, as described in

Section 3.3. Once more, we find that a purely temporal model for the linear
predictor performs better than a separable space-time model. We therefore
model the linear predictor using a similar spline model as in the gamma
model, with the same prior distributions. The tail parameter ⇠ is given the
PC prior of Opitz et al. (2018),

⇡(⇠) = �(1� ⇠/2)(1� ⇠)�3/22�1/2 exp
⇣
��⇠/

p
2(1� ⇠)

⌘
, 0 6 ⇠ < 1,

with penalty parameter �. The GP distribution has infinite mean for
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⇠ > 1 and infinite variance for ⇠ > 1/2, and since it is well established
in the literature that ⇠ tends to be in the range between 0.05 and 0.3 for
precipitation data (e.g., Cooley et al., 2007; Van de Vyver, 2012; Papalexiou
& Koutsoyiannis, 2013), we enforce ⇠ 6 1/2 to ease parameter estimation.
Then, we choose � = 7, which gives the prior probability P(⇠ 6 0.4) ⇡ 95%.

Inference is performed with R-INLA, using all the spatial locations, in
approximately 2 minutes. The posterior mean of ⇠ is 0.145, which is far
away from the upper bound of 1/2, and corresponds well with the results
of Vandeskog, Martino, Castro-Camilo, and Rue (2022), who estimated
⇠ = 0.18 with a 95% credible interval of (0.14, 0.21) when modelling the
yearly maxima of hourly precipitation using rain gauge data from a spatial
domain that covers S. Subplot B of Figure 2 displays the empirical median
of the threshold exceedances, pooled in space, along with the posterior
means of the threshold exceedance medians, which seem to agree well with
the main temporal trends of the data. We evaluate the model fit using QQ
plots, displayed in the Supplementary Material. These demonstrate a good
correspondence between model quantiles and empirical quantiles. We once
more conclude that our model provides a satisfactory fit to the data.

4.2 Modelling the conditional intensity process

We standardise the precipitation intensities to have Laplace marginal distri-
butions. Then, following Keef et al. (2013), we choose the functions

a(s; s0, y0) = ↵(s; s0)y0, b(s; s0, y0) = y
�(s;s0)
0

for the spatial conditional extremes model (4), which, they claim, can
cover a large range of dependence structures, including all the standard
copulas studied by Joe (1997) and Nelsen (2006). Building upon the work of
Vandeskog, Martino, and Huser (2022), we develop new empirical diagnostics
for making informed decisions about the value of the threshold ⌧ and the
forms of ↵(s; s0) and �(s; s0).

We assume that the standardising functions only depend on the Euclidean
distance to s0 and define ↵(d) ⌘ ↵(s; s0) with d = ks� s0k, and similarly
for �(d). Assuming that the residual field Zt(s; s0) is isotropic, we denote
the mean and variance of [Yt(s) | Yt(s0) = y0] as µ(d; y0) and ⇣(d; y0)

2,
respectively. Under the spatial conditional extremes model (4), these equal

µ(d; y0) = ↵(d)y0, ⇣(d; y0)
2 = �(d)2y2�(d)0 + �

2
" ,

where �
2
" is the variance of the nugget term "t(s; s0) and �(d)2 is the

variance of Zt(s; s0) when ks� s0k= d. By computing the empirical mean,
µ̂(d; y0), of the conditional precipitation intensity, we can estimate ↵(d)
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Figure 3: A) Empirical moments and estimators for �(d; y0) and components of
the conditional extremes model (4). B) Posterior means of the same variables from
the model fit based on conditioning site nr. 2.

as ↵̂(d; y0) = µ̂(d; y0)/y0. Similarly, by assuming that �" is small, we can
estimate �(d) using empirical conditional variances as

�̂(d; y0, y1) =
log

⇣
⇣̂(d; y0)/⇣̂(d; y1)

⌘

log (y0/y1)
,

where ⇣̂(d; y) is the empirical standard deviance of all observations with
distance d to a conditioning site with threshold exceedance y, and y0 6= y1

are any two threshold exceedances y0, y1 > ⌧ . This allows us to create
multiple different estimators ↵̂(d; y0) and �̂(d; y0, y1) for ↵(d) and �(d),
respectively, by varying the values of y0 and y1. This provides a diagnostic
for estimating the threshold ⌧ , since the spatial conditional extremes model
assumes that ↵(d) and �(d) are constant for all threshold exceedances larger
than ⌧ . Thus, we compute ↵̂(d; y0) and �̂(d; y0, y1) for a large range of
values of y0 and y1, and we set ⌧ equal to the smallest value such that
the estimators are approximately constant for all y0, y1 > ⌧ . Then, we
propose parametric functions for ↵(d) and �(d) that can fit well to the
patterns that we find in the empirical estimators. Finally, we also compute
�̂(d; y0, y1) = ⇣̂(d; y0)y

��̂(d;y0,y1)
0 to get an idea about the marginal variances

of the residual process Z(s; s0).
Exploratory analysis hints at some weak anisotropy in the precipitation

data. However, we do not believe the lack of isotropy is strong enough to
cause considerable problems, and the development of a suitable anisotropic
model is outside the scope of this paper. We therefore assume an isotropic
model. We compute µ̂(d; y0) and ⇣̂(d; y0) with a sliding window approach.
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For any value of d and y0, the moments are estimated using all observations
within a distance d±0.5 km from a location where a value of log(y0)±0.025
is observed. We then compute ↵̂(d; y0), �̂(d; y0, y1) and �̂(d; y0, y1) as
previously described, where we fix y1 to the 90%-quantile of the Laplace
distribution. We also estimate empirical conditional exceedance probabilities
�(d; y0) ⌘ �p(s, s0), where d = ks � s0k and p = F

�1(y0) with F
�1 the

quantile function of the Laplace distribution, using a similar sliding window
approach. All the estimators are displayed in subplot A of Figure 3. The
estimated shape of �(d) corresponds well with the standard deviation of
a random field with constant variance, constrained to be zero at s0. The
estimators for ↵(d) seem to behave like functions with exponential-like decay
towards zero as d increases. However, the decay occurs at an increasing
rate as y0 increases, and it never seems to stabilise as a function of y0. This
indicates that, with the available amounts of data, we cannot choose a large
enough threshold ⌧ such that the function a(d; y0) = ↵(d)y0 provides a
good fit for all y0 > ⌧ . Therefore, we instead propose to model the mean as
a(d; y0) = ↵(d; y0)y0, where the function ↵(·) depends on both distance d

and intensity level y0, and we choose a relatively low threshold, ⌧ = y1.
A common model for ↵(d) is ↵(d) = exp{�(d/�a)

a}, with �a,a > 0,
see, e.g, Wadsworth and Tawn (2022), Richards et al. (2022) and Simpson
and Wadsworth (2021). We therefore examine if the model

↵(d; y0) = exp[�{d/�a(y0)}a(y0)]

can provide a good fit to our data, where �a(y0) and a(y0) are parametric
functions of y0. Using a sliding window approach, we estimate �a(y0) and
a(y0) by minimising the sum of squared errors between [Y (s) | Y (s0) = y0]
and a(ks� s0k; y0) for different values of y0. These least squares estimators
are displayed in the Supplementary Material. Based on our findings we
propose to model �a(y0) and a(y0) as

�a(y0) = �a0 exp(�(y0 � ⌧)/⇤�), a(y0) = a0 exp(�((y0 � ⌧)/⇤)
{),

with �a0,a0,⇤�,⇤,{ > 0.
The estimators for �(d) in subplot A of Figure 3 have a clear dependence

on y0 at short distances d. However, �̂(d; y0, y1) seems to be independent of
y0 for longer distances, and the changes as a function of y0 are much less
severe than those in ↵̂(d; y0). We therefore stick to a model on the form
b(d; y0) = y

�(d)
0 . Based on the estimators in subplot A of Figure 3, it seems

that �(d) should be modelled with a function that decays exponentially
towards zero. We therefore choose the model

�(d) = �0 exp(�(d/�b)
b), �b,b > 0, �0 2 [0, 1).
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Having chosen the threshold ⌧ and parametric forms for the functions
a(d; y0) and b(d; y0), we then apply the method of Vandeskog, Martino, and
Huser (2022) for defining a nonstationary and constrained SPDE approxima-
tion to the spatial Gaussian random field in (4) within R-INLA. This SPDE
model approximates spatial Gaussian random fields on the form b(s; ·)Z(s)
as a linear combination of m Gaussian mesh nodes, Ẑb(s) =

Pm
i=1 �i(s)biWi,

where b1, b2, . . . , bm are the values of the function b(s) at the location of
the m mesh nodes, and �i and Wi are basis functions and Gaussian mesh
nodes from the “standard” SPDE approximation, Ẑ(s) =

Pm
i=1 �i(s)Wi, of

Lindgren et al. (2011). The nonstationary SPDE approximation is then
constrained at s0 by placing one of the mesh nodes at s0, and constraining
it to be exactly zero.

For each of the five chosen conditioning sites, we perform inference with
R-INLA, using data from all time points where ⌧ is exceeded at s0 and all 6404
locations in S. In an empirical Bayes like approach, we place Gaussian priors
on the logarithms of the parameters in a(·), with variance 52 and means
equal to their least squares estimators. For the parameters of b(·), we choose
Gaussian priors with variance 52 for log(�b), log(b) and log(�0/(1� �0)),
which ensures �b,b > 0 and �0 2 (0, 1). The prior means are chosen based
on the diagnostics in Figure 3. We set them equal to log(8.5), log(0.5) and
log(0.65/(1�0.65)), respectively. The parameters of Zt(s) are given the PC
prior of Fuglstad et al. (2019), such that the prior probability that the range
⇢ exceeds 60 km is 5% and the prior probability that the standard deviation
� exceeds 4 is 5%. We fix the smoothness parameter to ⌫ = 0.5, to represent
our belief about the smoothness properties of extreme precipitation fields.

Inference with R-INLA is performed within 1–4 hours for each condition-
ing site, using only one core on the same Linux server as before. We evaluate
the five model fits by estimating posterior means of the same variables as
in subplot A of Figure 3, using 1000 posterior samples of ✓. Subplot B
displays these posterior means from the model fit based on conditioning
site nr. 2. Although there are some differences between subplot A and B,
the patterns of the estimated curves are in general agreement, indicating
a satisfactory model fit overall. The posterior mean of µ(d; y0) is similar
to that of the data, with some slight underestimation for large values of
d and y0. The standard deviation ⇣(d; y0) is slightly underestimated for
small d, and overestimated for large d. For the values of �(d; y0), which we
care the most about, this results in a weak underestimation for small d and
large y0, and overestimation for large d and small y0. We believe that more
complex models for a(·) and b(·), e.g., with �(·) being a function of y0 at
small d, would be able to further reduce the differences seen in Figure 3.
However, for the scope of this paper, we deem that the current fit is good
enough. We also believe that the combination of minor overestimation and
underestimation of �(·) might somewhat cancel each other out. Estimators
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Figure 4: A) Visualisation of observed precipitation for six time points where a
threshold exceedance is observed at conditioning site nr. 4 (marked by a red dot).
Grey denotes zero precipitation, while white denotes observations close to the Rissa
radar that have been removed. The rightmost plots display empirical estimates for
p(d) (B) and p(ȳ) (C), created using both observed data and simulated data from
the four different occurrence models.

based on all five model fits are displayed in the Supplementary Material,
and they all seem to capture the major trends of the data.

4.3 Modelling the conditional occurrence process

To model conditional precipitation occurrences, we first search for patterns
in the observed data. Since we model [It(s) | Y (s0) > ⌧ ], we expect the
occurrence probability to be higher as we move closer to s0. We therefore
compute empirical occurrence probabilities p̂(d) at different distances d from
s0, using a sliding window of width 1 km. These are displayed by the black
line in subplot B of Figure 4. As expected, p̂(d) decreases as d increases, with
an almost linear decline. Subplot A of Figure 4 displays six realisations of
the precipitation data. The distribution of precipitation occurrence appears
to be smooth in space, in the sense that zeros cluster together. Thus, the
non-spatial probit model is unable to produce realistic looking simulations.
The precipitation intensities also appear to be smooth in space, in the sense
that we never observe big jumps in the precipitation values, and that zeros
only occur next to other zeros or small precipitation values. To check if
this is true for all the available data, we estimate the probability p(ȳ) of
observing precipitation as a function of the mean observed precipitation ȳ

at the four closest spatial locations. The empirical estimator is displayed
using the black line in subplot C of Figure 4. It seems that the probability
of observing precipitation is close to zero if ȳ = 0, and that it increases
as a function of ȳ, and is almost exactly 1 if ȳ > 0.2 mm/h. This implies
that our probit models might produce unrealistic simulations, as they are
independent of the intensity model and might produce zeros close to large
precipitation values.

Based on the exploratory analysis, we model the mean µ(d), of the two
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probit models, using a spline. More specifically, we model @µ(d)/@d as
a spline function based on 0-degree B-splines, where we place Gaussian
zero-mean priors with a standard deviation of 10 on all spline coefficients.
Additionally, in the spatial probit model, we place PC priors on the SPDE
parameters (Fuglstad et al., 2019) such that the prior probability that the
range parameter ⇢ exceeds 70 km is 5% and the prior probability that the
standard deviation of Z⇤

t (s) exceeds 5 is 1%. The smoothness parameter
is fixed to ⌫ = 0.5. We then perform inference separately for each of the
five chosen conditioning sites and the two probit models. Inference with
R-INLA takes between 10–15 minutes for the spatial probit models, and 2–3
minutes for the non-spatial probit models. For the threshold model, we
estimate the threshold by computing the empirical probabilities of observing
precipitation inside the Stordalselva catchment given extremes at each of
the five conditioning sites.

We evaluate model performance by comparing properties of observed
and simulated data. The threshold model depends on the intensity process,
so we first simulate conditional intensities, by sampling ✓ from its posterior
distribution and then sampling both [Yt(s0) | Yt(s0) > ⌧ ] and {Yt(s) |
Yt(s0),✓ : s 2 S} using (4). Then, we “simulate” occurrences with the
threshold model by rounding all small enough precipitation intensities
down to zero. Figure 4 displays empirical estimates for the probability
of observing precipitation as a function of the distance d to s0 and as a
function of the mean ȳ of the four nearest neighbours, for observed and
simulated precipitation data. Clearly, the nonzero model fails to capture
the probability of precipitation occurrences. From subplot B we find that
the spatial probit model heavily underestimates the probability of observing
precipitation for most distances d. The threshold model performs better
than the spatial probit model, but it slightly underestimates p(d) for small d
and overestimates it for large d. The non-spatial probit simulations, however,
seem to agree well with the observed data for all values of d. From subplot
C of Figure 4, we see that both probit models simulate zeros right next
to large precipitation observations, resulting in an underestimation of p(ȳ).
The spatial probit model performs better than the classical independent one,
but it still does not completely solve this misfit. The threshold occurrence
simulations, however, seem to agree well with the observations by placing
its zeros close to other zeros or small precipitation values. Overall, the
threshold model seems to be the best at estimating occurrence probabilities.
The classical probit model is considerably better at estimating p(d), but it
completely fails at estimating p(ȳ).
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4.4 Simulating spatial precipitation extremes

We combine all of the fitted models to simulate extreme precipitation
over the Stordalselva catchment. For each of the five conditioning sites,
extreme precipitation is simulated using Algorithm 1, with N = 103 samples,
where Exp(1) denotes the exponential distribution with unit scale, S1 ⇢ R2

denotes all locations where we simulate extreme precipitation, F̂�1
t denotes

the estimated marginal quantile function of positive hourly precipitation at
time t, and F denotes the cumulative distribution function of the Laplace
distribution. Recall that T is the set of all time points in our data.

Algorithm 1 Simulating spatial extreme precipitation with conditioning site s0.

Sample N time points t1, . . . , tN uniformly with replacement from T .
for i = 1, 2, . . . , N do

Sample a threshold exceedance [Yi(s0) | Yi(s0) > ⌧ ] ⇠ ⌧ + Exp(1)
Sample a realisation of the conditional intensity process {Yi(s) : s 2 S1} | Yi(s0)
Sample a realisation of the conditional occurrence process {Ii(s) : s 2 S1} | Yi(s0)
Transform back to the precipitation scale: X+

i (s) = F̂�1
ti

[F (Yi(s))]

Add zeros to the samples: Xi(s) = X+
i (s)Ii(s)

end for

Figure 5 displays observed and simulated realisations of extreme pre-
cipitation over the Stordalselva catchment. Simulations from the classical
probit model and the nonzero model are not capturing the spatial structure
of precipitation occurrence in the observed data, while simulations from the
spatial probit model and the threshold model look more realistic. However,
unlike the threshold model simulations, many of the spatial probit simu-
lations contain large precipitation intensities right next to zeros, which is
unrealistic.

As discussed in Section 1, both the amount of precipitation and its
spatial distribution are important features for assessing flood risk. Thus,
to further evaluate the simulations, we compare conditional exceedance
probabilities and precipitation sums over different areas between the observed
and simulated data. Estimators for �̂p(d) are computed using the same
sliding window approach as in Section 4.2. Figure 6 displays the estimators
from conditioning site nr. 1. The simulations seem to capture �p(d) well,
even though, just as in Section 4.2, �p(d) is somewhat underestimated
for small d and overestimated for large d. The probit models seem to
overestimate �p(d) less than the non-probit models at large distances, which
makes sense, because the models are independent of the intensity process
and thus can set large intensity values equal to zero. The estimators for
�p(d) seem almost identical for the threshold model simulations and the
nonzero model simulations. This also makes sense, since the small values
that are rounded down to zero by the threshold model are too small to
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Figure 5: Realisations of conditional extreme precipitation, from observed and
simulated data. The red dots display the locations of the chosen conditioning site
for each subplot.
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Figure 6: Estimators of �p(d) for observed and simulated data, using conditioning
site nr. 1.

considerably affect the values of �p(d). Similar patterns are found for the
other four conditioning sites. Estimators for �p(d) from all five conditioning
sites are displayed in the Supplementary Material. They all display similar
patterns.

We also compare aggregated simulated and observed precipitation amounts
over the Stordalselva catchment to evaluate the simulations. For each con-
ditioning site, we compute precipitation sums inside Bd(s0) \ S1, where
Bd(s0) is a ball of radius d km, centred at s0, and S1 denotes the catchment
of interest. We then compare observed and simulated precipitation sums
using QQ plots. Figure 7 display these plots for conditioning site nr. 4. For
small d, all the simulations produce similar precipitation amounts, which
are close to the observed data, although slightly smaller. As d increases,
the underestimation increases somewhat for the probit models, while it
decreases for the non-probit models, which seem to agree well with the
observed data. Quantiles of the threshold model and the nonzero model
are almost identical and can be hard to distinguish. QQ plots for all five
conditioning sites are displayed in the Supplementary Material. They all
display similar patterns.

5 Discussion and conclusion

We propose a framework for modelling and simulating high-dimensional
spatial precipitation extremes, using the spatial conditional extremes model
and latent Gaussian models. We model the marginal distributions of nonzero
precipitation using a mixture of two latent Gaussian models with a gamma
likelihood and a generalised Pareto (GP) likelihood, while separately mod-
elling the extremal dependence of nonzero precipitation extremes with a
spatial conditional extremes model formulated as a latent Gaussian model.
Precipitation occurrences are modelled using four different competing bi-
nary models. Fast approximate inference is achieved using integrated nested
Laplace approximations (INLA). We develop new empirical diagnostics for
the threshold and standardising functions of the spatial conditional extremes
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Figure 7: QQ plots for the sum of aggregated precipitation inside Bd(s0) \ S1,
based on conditioning site nr. 4. Quantiles from the four different simulated data
sets are displayed using different colours.

model, and we use these to propose a new class of parametric forms for the
standardising functions. The developed framework is applied for simulating
high-resolution precipitation extremes over a water catchment in Central
Norway, and is found to perform well.

The threshold occurrence model appears to outperform the other occur-
rence models, as it captures both spatial and marginal properties of the data
well, whereas the two probit models fail to capture either the marginal or the
spatial properties. However, since the precipitation simulations stem from a
combination of intensity samples and occurrence samples, it is nontrivial to
conclude that one occurrence model significantly outperforms the others, as
a change in the intensity model might potentially cause another occurrence
model to produce the best precipitation simulations.

Compared to the probit models, the threshold model lacks some flexibility
in the sense that it produces deterministic simulations given the intensity
samples and a threshold. However, the threshold model interacts with the
intensity model, which the probit models are unable to. This interaction is
clearly crucial, as the threshold model ends up being our most successful.
For future work, it might prove fruitful to develop probit models that
interact more with the intensity model. A common approach for creating
such interactions is to perform joint inference, where the two models share
some latent model components, similar to Bacro et al. (2020) and Gelfand
(2021). This might be challenging for the intensity and occurrence models,
as their latent fields have different interpretations and scales, but it might
still be possible to create some meaningful link between the two.

The spatial probit model underestimates occurrence probabilities almost
everywhere in space. We believe this happens because the spatial clustering
of zeros and ones in the data forces the nugget effect to be small, which,
in the latent Gaussian model formulation, causes the latent field to have a
large enough variance to absorb most of the mean trend. The symmetry
of the latent field thus makes all marginal probabilities tend towards 50%,
meaning that it underestimates large probabilities and overestimates small
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probabilities. One might fix this by removing the conditional independence
assumption, i.e., discarding the nugget effect. However, this makes inference
with INLA impossible. Alternatively, one might use an asymmetric latent
random field, with a skewness that varies in space, so that latent variables
close to the conditioning site are right skewed, while latent variables further
away from the conditioning site are more left skewed. Cabral et al. (2022)
show that inference with INLA can be possible for non-Gaussian latent
fields, meaning that R-INLA might work with such a model. Future work
should attempt to add changes in skewness to the latent field of the spatial
probit model.

As discussed in Section 1, radar data are great for capturing the small-
scale spatio-temporal variability of precipitation, but not many have used
them for modelling extreme precipitation. We show that the radar data
let us capture small-scale extremal dependence structures with high pre-
cision. However, it weather radars are known to struggle with capturing
the exact precipitation amounts, i.e., marginal distributions, well. This
might negatively affect our estimates of aggregated precipitation amounts.
Thus, to create reliable simulations of extreme precipitation, future work
should attempt to combine information from multiple precipitation data
sets, by, e.g., modelling extremal dependence using high-density radar data,
while modelling marginal distributions using rain gauge observations, which
are better at capturing the marginal distributions of precipitation, but
that are too sparse in space to provide successful estimates of the extremal
dependence structure.

Our models assume isotropy, but the observed data in Figures 4 and 5
display some indications of anisotropy. This does not seem to affect our
results much, as the simulated data capture the main trends of the observed
data well. However, future work should attempt to add features of anisotropy
and/or nonstationarity into the model framework, which is possible within
the SPDE and R-INLA frameworks (Lindgren et al., 2023).

It is known that R-INLA can struggle to approximate the posterior
distribution if given suboptimal initial values, or if some parameters are not
well identifiable in practice. Our chosen model for the conditional intensity
process is highly flexible, and different combinations of the model parameters
may sometimes produce similar likelihood values. In practice, we have seen
that small changes in the model formulation or initial values can lead to
large changes in the estimated parameters, and care should therefore be
taken when applying this methodology in other settings. However, since
these different parameters produce similar likelihood values, they all seem to
perform equally well, when considering the QQ plots and estimates of �p(d)
in Section 4.4. We have never observed a small change in model formulation
or initial values that leads to a noticeably worse model fit overall.

Parameters of the marginal precipitation distributions are estimated
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using latent Gaussian models with conditional independence assumptions
given a relatively simple latent field. Such assumptions might fail to account
for the complex spatio-temporal dependence structures of precipitation
data and might therefore produce too small uncertainty estimates, due
to an overestimation of the effective sample size. However, to the best
of our knowledge, no computationally tractable methods exist that can
accounting well for such complex spatio-temporal dependence in such large
and high-dimensional data sets. Additionally, an underestimation of the
uncertainty is not too problematic when we only use point estimates of the
parameters for modelling the marginal distributions. Also, the reasonable
parameter estimates displayed in Section 4.1 and the almost perfect QQ plots
in the Supplementary Material imply that our marginal models perform
well, even though they are based on oversimplified conditional independence
assumption.

Similarly, the conditional intensity and occurrence models are purely
spatial, and they assume that observations from different time points are
independent, which can lead to too small uncertainty estimates. Future work
should focus on the inclusion of a temporal component in all our models,
to allow for better uncertainty quantification. Temporal components are
also important for creating reliable simulations for hydrological models, as
this allows for descriptions of the durations and movements of extreme
precipitation events. We do not believe that this will entail too much
work, as extensions from space to space-time can be relatively simple to
achieve within the R-INLA framework. As an example, Simpson et al. (2023)
successfully perform both spatial and spatio-temporal modelling with the
spatial conditional extremes model, and it should be possible to extend most
of their changes for space-time modelling into our developed framework.
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Supplementary material

S1 Data exploration

We compute the proportions of exact zeros in the precipitation data, pooled
over space, for different times. Figure S1 displays temporal distributions of
the proportions of observations that are less than or equal to a threshold ⌧0,
for different values of ⌧0. The Rissa radar was upgraded in 2018 (personal
communication, 2023), and this is clearly visible from the lower left subplot,
as the proportion of exact zeros changed considerably in that year. In
order to remove these changing zero-patterns, we post-process the data by
rounding every observation smaller than 0.1 mm/h down to zero, as this
seems to give a somewhat equal proportion of zeros everywhere in space
and time.

S2 Evaluation of fitted marginal distributions

We evaluate goodness of fit for the two marginal models by creating quantile-
quantile (QQ) plots. It is not straightforward to compare empirical quantiles
with our model quantiles, as the models assume that each day comes with a
different distribution, and thus a different set of quantiles. To create QQ
plots for the gamma model, we therefore standardise the data by dividing
each observation on its estimated scale parameter. Then we compare
empirical quantiles of the standardised data with quantiles from a gamma
distribution with a scale parameter of 1 and the estimated shape parameter.
The resulting QQ plots are displayed in the upper row of Figure S2. Similarly,
to create QQ plots for the generalised Pareto (GP) model, we standardise
the observed threshold exceedances by dividing on their estimated scale
parameters, and then we compare empirical quantiles with those of a GP
distribution with a scale of 1 and the estimated tail parameter. The QQ
plots are displayed in the lower row of Figure S2. Both of the marginal
models seem to perform well. The GP model slightly underestimates the
largest quantiles, but we here note that a value of 10 mm/h is so large that
it corresponds to the empirical 99.3% quantile of the standardised threshold
exceedances, which is approximately the same as the 99.97% quantile of
the nonzero precipitation observations, and approximately the same as the
1�5⇥10�5 quantile of the hourly summer precipitation observations, which
again is slightly more than the 9 year return level for summer precipitation
under the (unlikely) assumption that all observations are i.i.d.
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Figure S1: The temporal distribution of the proportion of observations, pooled in
space, that are less than or equal to ⌧0 for June, July and August, respectively.

S3 Modelling the conditional intensity process

In the main paper, when modelling the conditional intensity process, we
discover that the empirical estimators ↵̂(d; y0) for ↵(d) seem to depend on
y0 for all values of y0. We therefore propose to model ↵(·) as a function
↵(d; y0) that depends on y0, and we propose the form

↵(d; y0) = exp
h
�(d/�a(y0))

a(y0)
i
,

where �a(y0),a(y0) > 0 are parametric functions of y0.
Since the mean of our spatial conditional extremes model is a(d; y0) =

y0↵(d; y0), we can easily estimate �a(y0) and a(y0) for any fixed value of
y0, by minimising the sum of squared errors between [Y (s) | Y (s0) = y0]
and a(ks� s0k; y0). Thus, using a sliding window estimator over y0, with
a window size of 0.2, we estimate �a(y0) and a(y0) for a set of different
threshold exceedances y0 > ⌧ . The estimators are displayed in the two
leftmost plots of Figure S3. We see that the estimators for �a(y0) seem to
decay exponentially towards zero as y0 increases, while the estimators for
a(y0) look more like they follow the density function of a half-Gaussian
distribution. We therefore propose the models

�a(y0) = �a0 exp(�(y0 � ⌧)/⇤), a(y0) = a0 exp(�((y0 � ⌧)/⇤)
{),
(S1)

where the parameters �a0, ⇤, a0, ⇤ and { all are required to be positive.
We fit the models in (S1) to the data by once more minimising the sum of

squared errors. The resulting estimators for �a(y0) and a(y0) are displayed
as black lines in the two leftmost plots of Figure S3, and the resulting
estimators for ↵(d; y0) and a(d; y0) are displayed in the two rightmost plots
of Figure S3. The fitted functions seem similar to those displayed in subplot
A of Figure 3 in the main paper, and we therefore conclude that our chosen
model for ↵(d; y0) provides an adequate fit to the data.

Having performed inference with R-INLA for the conditional intensity
process using each of the five chosen conditioning sites, we evaluate model
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Figure S2: Upper row: QQ plots comparing empirical quantiles of the standardised
observations with quantiles of a gamma distribution with a scale of 1 and the
estimated shape parameter. Lower row: QQ plots comparing empirical quantiles
of the standardised threshold exceedance observations with quantiles of a GP dis-
tribution with a scale of 1 and the estimated tail parameter. The four columns
display empirical quantiles for June, July, August and for all the months together,
respectively.

performance by simulating out-of-sample data and computing empirical
estimators for µ(d; y0), ⇣(d; y0), ↵(d), �(d), �(d) and �(d; y0), just as in
Figure 3 in the main paper. Figure S4 displays these estimators for sim-
ulated data based on each of the five conditioning sites. It also displays
the estimators from subplot A in Figure 3 of the main paper, which were
computed “globally”, by using every single location S as a possible condi-
tioning site. The estimators for �(d) vary slightly between the different
model fits, and this difference leads to considerable changes in the standard
deviation ⇣(d; y0) of the model fits. These differences might be caused by
the fact that, as discussed in the main paper, our chosen model for �(d) is
somewhat simple, in that it does not account for the fact that the empirical
estimators change as a function of y0 for small values of d. Thus, for some
model fits, �(d) is given a value that captures the sharp spike of ⇣̂(d; y0)
that occurs at small d with large values of y0, while for other fits, �(d)
is given a value that better captures the more smooth values of ⇣̂(d; y0)
when y0 is small. We believe that a more complex model for �(d), possibly
that changes as a function of y0, would be able to capture both of these
characteristics better. As shown in Section S4, the model fits with both
of the different forms of �(d) perform well and produce simulated data
that closely capture important properties of the observed data such as its
aggregated precipitation sums and extremal dependence structure.
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Figure S3: Leftmost plots: Points displaying least squares estimators of �a(y0)
and a(y0), computed using a sliding window over y0 with a width of 0.2. The black
lines display the least squares estimators of �a(y0) and a(y0) under the model
in (S1), computed without the sliding window approach, i.e., using all possible
threshold exceedances. Rightmost plots: The estimated functions for ↵(d; y0) and
a(d; y0), created using the least squares estimators of �a(y0) and a(y0).

S4 Evaluating the final precipitation simulations

We evaluate the precipitation simulations by computing conditional ex-
ceedance probability estimators and by creating QQ plots for the sums of
aggregated precipitation over different areas inside the Stordalselva catch-
ment. Figure S5 displays empirical estimators for �p(d) for both the observed
and the simulated data, using each of the five conditioning sites. The sim-
ulated estimators correspond well to the observation estimators, overall.
Yet, they tend to be smaller than those of the observed data for large p

and small d, and they tend to be larger than those of the observed data for
small large d. This is further discussed in the main paper. Figure S6 display
QQ plots for the sum of precipitation inside a ball of radius d, centred at
s0, for each of the five conditioning sites, between the observed data and
simulations from the four different model fits. The QQ plots show that there
is a good correspondence between observed and simulated data, but that
the simulated data tend to slightly underestimate aggregated precipitation
amounts.
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Figure S4: Estimators for µ(d; y0), ⇣(d; y0), ↵(d), �(d), �(d) and �(d; y0) for
observed data and for simulated data using the five chosen conditioning sites. The
estimators are computed using the same sliding window approach as in the main
paper.
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Figure S5: Estimators of �p(d) for observed and simulated data, using all five
conditioning sites.
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Figure S6: QQ plots for the sum of aggregated precipitation over the intersection
of the Stordalselva catchment and a ball of radius d, centred at s0, for each of the
five conditioning sites. The four different simulations are displayed using different
colours.
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