• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-Row Adjoint-Based Optimization of NICFD Turbomachinery Using a CAD-Based Parametrization

Agromayor, Roberto; Anand, Nitish; Pini, Matteo; Nord, Lars O.
Journal article
Submitted version
Åpne
Agromayor (Låst)
Permanent lenke
https://hdl.handle.net/11250/2981796
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Institutt for energi og prosessteknikk [3301]
  • Publikasjoner fra CRIStin - NTNU [26593]
Originalversjon
https://doi.org/10.1115/1.4052881
Sammendrag
Currently, most of the adjoint-based design systems documented in the open literature assume that the fluid behaves as an ideal gas, are restricted to the optimization of a single row of blades, or are not suited to impose geometric constraints. In response to these limitations, this paper presents a gradient-based shape optimization framework for the aerodynamic design of turbomachinery blades operating under nonideal thermodynamic conditions. The proposed design system supports the optimization of multiple blade rows, and it integrates a computer-aided design (CAD)-based parametrization with a Reynolds-averaged Navier–Stokes (RANS) flow solver and its discrete adjoint counterpart. The capabilities of the method were demonstrated by performing the design optimization of a single-stage axial turbine that employs isobutane (R600a) as working fluid. Notably, the aerodynamic optimization respected the minimum thickness constraint at the trailing edge of the stator and rotor blades and reduced the entropy generation within the turbine by 36%, relative to the baseline, which corresponds to a total-to-total isentropic efficiency increase of about 4 percentage points. The analysis of the flow field revealed that the performance improvement was achieved due to the reduction of the wake intensity downstream of the blades and the elimination of a shock-induced separation bubble at the suction side of the stator cascade.
Utgiver
American Society of Mechanical Engineers
Tidsskrift
Journal of Engineering For Gas Turbines and Power
Opphavsrett
This article will not be available due to copyright restrictions by ASME

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit