• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Missing Data in Prediction Research: A Five-Step Approach for Multiple Imputation, Illustrated in the CENTER-TBI Study

Gravesteijn, Benjamin; Sewalt, Charlie; Venema, Esmee; Nieboer, Daan; Steyerberg, Ewout W.; Andelic, Nada; Andreassen, Lasse; Anke, Audny Gabriele Wagner; Frisvold, Shirin; Helseth, Eirik; Røe, Cecilie; Røise, Olav; Skandsen, Toril; Vik, Anne; Åkerlund, Cecilia; Amrein, Krisztina; Antoni, Anna; Audibert, Gerard; Azouvi, Philippe; Azzolini, Maria luisa; Bartels, Ronald; Barzo, Pal; Beauvais, Romuald; Beer, Ronny; Bellander, Bo-michael; Belli, Antonio; Benali, Habib; Berardino, Maurizio; Beretta, Luigi; Blaabjerg, Morten; Bragge, Peter; Brazinova, Alexandra; Brinck, Vibeke; Brooker, Joanne; Brorsson, Camilla; Buki, Andras; Bullinger, Monika; Cabeleira, Manuel; Caccioppola, Alessio; Calappi, Emiliana; Calvi, Maria rosa; Cameron, Peter; Lozano, Guillermo carbayo; Carbonara, Marco; Chevallard, Giorgio; Chieregato, Arturo; Citerio, Giuseppe; Cnossen, Maryse; Coburn, Mark
Peer reviewed, Journal article
Published version
View/Open
Gravesteijn (Locked)
URI
https://hdl.handle.net/11250/3003460
Date
2021
Metadata
Show full item record
Collections
  • Institutt for nevromedisin og bevegelsesvitenskap [2360]
  • Publikasjoner fra CRIStin - NTNU [26751]
  • Publikasjoner fra Cristin - St. Olavs hospital [776]
  • St. Olavs hospital [1314]
Original version
Journal of Neurotrauma. 2021, 13 (38), 1842-1857.   10.1089/neu.2020.7218
Abstract
In medical research, missing data is common. In acute diseases, such as traumatic brain injury (TBI), even well-conducted prospective studies may suffer from missing data in baseline characteristics and outcomes. Statistical models may simply drop patients with any missing values, potentially leaving a selected subset of the original cohort. Imputation is widely accepted by methodologists as an appropriate way to deal with missing data. We aim to provide practical guidance on handling missing data for prediction modeling. We hereto propose a five-step approach, centered around single and multiple imputation: 1) explore the missing data patterns; 2) choose a method of imputation; 3) perform imputation; 4) assess diagnostics of the imputation; and 5) analyze the imputed data sets. We illustrate these five steps with the estimation and validation of the IMPACT (International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury) prognostic model in 1375 patients from the CENTER-TBI database, included in 53 centers across 17 countries, with moderate or severe TBI in the prospective European CENTER-TBI study. Future prediction modeling studies in acute diseases may benefit from following the suggested five steps for optimal statistical analysis and interpretation, after maximal effort has been made to minimize missing data.
Publisher
Mary Ann Liebert
Journal
Journal of Neurotrauma
Copyright
This version of the article will not be available due to copyright restrictions by Mary Ann Liebert

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit