Show simple item record

dc.contributor.authorEmberson, David
dc.contributor.authorSandquist, Judit
dc.contributor.authorLøvås, Terese
dc.contributor.authorSchönborn, Alessandro
dc.contributor.authorSaanum, Inge
dc.date.accessioned2021-05-10T08:59:54Z
dc.date.available2021-05-10T08:59:54Z
dc.date.created2021-05-07T14:36:54Z
dc.date.issued2021
dc.identifier.issn1996-1073
dc.identifier.urihttps://hdl.handle.net/11250/2754560
dc.description.abstractThis study examines the possibility to provide control over ignition timing in a homogeneous charge compression ignition engine (HCCI) using a fuel additive whose molecular structure can be adapted upon exposure to UV light. The UV adapted molecule has a greater influence on retarding ignition than the original molecule, hence the ignition time can be modulated upon expose to UV light. The new fuel is referred to as a ‘smart fuel’. The fuel additive is in the form of 1,3-cyclohexadiene (CHD), upon UV exposure it undergoes electro-cyclic ring opening to form 1,3,5-hexatriene (HT). Various solutions of iso-octane, n-heptane and CHD have been irradiated by UV light for different amounts of time. CHD to HT conversion was examined using gas chromatography coupled with mass spectrometry. A primary reference fuel (PRF) mixture of 90% iso-octane and 10% n-heptane was used as a baseline in an optically accessible combustion chamber in a large bore, single cylinder compression ignition engine. The engine was operated in HCCI mode, using early injection to provide homogeneous mixture and utilized heated and compressed air intake. Following this a PRF with 5% CHD was used in the engine. A PRF with 5% CHD was then irradiated with UV light for 240 min, resulting in a PRF mixture containing 1.72% HT, this was then used in the engine. The HT containing PRF had a much later start of combustion compared with the CHD containing PRF, which in turn had a later start of combustion compared with the PRF baseline. This study has successfully validated the concept of using a photo-chemical ‘smart’ fuel to significantly change the ignition quality of a fuel in HCCI mode combustion and demonstrated the concept of on-board ‘smart fuel’ applications for ICE.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleVarying Ignition Quality of a Fuel for a HCCI Engine Using a Photochemically-Controlled Additive: The Development of a ‘Smart’ Fuelen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume14en_US
dc.source.journalEnergiesen_US
dc.source.issue5en_US
dc.identifier.doi10.3390/en14051470
dc.identifier.cristin1908805
dc.relation.projectNorges forskningsråd: 255144en_US
dc.description.localcodeCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal