• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-Row Adjoint-Based Optimization of NICFD Turbomachinery Using a CAD-Based Parametrization

Agromayor, Roberto; Anand, Nitish; Pini, Matteo; Nord, Lars O.
Journal article
Submitted version
View/Open
Agromayor (Locked)
URI
https://hdl.handle.net/11250/2981796
Date
2021
Metadata
Show full item record
Collections
  • Institutt for energi og prosessteknikk [3301]
  • Publikasjoner fra CRIStin - NTNU [26593]
Original version
https://doi.org/10.1115/1.4052881
Abstract
Currently, most of the adjoint-based design systems documented in the open literature assume that the fluid behaves as an ideal gas, are restricted to the optimization of a single row of blades, or are not suited to impose geometric constraints. In response to these limitations, this paper presents a gradient-based shape optimization framework for the aerodynamic design of turbomachinery blades operating under nonideal thermodynamic conditions. The proposed design system supports the optimization of multiple blade rows, and it integrates a computer-aided design (CAD)-based parametrization with a Reynolds-averaged Navier–Stokes (RANS) flow solver and its discrete adjoint counterpart. The capabilities of the method were demonstrated by performing the design optimization of a single-stage axial turbine that employs isobutane (R600a) as working fluid. Notably, the aerodynamic optimization respected the minimum thickness constraint at the trailing edge of the stator and rotor blades and reduced the entropy generation within the turbine by 36%, relative to the baseline, which corresponds to a total-to-total isentropic efficiency increase of about 4 percentage points. The analysis of the flow field revealed that the performance improvement was achieved due to the reduction of the wake intensity downstream of the blades and the elimination of a shock-induced separation bubble at the suction side of the stator cascade.
Publisher
American Society of Mechanical Engineers
Journal
Journal of Engineering For Gas Turbines and Power
Copyright
This article will not be available due to copyright restrictions by ASME

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit