• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing Cyber Risk in Cyber-Physical Systems Using the ATT&CK Framework

Amro, Ahmed Walid; Gkioulos, Vasileios; Katsikas, Sokratis
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
_Preprint_Assessing_Cyber_Risk_in_Cyber_Physical_Systems_Using_the_ATT_CK_Framework.pdf (1.333Mb)
Permanent lenke
https://hdl.handle.net/11250/3058042
Utgivelsesdato
2022
Metadata
Vis full innførsel
Samlinger
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi [2809]
  • Publikasjoner fra CRIStin - NTNU [41955]
Originalversjon
10.1145/3571733
Sammendrag
Autonomous transport is receiving increasing attention, with research and development activities already providing prototype implementations. In this article we focus on Autonomous Passenger Ships (APS), which are being considered as a solution for passenger transport across urban waterways. The ambition of the authors has been to examine the safety and security implications of such a Cyber Physical System (CPS), particularly focusing on threats that endanger the passengers and the operational environment of the APS. Accordingly, the article presents a new risk assessment approach based on a Failure Modes Effects and Criticality Analysis (FMECA) that is enriched with selected semantics and components of the MITRE ATT&CK framework, in order to utilize the encoded common knowledge and facilitate the expression of attacks. Then, the proposed approach is demonstrated through conducting a risk assessment for a communication architecture tailored to the requirements of APSs that were proposed in earlier work. Moreover, we propose a group of graph theory-based metrics for estimating the impact of the identified risks. The use of this method has resulted in the identification of risks and their corresponding countermeasures, in addition to identifying risks with limited existing mitigation mechanisms. The benefits of the proposed approach are the comprehensive, atomic, and descriptive nature of the identified threats, which reduce the need for expert judgment, and the granular impact estimation metrics that reduce the impact of bias. All these features are provided in a semi-automated approach to reduce the required effort and collectively are argued to enrich the design-level risk assessment processes with an updatable industry threat model standard, namely ATT&CK.
Utgiver
Association for Computing Machinery (ACM)
Tidsskrift
ACM Transactions on Privacy and Security (TOPS)

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit