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Abstract— Accurate quantificationof cardiac valve regur-
gitation jets is fundamental for guiding treatment. Cardiac
ultrasound is the preferred diagnostic tool, but current
methods for measuring the regurgitant volume (RVol) are
limited by low accuracy and high interobserver variability.
Following recent research, quantitative estimators of orifice
size and RVol based on high frame rate 3-D ultrasound
have been proposed, but measurement accuracy is limited
by the wide point spread function (PSF) relative to the
orifice size. The aim of this article was to investigate the
use of deep learning to estimate both the orifice size and
the RVol. A simulation model was developed to simulate
the power-Doppler images of blood flow through orifices
with different geometries. A convolutional neural network
(CNN) was trained on 30 000 image pairs. The network was
used to reconstruct orifices from power-Dopplerdata, which
facilitated estimators for regurgitant orifice areas and flow
volumes. We demonstrate that the network improves orifice
shape reconstruction, as well as the accuracy of orifice
area and flow volume estimation, compared with a previous
approach based on thresholding of the power-Doppler sig-
nal (THD), and compared with spatially invariant deconvolu-
tion (DC). Our approach reduces the area estimation error
on simulations: (THD: 13.2 ± 9.9 mm2, DC: 12.8 ± 15.8 mm2,
and ours: 3.5 ± 3.2 mm2). In a phantom experiment, our
approach reduces both area estimation error (THD: 10.4 ±
8.4 mm2, DC: 10.98 ± 8.17, and ours: 9.9 ± 6.0 mm2) and
flow rate estimation error (THD: 20.3 ± 9.9 ml/s, DC: 18.14 ±

Manuscript received 4 October 2022; accepted 27 October 2022. Date
of publication 31 October 2022; date of current version 28 November
2022. This work was supported by the Centre for Innovative Ultra-
sound Solutions (CIUS), a centre for research-based innovation
appointed by the Norwegian Research Council. (Corresponding author:
Sigurd Vangen Wifstad.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by the Regional Committee for Medical and Health Research Ethics in
Central Norway (REK Central).

Sigurd Vangen Wifstad, Lasse Lovstakken, Jørgen Avdal, Hans Torp,
and Stefano Fiorentini are with the Center for Innovative Ultrasound
Solutions, Norwegian University of Science and Technology,
7030 Trondheim, Norway (e-mail: sigurd.v.wifstad.@.ntnu.no).

Erik Andreas Rye Berg and Bjørnar Grenne are with the Cen-
ter for Innovative Ultrasound Solutions, Norwegian University of Sci-
ence and Technology, 7030 Trondheim, Norway, and also with the
Clinic of Cardiology, St. Olavs Hospital, Trondheim University Hospital,
7030 Trondheim, Norway.

Digital Object Identifier 10.1109/TUFFC.2022.3218281

13.01 ml/s, and ours: 7.1 ± 10.6 ml/s). We also demonstrate
in vivo feasibility for six patients with aortic insufficiency,
compared with standard echocardiography and magnetic
resonance references.

Index Terms— 3-D Doppler, blood flow measurement,
deep learning, valve regurgitation.

I. INTRODUCTION

HEART valve regurgitation is a condition where backward
flow of blood due to leaky valves may cause volume

overloading and compromised net forward stroke volume,
and it is associated with a poor prognosis for the patient.
The prevalence of valve regurgitation has been estimated to
18%–19% in middle-aged adults [1], and it is projected to
increase overall due to an aging population [2]. Patients with
mild or moderate regurgitations undergo regular follow-up,
but do not benefit from routine surgery. On the other hand,
patients with severe regurgitation generally require surgical
intervention to improve symptoms and prevent heart failure.
Therefore, it is essential to accurately separate severe from
mild and moderate cases of valve regurgitation. In this way,
patients with severe regurgitation can receive appropriate treat-
ment, while patients with mild/moderate cases can avoid the
unnecessary risks associated with surgery.

Transthoracic echocardiography (TTE) is the most common
noninvasive tool for assessing the severity of valve regurgita-
tion. Current recommendations [3], [4] recommend a compre-
hensive evaluation of the severity based on integrating multiple
quantitative and qualitative metrics. As a consequence, the
grading of valve regurgitation using TTE is a time-consuming
procedure and is subject to high inter- and intra-observer
variabilities. According to the recommendations, the main
method for quantitative evaluation of valve regurgitation is
the 2-D proximal isovelocity surface area method (2-D PISA),
which provides the effective regurgitant orifice area (EROA),
instantaneous flow rates, and total regurgitant volume (RVol)
from a combination of color flow and continuous wave (CW)
Doppler recordings [5]. However, 2-D PISA is highly user-
dependent [6], [7] because several important steps must be
performed manually, such as selecting the imaging plane,
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time frame, color flow gain, and measuring the radius of the
flow convergence region. Moreover, accuracy is limited by
dynamic changes in regurgitation flow rates during systole and
deviations from the assumption of hemispheric convergence
zones [8].

Recent research based on 3-D Doppler ultrasound in
invasive transesophageal echocardiography (TEE) has shown
promise for accurate and less user-dependent assessment
[9], [10], [11], [12], [13]. However, TTE acquisition is charac-
terized by larger imaging depths and reduced transmit frequen-
cies, which limits both spatial resolution and pulse repetition
frequency (PRF). Due to this, the current TTE 3-D Doppler
methods have limited diagnostic value alone [3].

Avdal et al. [14] previously proposed a quantitative esti-
mator for the cross-sectional area (CSA) of the regurgitant
jet and RVol based on TTE high frame rate 3-D Doppler
ultrasound. A high PRF, weakly focused acquisition was used
to acquire the entire region of interest continuously, rather than
using packet acquisitions as in color flow imaging. The use
of continuous acquisitions enabled the estimation of pulsed
wave (PW) Doppler spectra in each voxel. The spectra could
be used for maximum velocity envelope estimation, which
is more robust to the presence of clutter compared with the
autocorrelation estimator used in color flow. This method can
therefore achieve quantitative flow measures efficiently and in
fewer steps than both 2-D/3-D PISA and current 3-D Doppler-
based approaches. Using this approach, accurate estimates
of the flow volume through a circular orifice phantom were
achieved. However, the area estimator is highly dependent
on the choice of power threshold for detecting voxels which
contain flow. Moreover, due to the large point spread function
(PSF), it is difficult to accurately depict irregular orifice
geometries [15]. This is a challenge when trying to distinguish
small orifices from larger ones, limiting the clinical value of
the method.

In ultrasound imaging, blurring of the imaging object due
to the PSF is a common problem which limits resolution
and image quality. Techniques for restoring such images
are typically based on deconvolution (DC) [16], [17], [18].
DC aims to restore the object f from the image s, given a
model of the imaging system which is commonly described
as s = f ∗ h + �, where h is the PSF, and � is the noise.

In recent years, we have seen an increasing use of convolu-
tional neural networks (CNNs) in ultrasound research. CNNs
have been applied for DC and image enhancement [19], [20],
and a vast amount of structure segmentation from B-mode
images [21], [22], [23], [24].

Inspired by recent developments in deep learning, we inves-
tigate how CNNs can be trained to perform joint DC and
segmentation on highly blurred power-Doppler images of
regurgitant cardiac jets acquired using TTE. We develop a
CNN-based approach for segmenting the CSA of jets from
leaky valves using cross-sectional images extracted from 3-D
Doppler recordings. We apply transposed convolutional layers
in our CNN to deconvolve and upscale the poor resolution
image and segment the jet CSA. Our CNN is trained on the
simulated power-Doppler data, as the amount of real data
examples is limited and the target labels are unavailable.
The data are simulated using ultrasound simulation software

TABLE I
DATA GENERATION PARAMETERS FOR BEZIER POLYGONS

AND GAUSSIAN BLOOMING AUGMENTATION

and procedurally generated orifice masks of arbitrary shape
and size. Hence, training is completely unsupervised, remov-
ing the need for manually labeled training data. Finally,
we combine velocity estimates from a conventional spectral
velocity estimator with the segmented CSA to quantify the
instantaneous flow rate.

II. METHODS

A. Orifice Generation

We simulated pairs of power-Doppler images and binary tar-
get label maps which mimic regurgitant orifices. The orifices
were generated using the Bezier polygons

B(t) =
p∑

i=0

(
p

i

)
(1 − t)p−i t i C i (1)

where B(t) is the closed boundary of the Bezier polygon
parameterized by t . C i are the Bezier curve control points
which satisfy

C i

{
∼ U(x, y), if i < p

= C0, if i = p
(2)

where U(x, y) is a uniform distribution of the image
pixel positions (x, y), with a domain equal to the imaging
region. C0 is the initial control point drawn from U(x, y).
We define the object function as a binary image I (x, y) where
I (x, y) = 1 within the region (x, y) enclosed by B(t), and
I (x, y) = 0 elsewhere. The generation parameters are listed
in Table I.

Fig. 1 shows six example orifices generated procedurally,
showing a variety of possible shapes. In patients with valvular
regurgitation, the orifice shape can indeed vary from case
to case, based on the cause and position of regurgitation
[25], [26]. Using our approach, we can generate a large variety
of shapes for the training set, which prevents the model from
overfitting on certain geometries.

B. Ultrasound Simulation

The power-Doppler images were generated in a two-step
process. First, the pulse-echo field hpe is computed assuming
dynamic receive focusing, using the Field II ultrasound sim-
ulation software [27], [28], and the parameters are listed in
Table II. Finally, the power-Doppler realizations R0(x, y) were
generated by integrating the pulse-echo contributions from the
pixels that belong to the orifice I (x, y)

R0(x, y) = ∫∫
I Ph(x, y, xh, yh)dxhdyh (3)
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Fig. 1. Example orifices generated using (1) and (2).

TABLE II
FIELD II PARAMETERS

where xh and yh denote the coordinates in which the pulse-
echo response is calculated, and Ph is the energy of hpe

calculated as

Ph(x, y, xh, yh) =
∫ +∞

−∞
|hpe(x, y, xh, yh, t)|2 dt . (4)

The same pulse-echo field can be used to generate different
power-Doppler realizations by changing the orifice map, which
allows for quick generation of training data. By integrating
the pulse echo signals as in (3), we can achieve simulations
efficiently without loss of integrity. This approach was pre-
ferred over averaging the backscattered signal from randomly
distributed scatterers as this would require too much time
considering the amount of training examples needed.

C. Data Augmentation

The training set consisted of 30 000 power-Doppler and
orifice pairs with varying imaging depths and center frequen-
cies. To account for local a reduction in contrast observed
in our experimental setup, we superimposed Ni bivariate
Gaussian functions to each simulated power-Doppler image
R(i)

0 , creating the augmented image R̃(i)
0

R̃(i)
0 = R(i)

0 + α
Ni∑

j=1
N (

µ j , Sj
)

(5)

Fig. 2. Schematic representation of the network training. Binary
maps representing regurgitant orifices are procedurally generated. Their
power-Doppler responses are simulated using Field-II, and the Gaussian
blooming artifacts are superimposed to the normalized images. The
resulting images, along with the depth z and frequency fc parameters,
are used to train a CNN (ResNet) to perform segmentation from the
power-Doppler images.

where Ni is uniformly sampled from {0, . . . , Nmax}, µ j and
Sj are uniformly distributed random variables deciding the
position and covariance of the j th Gaussian, and α is the
augmentation intensity. The data generation parameters are
summarized in Table I.

D. Model Training

The simulation and training phases are depicted in Fig. 2.
The GE 4Vc-D geometry was used. The simulation parameters
are shown in Table II. N = 30 000 orifices were procedurally
generated with areas uniformly distributed between 0 and
75 mm2. The power-Doppler images were computed using
hPE, with varying transmit configurations, i.e., varying values
of z and fc.

We normalized the images using Z -score standardization
and superimposed random Gaussian blooming to each image,
as described by (5). Depth and frequency information was
added as separate input channels as images with all the points
having the value of z in meters, and fc in MHz. For training,
we generated 1000 images for each transmit configuration,
amounting to 30 000 images in total. The CNN was trained on
the augmented power-Doppler images with the orifice binary
maps as target labels, using the Adam optimizer [29] with a
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learning rate of 0.001 and a binary cross entropy loss function.
The augmentation intensity α was chosen by training models
with varying augmentation intensities and choosing the one
which achieved the highest flow rate estimation accuracy in
an experimental flow setup.

The model was implemented using the Keras Python deep
learning application programming interface (API) and trained
on a NVIDIA Quadro RTX 3000. Data generation and training
took about 2 h. For validation, we generated 600 images
for each transmit configuration. The model was validated on
the in silico test dataset. The area estimates from the model
predictions were compared with the ground truth and reference
segmentation approaches described in Section II-F.

E. Network Architecture

The model architecture was a lightweight
(∼20 000 parameters) network using transposed convolutional
layers (UpConv2-D) at the end of each convolutional
block, such that the number of image pixels at the output
of each block is doubled. The input images are hence
transformed from 15 × 12 to 128 × 128 pixels. The
transposed convolutional layers learn to upscale the image
directly from the training data as opposed to using simple
interpolation techniques. Each convolutional block consists
of two convolutional layers with rectified linear unit (ReLU)
activations and batch normalization layers to stabilize training.
Dropout layers with a dropout rate of 0.25 are added to the
end of each block for regularization. The output activation
function enforces a binary output. We chose the hyperbolic
tangent for this purpose, although a sigmoid would perform
equally well. Residual connections connect the first and last
layers of each convolutional block to allow for low-resolution
features to flow through the network. This is a common
technique used in deep residual networks (ResNets) [30],
which has been shown to improve training stability. We herby
refer to our network as “ResNet.”

F. Reference Segmentation Methods

For comparison with the proposed deep-learning-based seg-
mentation, we used two reference approaches. One approach
is a conventional −3 dB thresholding of the power-Doppler
image, which was used by Avdal et al. [14]. The other
approach was spatially invariant nonblind DC, similar to [16].
We used the Richardson–Lucy DC algorithm [31] with
20 iterations to deconvolve the power-Doppler images using
the analytical PSF

PSF =
[

sinc

(
fc LAZ

cz
x,

fc LEL

cz
y

)]2

(6)

where LAZ and LEL are the aperture dimensions calculated
using Table II, c is the speed of sound, z is the imaging depth,
and x and y are the azimuth and elevation positions, respec-
tively. The deconvolved image was segmented by thresholding
at 50% pixel intensity.

Fig. 3. Experimental setup. (Left) Overview and (right) flow phantom
closeup.

G. Phantom Experiments

We validated the method using the custom-made flow phan-
tom shown in Fig. 3. The acquisition and signal processing
parameters are summarized in Table III. The phantom was
filled with a mixture of water and corn starch to mimic the
scattering properties of blood. Channel data were acquired
using a GE 4Vc-D probe and a GE E95 scanner operating in
high PRF mode. The scanner was locally modified to enable
diverging wave acquisitions with a focal point 40 cm behind
the transducer. We performed the measurement for insonation
angles at 0◦, 30◦, 40◦, and 50◦, and for three different flow
rates. The flow rate was varied by adjusting the height of
the upper fluid reservoir. An ultrasonic flowmeter (Cynergy3
UF25) was used as a reference. We performed the experiment
for circular orifices with sizes 15, 25, 35, and 45 mm2.
We performed a similar experiment for three orifices with
noncircular shapes, namely, an equilateral triangle (35 mm2),
a half circle (35 mm2), and a bifurcation of two circular
orifices (15 and 25 mm2, respectively).

The in-phase quadrature (IQ) channel data were recorded for
offline processing. The channel data were beamformed using
the MATLAB UltraSound ToolBox (USTB) and clutter filtered
using a finite impulse response (FIR) filter with an asymmetric
frequency response to remove clutter from recruited flow. The
passband of the filter was adjusted in each recording to match
the observed PW spectrum. We estimated the power-Doppler
signal R0(x, y, z, t) from the filtered signal s(x, y, z, t) by
calculating the energy |s|2 with an observation window of
10 ms and an overlap of 50%. The power-Doppler signal was
smoothed temporally using moving average filter with length
Nsmooth = 11 (1 ms) and radially using a filter with length
Nz = 3 (0.2 mm).

The mean velocity v̂mean was estimated using a spectral
envelope estimator

v̂mean = v̂max − B̂

2
(7)

where v̂max is the maximum velocity envelope estimated from
the PW Dopppler spectrum, and B̂ is the estimated bandwidth.
We estimated the PW Doppler spectrum using a discrete
Fourier transform applied to the same temporal window used
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TABLE III
ACQUISITION AND SIGNAL PROCESSING PARAMETERS

to generate the power-Doppler images. The spectrum was
smoothed along the temporal dimension similar to R0. Before
envelope detection, the spectrum was binarized automatically
using Otsu adaptive thresholding [32]. Estimating the mean
velocity using the spectral envelope was preferred over auto-
correlation as mean velocity estimators are biased toward by
low-frequency clutter, which was present in cases of subop-
timal clutter filtering. The maximum estimator was shown to
be more robust in [14].

Finally, the quantitative metrics were estimated according to

CSA(t) =
∫∫

x,y
g(R0(x, y, zvc, t))dxdy (8)

Q(t) =
∫∫

x,y
v̂mean(x, y, zvc, t)g(R0(x, y, zvc, t))dxdy

(9)

where CSA(t) and Q(t) are the cross-sectional area and
flow rate, respectively. The segmentation operator is denoted
by g(·). We acquired the segmented orifice image sequence by
segmenting the power-Doppler cross sections R0(x, y, zvc, t).
The parameter zvc is the vena contracta depth, which was
selected manually in the phantom experiment for each record-
ing. For clinical use, zvc needed to be estimated automatically,
as described in Section II-H.

H. In Vivo Feasibility Analysis

We acquired 3-D channel data from six patients with
aortic valve regurgitation. All the patients provided written
consent, and approval was given by the regional committee
for medical and health research. We used a GE Vivid E95
scanner with a 4V-D probe in high PRF mode, using the
same parameters as in Section II-G. These recordings were
made with a setup using a focal point 30 cm away from
the transducer. At the time of recordings, we did not have
approval from our industry partners for our improved setup
using a −40 cm focal point, but approval was granted at
a later time. Comprehensive echocardiograpic examinations
were performed to provide reference values for EROA and
RVol using 2-D PISA. Magnetic resonance imaging (MRI) was
also performed to provide RVol. The reference measurements

Fig. 4. In silico power-Doppler segmentation examples (red: ResNet;
blue: DC; white: power thresholding; and black: ground truth).

Fig. 5. In silico area estimation results. The plots show area estimates
using ResNet, DC, and power thresholding on a test dataset simulated
similar to the training dataset. Linear regression slopes and coefficients
of determination are denoted byβ and r2. Ground truth refers to the areas
of the ground-truth masks.

were performed by a cardiologist which was blinded to the
results provided with the 3-D Doppler method. We applied our
method to the 3-D channel data to estimate RVol and CSA.

The processing chain for the in vivo data was the same as
in the phantom experiment. However, to account for valve and
vena contracta motion in the clinical recordings, we estimated
the vena contracta depth zvc at each time t as

zvc(t) = argmax
z

∫∫
x,y

v̂max(x, y, z, t)dxdy (10)

where v̂max is the same maximum velocity envelope as in (7).
Here, we used the assumption that the maximum velocity
occurs at the vena contracta. RVol was estimated by integrating
the flow rate Q(t) over the regurgitation time.

III. RESULTS

A. Model Training and In Silico Validation

We evaluated ResNet segmentation accuracy on a test
set consisting of 600 simulated power-Doppler images. The
test images were generated similar to the training images,
as explained in Section II-D. The mean area estimation errors
were 3.5 ± 2.2 mm2 for ResNet, 13.2 ± 9.9 mm2 for power
thresholding, and 12.8 ± 15.8 mm2 for DC. Two examples
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Fig. 6. Analysis of the in silico test results for ResNet with different
training schemes (a) on datasets with center frequency fc = 1.5 MHz
and varying imaging depth z and (b) with z = 10 cm and varying fc.
The graphs show the mean absolute error (MAE) on test datasets with the
simulation parameters denoted on the x-axis. The legend describes the
training domain for each model and whether the model was given fc or z
as input parameters during training.

from the test set are shown in Fig. 4. ResNet accurately
reconstructs the underlying orifice. The DC method is less
able to restore the original shapes accurately, likely due
to its assumption of spatial-invariant PSFs. Thresholding is
limited to only providing near-elliptical predictions in the
object centers, since the PSF severely blurs any sharp edges.
The results shown in Fig. 5 indicate that ResNet achieves
improved segmentation accuracy compared with the references
and differentiates better between small and large orifices.

Fig. 6 shows the performance of models with different
training schemes when subjected to test data with varying
imaging depths and transmit frequencies. The results indicate
that providing explicit knowledge about depth and frequency
during training is beneficial. This was expected, as there
will be ambiguities in the relationship between the PSF and
object size when these parameters are changed. In addition,
estimation accuracy decreases with increasing depth, and also
decreases for frequencies outside of the training domain.
This was also expected, since the transmit frequency and
imaging depth affect both the axial and lateral resolutions.

Fig. 7. Results from using models trained with various augmentation
intensities α. In (a), a grid search for the best value of α is depicted,
showing flow rate estimation mean errors and standard deviation for
models with varying α values. The search resulted in α = 10−2.
In (b), we see a power-Doppler elliptical cross section of a jet from the
experimental setup described in Section II-G. Using α � 10−2 results
in incorrect segmentation of local areas with reduced contrast. Using
α � 10−2 results in a poor training phase and therefore inadequate
predictions with high errors. Using α = 10−2, we mostly avoid incorrectly
segmenting low-contrast regions.

B. Phantom Experiments

Fig. 7 shows the results from models trained with different
augmentation intensities α. Following a grid search, a value
of α = 10−2 gave the best quantitative accuracy while
visibly mitigating the effects of local reductions in contrast.
The search was performed by training the models with α
values between 0 and 1 and computing their average flow
rate estimation error for the flow phantom study with circular
orifices, as well as monitoring the segmentation qualitatively.

Figs. 8 and 9 show the flow rate and area estimates from
the phantom setup with four circular orifices, described in
Section II-G. The results indicate that ResNet achieves slightly
less biased estimates compared with power thresholding and
DC, while interframe variability is similar.

Fig. 10 shows flow phantoms with different orifice shapes
along with the experimental power-Doppler images. The jet
cross sections are segmented using ResNet, power threshold-
ing, and DC. The results indicate that ResNet better recon-
structs the shape of the orifice than the references.

C. In Vivo Feasibility Analysis

Fig. 11 shows the results from six patients with aortic
regurgitation. The plots compare the RVol and CSA estimated
using ResNet, DC, and thresholding. The results are compared
with MRI and 2-D PISA. In Fig. 11(b), 2-D PISA EROA
estimates are plotted along with CSA as estimated by our
method. Note that since 2-D PISA EROA is estimated indi-
rectly using the peak velocity from the CW spectrum, it is
not directly comparable to our method, which estimates the
CSA directly. Fig. 12 shows PW spectra, power Doppler with
jet segmentation, and velocity estimates from the six patients.
Fig. 13 shows a summary of the flow rate results, comparing
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Fig. 8. Flow rate estimates of circular orifices (15, 25, 35, and 45 mm2)
using segmentation from power thresholding, DC, and using ResNet.
Each separate measurement is from a recording for a certain orifice size,
flow rate, and angle. Error bars signify the standard deviation between
frames in each recording (10–15 frames per recording). Each recording
had a duration of about 60 ms, which is close to the regurgitation
durations we observed clinically. The black line shows the flowmeter
reference. The estimated velocity field was the same for all the methods.
Linear regression slopes and coefficients of determination for each orifice
size are denoted by β and r2, respectively.

Fig. 9. Angle-corrected CSA estimates of circular orifices (15, 25, 35, and
45 mm2) using segmentation from power thresholding, DC, and using
ResNet. The error bars signify the standard deviation for all the angles
and flow rates for a given orifice size.

the accuracy from simulations, the experimental validation,
and the patient data.

We can observe that ResNet is more robust than the other
segmentation methods. Power thresholding and DC are more
prone to overestimation, most notably in patients 2 and 3.
This is attributed to ResNet’s ability to infer smaller areas
from the highly blurred power-Doppler images, as can be seen

Fig. 10. Recording examples of orifices with different shapes.
(Left) Instantaneous power-Doppler images with thresholding segmen-
tation (white), DC (blue), and ResNet segmentation (red). The seg-
mented areas are noted in white, blue, and red text, respectively.
(Right) Corresponding flow phantoms used in the experiment, with the
orifice area noted in black text.

in Fig. 12. We can see in Fig. 11(a) that this ability has a big
impact on the RVol estimates, in which ResNet has a better
agreement with the 2-D PISA and MRI references.

IV. DISCUSSION

In this work, we combined deep learning and high frame
rate 3-D ultrasound to quantify regurgitant jets in heart valves.
This was done using a neural network trained on the simulated
data to segment the regurgitant orifice from poor resolu-
tion power-Doppler images, which facilitated estimators for
the orifice area and RVol. The experimental and simulation
results shown in Figs. 4, 5, 8, and 10 suggest that deep
learning-based segmentation achieves higher accuracy than
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Fig. 11. (a) RVol and (b) area estimates of six patients with aortic
regurgitation from MRI, 2-D PISA, and 3-D Doppler with segmentation
using ResNet, DC, or power thresholding. MRI measurements were
feasible for RVol, but not for area measurements. CSA error bars signify
the mean and standard deviation of the area estimates in all the frames
in the recording. Note that EROA is not directly comparable to CSA since
EROA is computed indirectly using a maximum velocity estimate, while
CSA is estimated directly. The underestimation of ResNet RVol in patient
6 is likely caused by insufficient PRF in the acquisition.

power thresholding and spatially invariant DC, and it is able
to reconstruct the orifice shapes from low-quality images.
We also demonstrated feasibility for six in vivo cases of aortic
regurgitation, as shown in Figs. 11 and 12.

The neural network can be trained entirely on the simulated
data, and the inference time is short due to the lightweight
architecture. The experimental validation showed that our
approach is transferable from the simulated domain to real
acquisition data, even though ResNet has been trained solely
on the simulated data. One challenge we encountered was
the difference in signal-to-noise ratio (SNR) between the
simulated and observed power-Doppler images. Moreover, we
noted a presence of a diffuse signal surrounding the jet in the
observed data, which causes a further reduction in contrast.
We believe that the cause for this signal component could
be a combination of recruited flow, defocusing due to phase
aberration and side lobes. We could account for these bloom-
ing effects using augmentation with the Gaussian bivariate

Fig. 12. In vivo recordings of six patients with aortic regurgitation.
(Left) PW spectra, with mean velocity traces plotted in green, and current
time frames marked by blue dashed lines. (Right) Power-Doppler cross
sections with the CSA segmented using thresholding (white), DC (blue),
and ResNet (red). In patient 6, we can observe from the spectrum that
the PRF is insufficient to capture the entire velocity envelope. This likely
explains the underestimation of RVol for this patient, as can be observed
in Fig. 11.

functions, a strategy which previously has been applied to
account for shadowing artifacts in B-mode images [33], [34].

To illustrate how increasing realism increases the problem
complexity, flow rates from the different test environments
are compared in Fig. 13. We can observe that when moving
from the simulations to the experimental data, and then to
patient data, the accuracy decreases at each step. This trend
shows that even though our deep learning model performs
well within the simulator conditions, the simulator is limited
in providing sufficiently realistic training examples which
cover the challenging clinical conditions. The aforementioned
effects that are present in a clinical environment, but not
in the simulated or experimental environments, have a big
impact on the overall signal quality. Valve motion introduces
high-intensity clutter which is difficult to effectively filter away
and also affects vena contracta depth estimation. We also
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Fig. 13. Comparison of the simulated, experimental, and in vivo flow
rate estimation results using ResNet. The graphs are displaying all the
in vivo results with the MRI reference. The simulated and experimental
examples are arbitrarily chosen from the results previously shown, while
ensuring a representative spread in the reference values. We assume a
constant velocity of 2 m/s for the simulated case. In vivo flow rates are
computed by dividing RVol by the regurgitation duration.

suspect that aberration and small intercostal windows cause
additional deterioration of the image quality.

The experimental setup facilitated validation of our method
in a controlled environment where the true orifice geometries
and flow rates were known. However, our setup was not
intended to accurately mimic the clinical case. The experimen-
tal environment has limited realism compared with the clinical
cases of TTE for aortic regurgitation. Notable limitations of the
experimental setup include the lack of fatty tissue aberrators
and ribs and the lack of a moving valve apparatus which may
cause shadowing and clutter noise. Future work should aim at
creating experimental environments closer to the clinical case.
This would facilitate better analysis of the method’s limitations
in a controlled environment.

Deep learning was only used to segment the regurgitant
orifice from power-Doppler images, while velocity was esti-
mated using a conventional PW Doppler estimator. Moreover,
the vena contracta depth needed to be estimated prior to
segmentation. Future work could expand the method to infer
both area and velocity from 3-D plus time volumes of IQ data,
alleviating the need for handcrafted estimators. The neural
network architecture would need to be changed to incorporate
learning correlations in three dimensions and across time.
A combination of 3-D convolutional layers and temporal units
such as recurrent layers or attention-based mechanisms could
be used.

To achieve a model capable of inference directly from
3-D plus time volumes, we would need an abundance of
such training volumes. This creates the need for a simulator
which is fast enough to generate enough training examples in
reasonable time, while still accounting for spatially variant
PSFs. Field-II would not be fast enough for this purpose;
however, FLUST [35] is a viable alternative. In the future,
we are planning to make a 3-D plus time model based on a
FLUST simulator, as well as improve the key steps in high
PRF acquisition, and processing steps such as adaptive clutter
filtering. We believe that these improvements would provide a

method capable of producing more robust and accurate results
in a clinical environment.

V. CONCLUSION

In this article, we presented a method that combines deep
learning segmentation and 3-D high frame rate ultrasound
for the quantification of flow rates, flow volumes, jet areas,
and shapes for heart valve regurgitation. We showed that our
approach better distinguishes between different regurgitation
sizes and reconstructs the orifice shape better than a previous
approach using thresholding and an approach using spatially
invariant DC. In vivo feasibility was demonstrated for six
patients with aortic regurgitation. Challenges in the acquisition
and image formation need to be solved to ensure sufficient
in vivo image quality prior to segmentation. We believe our
method could be valuable in clinical assessment in the future,
as it could provide higher accuracy results with less user
dependency than current recommended methods.
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