• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Hybrid Approach to Motion Prediction for Ship Docking— Integration of a Neural Network Model into the Ship Dynamic Model

Skulstad, Robert; Li, Guoyuan; Fossen, Thor I.; Vik, Bjørnar; Zhang, Houxiang
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
Skulstad (2.270Mb)
Permanent lenke
https://hdl.handle.net/11250/2676731
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Institutt for havromsoperasjoner og byggteknikk [439]
  • Institutt for teknisk kybernetikk [2238]
  • Publikasjoner fra CRIStin - NTNU [20804]
Originalversjon
http://dx.doi.org/10.1109/TIM.2020.3018568
Sammendrag
While automatic controllers are frequently used during transit operations and low-speed maneuvering of ships, ship operators typically perform docking maneuvers. This task is more or less challenging depending on factors such as local environment disturbances, number of nearby vessels, and the speed of the ship as it docks. This paper proposes a tool for onboard support that offers position predictions based on an integration of a supervised machine learning (ML) model of the ship into the ship dynamic model. The ML model is applied as a compensator of the unmodelled behaviour or inaccuracies from the dynamic model. The dynamic model increases the amount of predetermined knowledge about how the vessel is likely to move and thus reduces the black-box factor typically experienced in purely data-driven predictors. A prediction horizon of 30 seconds ahead of real time during docking operations is examined. History data from the 29-meter coastal displacement ship RV (Research Vessel) Gunnerus is applied to validate the approach. Results show that the inclusion of the data-based ML model significantly improves the prediction accuracy.
Utgiver
IEEE
Tidsskrift
IEEE Transactions on Instrumentation and Measurement

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit