Vis enkel innførsel

dc.contributor.authorWifstad, Sigurd Vangen
dc.contributor.authorLøvstakken, Lasse
dc.contributor.authorAvdal, Jørgen
dc.contributor.authorBerg, Erik Andreas Rye
dc.contributor.authorTorp, Hans
dc.contributor.authorGrenne, Bjørnar
dc.contributor.authorFiorentini, Stefano
dc.date.accessioned2023-04-12T12:48:46Z
dc.date.available2023-04-12T12:48:46Z
dc.date.created2022-11-01T10:45:58Z
dc.date.issued2022
dc.identifier.citationIEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2022, 69 (12), 3317-3326.en_US
dc.identifier.issn0885-3010
dc.identifier.urihttps://hdl.handle.net/11250/3062697
dc.description.abstractAccurate quantification of cardiac valve regurgitation jets is fundamental for guiding treatment. Cardiac ultrasound is the preferred diagnostic tool, but current methods for measuring the regurgitant volume are limited by low accuracy and high interobserver variability. Following recent research, quantitative estimators of orifice size and regurgitant volume based on high frame rate 3-D ultrasound have been proposed, but measurement accuracy limited by the wide point spread function relative to the orifice size. The aim of this paper was to investigate the use of deep learning to estimate both the orifice size and the regurgitant volume. A simulation model was developed to simulate the power-Doppler images of blood flow through orifices with different geometries. A convolutional neural network was trained on 30000 image pairs. The network was used to reconstruct orifices from power-Doppler data, which facilitated estimators for regurgitant orifice areas and flow volumes. We demonstrate that the network improves orifice shape reconstruction, as well as the accuracy of orifice area and flow volume estimation, compared to a previous approach based on thresholding of the power-Doppler signal (THD), and compared to spatially invariant deconvolution (DC). Our approach reduces area estimation error on simulations: (THD: 13.2 ± 9.9 mm2, DC: 12.8 ± 15.8 mm2, ours: 3.5 ± 3.2 mm2). In a phantom experiment, our approach reduces both area estimation error (THD: 10.4 ± 8.4 mm2, DC: 10.98 ± 8.17, ours: 9.9 ± 6.0 mm2), and flow rate estimation error (THD: 20.3 ± 9.9 ml/s, DC: 18.14 ± 13.01 ml/s, ours: 7.1 ± 10.6 ml/s). We also demonstrate in vivo feasibility for six patients with aortic insufficiency, compared with standard echocardiography and magnetic resonance references.en_US
dc.description.abstractQuantifying Valve Regurgitation Using 3-D Doppler Ultrasound Images and Deep Learningen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleQuantifying Valve Regurgitation Using 3-D Doppler Ultrasound Images and Deep Learningen_US
dc.title.alternativeQuantifying Valve Regurgitation Using 3-D Doppler Ultrasound Images and Deep Learningen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber3317-3326en_US
dc.source.volume69en_US
dc.source.journalIEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Controlen_US
dc.source.issue12en_US
dc.identifier.doi10.1109/TUFFC.2022.3218281
dc.identifier.cristin2067224
dc.relation.projectNorges forskningsråd: 237887en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal