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Abstract—While automatic controllers are frequently used
during transit operations and low-speed maneuvering of ships,
ship operators typically perform docking maneuvers. This task
is more or less challenging depending on factors such as local
environment disturbances, number of nearby vessels, and the
speed of the ship as it docks. This paper proposes a tool
for onboard support that offers position predictions based on
an integration of a supervised machine learning (ML) model
of the ship into the ship dynamic model. The ML model is
applied as a compensator of the unmodelled behaviour or
inaccuracies from the dynamic model. The dynamic model
increases the amount of predetermined knowledge about how
the vessel is likely to move and thus reduces the black-box
factor typically experienced in purely data-driven predictors. A
prediction horizon of 30 seconds ahead of real time during
docking operations is examined. History data from the 29-
meter coastal displacement ship RV (Research Vessel) Gunnerus
is applied to validate the approach. Results show that the
inclusion of the data-based ML model significantly improves
the prediction accuracy.

Index Terms—Ship motion prediction, supervised deep learn-
ing, onboard support

I. INTRODUCTION

SHIP motion prediction is a general term that incorporates
many elements. These include the states in which to per-

form predictions – for example prediction of ship orientation,
position, or up/down motion – the temporal aspect (long,
medium and short) and the model that makes the prediction
of the states in the near future. Typically these predictions,
which are based on time-series data, coincide with a specific
application that could benefit from having information about
future states of the vessel motion. Historically, research
efforts have been focused on ship orientation and applications
where safety or efficiency can be increased using predictions
of these states. Mainly this is due to the abundance of
operations that are severely impacted by angular motions of
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a vessel, including takeoff and landing of autonomous aerial
vehicles and helicopters [1], crane operations [2] [3], and
missile launch [4]. These operations can be made safer and
more efficient by incorporating knowledge about future vessel
states.

Docking is the task of maneuvering the vessel to a fixed
mooring location. On the path towards the dock the ves-
sel operator must tackle challenges such as passing/nearby
vessels, compensating for forces induced on the vessel by
environment disturbances, and arriving at the dock location
in a timely fashion. The latter is especially important for
ferries or vessels transporting goods on a fixed route, where
keeping the time schedule is key. Although much effort has
been put into ship autonomy in recent years [5], docking is
still a largely manual task performed by the vessel operator.
Research in the field of ship motion prediction typically
focuses on methods within one domain, e.g. dynamic- or
kinematic models and Kalman filters, machine learning (ML),
deep learning or auto-regressive (AR) methods (see Section
II).

Dynamic models aim at describing the motion of the
vessel due to forces estimated by simplified representations
of the vessel, including thruster effects and to some extent,
forces due to environmental disturbances. Simplifications
are necessary due to the lack of direct measurements of
wave/current drift. Additionally, for docking applications,
effects due to local wind fields, cushioning effects at the dock
and shallow water exist, which are not measured directly. The
true model is complex and nonlinear; thus a simplified model
is often used and discrepancies between the behaviour of the
real ship and the dynamic model are expected. Kinematic
prediction models allow for translating motion measurements,
such as accelerations into predictions of position. However,
they account for neither the effects of thruster commands nor
the direct effect of wind forces. While many ML methods are
well suited for representing nonlinear models they require
a substantial amount of sampled data to do so reliably. In
addition, the inner connections in a ML model may not be
readily understandable.

Examples where existing knowledge of the behaviour of
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the ship is utilized in cooperation with data-based ML models
are scarce. This study will therefore investigate the feasibility
of one such approach: making position predictions using a
dynamic model while in parallel, an ML model predicts the
position prediction error made by the dynamic model in order
to compensate for any unmodelled behaviour or inaccuracies.
Including the measured wind velocity and direction as input
to the ML model, contributes significantly to the success of
the proposed approach. While a Kalman filter could simulate
the dynamic model and derive predictions in a similar man-
ner, the ability to provide corrections to the dynamic model
predictions, gained by learning from docking examples differ-
ing in port location, sea state and wind conditions, would be
lost. This work will focus on the prediction of position during
the docking operation of a regular displacement ship. Figure
1 shows a picture of the ship. Currently, this is a manual task,
relying on the ship operator to make appropriate and timely
corrections to actuators in order to safely dock the vessel.
During this operation the ship operator must make many
choices due to changing environment factors, regulations
calling for proper interaction with nearby/crossing vessels,
and the effects of applied actuator commands. To aid in
making these choices this paper proposes an onboard support
tool, which will provide the vessel operator with predictions
of the vessel position. These predictions originate from the
hybrid predictor and span 30 seconds into the future [6],
hereafter termed the prediction horizon. Key contributions of
this paper includes the construction of a hybrid model for
prediction of the future motion of a ship, and the use of data
sampled onboard a coastal ship for training of the data-based
model as well as verification of the prediction performance.

The remainder of this paper is organized as follows.
Section II presents previous research in this domain. Section
III introduces the predictors and their architecture/parameters,
Section IV gives results and describes the vessel and data
selected for training and testing of the predictors. Section V
presents the conclusions.

II. RELATED WORK

Research on ship motion prediction generally revolves
around a model that processes time series data, where each
input channel contains data sampled at a fixed time interval.
Several metrics exist in which time series prediction models
may be categorized. If the model uses existing explicit
knowledge of how the vessel moves due to forces and/or
velocities (dynamic/kinematic models), the term model-based
predictors may be appropriate. If only sampled data is used to
learn the behaviour of the vessel, the predictor is termed data-
based. We may also distinguish methods based on if they can
represent nonlinear behaviour. The subsections below outline
the description and classification of existing methods for ship
motion prediction.

A. Model-based motion prediction

This section introduces predictors applying predetermined
knowledge of how the vessel behaves when maneuvering.

1) Dynamic model: Triantafyllou et al. used a standard
Kalman Filter (KF) to estimate and predict the motion states
of the two decoupled motion groups heave-pitch and roll-
sway-yaw [7]. They found that in order for the KF to
be successful, an accurate model of both vessel and sea
state spectrum was required. For the latter requirement the
estimation of the modal frequency of the spectrum was key
to the performance of the KF.

Sutulo et al. [8] aimed at creating maneuvering models
(dynamic or kinematic) that could be inexpensive to evaluate,
and thus be used in tasks related to prediction and onboard
support. According to the authors this could make applica-
tions such as model-based collision avoidance and onboard
decision support for deciding control commands feasible due
to the computational efficiency of the models.

2) Motion density functions: Instead of using the equa-
tions of motions to model the dynamic behaviour of vessel
states, as Triantafyllou et al. had done, Sidar and Doolin
constructed the linear KF using approximations of density
functions of measured heave and pitch motions [9]. The
density functions were obtained experimentally. This led to
a KF of significantly lower dimension compared to the work
of Triantafyllou et al. Measured heave and pitch time series
were assumed to be stationary, narrow band, and stochastic
for the duration of the prediction interval. The choice of a
KF as a tool for making predictions using the motion density
functions was motivated by its ability to produce predictions
in real time.

The approach to ship motion prediction taken by Nielsen
et al. also relies on density functions of time series data [10].
By deriving the observed autocorrelation matrix for variables
largely dictated by the induced wave force, predictions of 15-
60 seconds were made on a model-scale ship.

3) Kinematic model: Perera et al. proposed to use the
Extended Kalman Filter (EKF) to estimate the translational
motion states and predict the trajectory of a vessel by means
of a curvilinear motion model (CMM) [11], [12]. States
included in this model were heading angle, normal and
tangential accelerations, forward (surge) speed, and sideways
(sway) speed. By combining the EKF and the CMM the
authors found that the estimated velocities and accelerations,
which were estimated based only on noisy position mea-
surements, converged quickly (within 15 seconds) to small
variations around the true values. For the validity of the
prediction they assumed constant accelerations, which is a
strong assumption given the nature of vessel motion. This was
acknowledged by the authors, deeming the approach valid
only for short-term predictions.

Perera later modified his approach to use a vector dot and
cross product algorithm for the prediction of vessel motion
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Fig. 1. The Research Vessel Gunnerus of the Norwegian University of Science and Technology (NTNU) (bottom right vessel) approaching a dock in the
port of Aalesund, Norway.

[6]. Given the large inertia of a vessel, its trajectory creates
a curve in the ocean plane, motivating the use of the CMM
as vessel model in the EKF. Based on this property the
algorithm calculates radii of the center of gravity and pivot
point of the vessel relative to a calculated center of planar
motion for a vessel. The states and parameters related to the
vessel pivot point were estimated for a given time instance
and used to predict the position and heading 30 seconds
ahead of real time. The adaptability to varying conditions
is, according to the author, preserved by the use of the EKF
and predictions are valid under the assumption of constant
navigation conditions within a short future time interval.

B. Data-based motion prediction

To address the difficulty of obtaining a sufficiently de-
tailed mathematical model, which transitions the relevant
states from one sampling time instance to the next, many
researchers have turned to data-based predictor models. The
principal advantage of such methods is the ability to construct
a model that relates a certain sampled input vector to a certain
output state vector without knowledge of the parameters of
the physical object. This output state vector is a set of vessel
states for which one wishes to determine numerical values
ahead of real time. Support Vector Machines (SVM), neural
networks, and AR models are examples of such methods and
the majority of data-based predictor models used for ship
motion prediction are varieties of these general models.

SVM features attributes such as strong generalization abil-
ity and global optimization [13]. Creating a model that is able
to generalize well to inputs, beyond those provided in the
learning stage of the method, is one of the key advantages of

this method. Ming et al. used SVM, together with several
aiding methods, to predict the heave motion given waves
impacting the vessel at four different directions [14].

The attributes of neural networks include the ability to
adapt to input changes and to represent the nonlinear be-
haviour of the input-output relation of physical systems.
Employing a time-delay neural network with wavelet acti-
vation functions and using sensitivity analysis to determine
significant inputs, Zhang et al. performed prediction of the
heading of a vessel a few steps ahead [15]. They concluded
that this type of prediction may be used for the benefit of
vessel control and safety.

Peng et al. applied data-based modelling to estimate the
unknown ship dynamics as well as to reconstruct the un-
measured ship velocity. An Echo State Network [16] and a
fuzzy system [17] comprise the tools that was integrated into
an observer and subsequently used in vessel maneuvering
control. The task of reconstructing the entire dynamic model
of the vessel was relaxed through the introduction of a
nominal mass matrix in [16]. Force produced by thrusters on
the vessel was assumed to be known and subsequently input
to the data-based model to approximate the vessel dynamics.

Zhang and Liu used a single layer feedforward network
(SLFN) to predict the heading angle of a vessel a few sample
intervals ahead [18]. This one-layer prediction network is
common in the literature, although the choice of activation
function, training method, number of hidden neurons, type
and number of input variables and the number of input lags
vary greatly. Arriving at suitable values for these parameters
is the key challenge to providing reliable predictions using
SLFNs. Often these parameters are derived using trial and er-
ror, although online pruning methods for producing compact
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networks exist [19]. For statically trained networks genetic
algorithms, grid search or random search algorithms may also
be used to optimize architecture and hyperparameters.

Skulstad et al. applied a long-short term memory (LSTM)
network, a version of a recursive network, to maintain
estimates of position and heading of a ship during loss
of position reference signals from the Global Navigation
Satellite System [20]. They used a deep neural network
similar to the one described in Section III-C. However, only
a one-step prediction was made and sensors not relying
on external signals, such as the compass, wind sensor, and
sensors measuring operating conditions of the thrusters, were
still active.

Maintaining accurate estimates of position and attitude
during loss of GNSS signals is also of importance in the
automotive and aerospace domain. Examples of approaches
to mitigate such a sensor loss, through one-step predictions,
are given in [21] and [22]. The former applies a KF in com-
bination with an AR integrated moving average model and
a feedforward neural network to predict errors accumulating
in the inertial navigation system while the latter makes use
of a radial basis function neural network for predicting the
KF measurement update.

The AR method makes use of history samples of the target
state accompanied by predictor model parameters determined
by a least squares method [23]. It offers low computational
costs, but has drawbacks handling nonlinear, non-stationary
series [24]. Derivative methods to mitigate the effects of these
drawbacks exist, such as Nonlinear AR method and Time
varying AR method. To predict the displacement of a landing
deck on a vessel, Yang improved upon the standard AR
method by using Bayes Information Criterion to determine
the number of model coefficients, and a forgetting factor
to reduce the effect of older vessel states on the regression
algorithm output [1].

Lately, studies on vessel traffic management have resulted
in more emphasis on trajectory prediction in order to im-
prove operational safety in congested waters [12] [25] [26].
However, these are longer-term predictions and fall outside
the scope of this work. Similarly, prediction of a maximum
envelope of roll, pitch, or heave motion, termed quiescent
period prediction (see [27] and [28]) is out of scope for the
present study.

Prediction using time series methods similar to the ones
described above are also found in various other domains, such
as: weather prediction [29], electrical load forecasting [30]
and automotive motion prediction [31].

III. PREDICTOR MODELLING

As the proposed method of this study is a combination of
two predictor models originating from two separate fields;
model-based and data-based, the following sections will

outline how they are constructed and how they cooperate to
predict the future ship motion.

A. Hybrid predictor
In order to utilize the two complementary predictors for

creating a hybrid predictor, the vessel model predictor (see
Section III-B) will act as a foundation, predicting the com-
plete position state due to the sampled data it receives. As the
relative water velocity is not measured onboard the vessel,
nor are the effects of the waves on the vessel motion directly
accounted for, a certain disagreement between the actual
motion of the vessel and the position prediction output by the
vessel model is expected. To compensate for the prediction
errors made by the vessel model, the ML model is applied
(see Section III-C). In this way, the hybrid prediction is the
sum of the prediction made by the vessel model and the ML
model. Figure 2 shows how the two models are combined
to create a predictor of the future ship position. The top
dashed box of Figure 2 shows the individual components of
the vessel model. See Section III-B for a detailed description.

A fundamental difference between the vessel model and
the ML model is the way they produce prediction output.
While the ML model directly outputs predictions for the
entire prediction horizon (for future times th = [1 − 30]s)
the vessel model requires iterations. Thus, during training of
the hybrid predictor, for each time instance in the input data
the vessel model is iterated 30 times in order to produce
targets for supervised training. This is illustrated by the
block named Actual ship position and the subtraction of
the position predicted by the vessel model, η. During this
iterative process, external signals such as thruster RPM and
angle, wind speed and angle, and measured velocities are
not updated as they are not known for future time instances.
However, feedback loops are present inside the vessel model,
causing dynamic behaviour within the prediction horizon in
terms of thruster forces and vessel velocities. Training the
ML predictor involves using the position error targets and the
associated input vector to get optimized hyperparameters that
reflect the dynamics of the error model (see Section III-C). As
there are no feedback loops between the targets and the input
vector of the ML supervised learning approach, it is termed
open-loop. Description of the variables included in the input
vector may be found in Table III. The bottom dashed box
of Figure 2 is repeated, applying identical hyperparameter
values, so as to create an ensemble of LSTM predictors (more
on this in Section III-C1). To get hybrid position predictions
during a docking operation, the sum of the vessel model
position prediction, η, and the LSTM model error prediction
is calculated.

B. Vessel model
The vessel model uses established relations between ac-

tuators, external environmental disturbances (wind) and the
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Fig. 2. The prediction strategy showing the vessel model predictor (top dashed green box) and the ML model (bottom dashed green box).

motion of the hull through water to describe the forces acting
on the hull through the maneuvering model of Fossen [32].
The kinematic model is

η̇ = R(ψ)ν (1)

where η is the pose vector containing the positions and yaw
angle. R(ψ) is the horizontal plane rotation matrix due to
the yaw angle, ψ. ν is the velocity vector in surge, sway
and yaw directions, respectively. Forces due to wind, waves,
thrusters, hull friction, and inertia are given in (2)

MRBν̇ +CRB(ν)ν +MAν̇r +CA(νr)νr+

Dνr +Dn(νr)νr = τ c + τwi + τwa

(2)

where νr = ν − νc is the relative ship velocity, and νc =[
uc vc 0

]T
is the current velocity. MRB is the rigid body

mass matrix, MA is the added mass matrix and CA and
CRB are matrices describing the Coriolis/centripetal forces.
D and Dn(νr) are linear and nonlinear damping matrices
due to the hull moving through water. τ c, τwi and τwa are
forces on the ship due to thrusters, wind, and wave effects
respectively. At this point a few simplifications to the vessel
model become relevant:

• Simplification 1: Forces due to current are not ac-
counted for in the vessel dynamic model (see (2)). The

speed and direction of the current is not measured.
Therefore the velocity of the ship relative to the water,
represented by νr in (2), is not known. νr is therefore
substituted by ν in (2).

• Simplification 2: Forces due to waves, given as τwa

in (2), are not accounted for. This is due to the lack of
measurements of the wave state. Besides, ports provide
shelter from waves experienced in open ocean. There-
fore we do not include estimates of forces from waves
in the vessel model.

A numerical model of the forces produced by the two main
azimuth thrusters was supplied by the thruster manufacturer.
It is valid for all 4 quadrants of operation for the propeller
(see Table I) and thus covers the key phases of the dock-
ing procedure of this study: the initial approach (transit),
deceleration (windmilling) and low speed maneuvering. An
introduction to this type of propeller model is given in [33].
With regards to the force produced by the bow tunnel thruster,
only nominal force is estimated through a thruster curve
provided by the thruster manufacturer.

To translate the propeller thrust into the three-dimensional
force, τ c, the azimuth angle and distance from the center of
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TABLE I
THE 4 QUADRANTS OF PROPELLER OPERATION PARAMETERIZED BY

RPM AND INFLOW VELOCITY (COURTESY OF [33]).

Parameter 1st 2nd 3rd 4th
n ≥ 0 < 0 < 0 ≥ 0
Va ≥ 0 ≥ 0 < 0 < 0

gravity of the vessel to each thruster is applied (see (3)).

τ c =


0 c(αp) c(αs)
1 s(αp) s(αs)

ltx
lpxs(αp)
−lpyc(αp)

lsxs(αs)
−lsyc(αs)

×
TtnTpa
Tsa

 (3)

ltx, lpx and lsx are the distances along the longitudinal
axis of the vessel from the vessel center of gravity to the
tunnel thruster, port main thruster and starboard main thruster
respectively. αp is the azimuth angle of the port main thruster
while αs is the azimuth angle of the starboard main thruster.
The distance from the vessel center of gravity to each of
the two main thrusters along the lateral axis of the vessel is
given by lpy and lsy . s(·) represents the sine function while
c(·) represents the cosine function. Forces produced by each
thruster along the propeller axis are given by the variables
Ttn, Tpa and Tsa for the tunnel thruster, port main thruster,
and starboard main thruster, respectively. Only lateral force
and torque about the up-down axis of the vessel is produced
by the bow tunnel thruster.

Wind force is the only external disturbance in which we
use a deterministic model to estimate force. This is because
the wind (velocity and direction) is the only one of the three
environmental states measured. The three-dimensional force
is given in (4).

τwi =
1

2
ρaV

2
rw

 CX(γrw)AFw

CY (γrw)ALw

CN (γrw)ALwLoa

 (4)

where ρa is the density of air, Vrw is the relative wind
velocity, γrw is the relative wind angle, CX , CY and CN are
wind coefficients specific for the hull/superstructure shape.
AFw and ALw are frontal and lateral projected areas and
Loa is the overall length of the ship.

C. Machine learning model

Several choices exist when selecting a method for the ML
predictor. According to previous work in the domain of ship
motion prediction using ML (see Section II-B), SVMs, neural
networks (feedforward and recursive), and AR methods are
popular choices. We will apply an LSTM network, which has
shown outstanding performance in time-series modelling and
prediction.

The sequential nature of time-series data related to motion
of ships makes the LSTM a natural choice when searching
for a representative model. This network type is specifically

TABLE II
PHYSICAL PARAMETERS OF THE VESSEL USED IN THE EXPERIMENT.

Parameter Description Value
m Mass of vessel 370 t

DWT Deadweight 107 t
Lpp Length between perpendiculars 28.9 m
Bm Breadth middle (m) 9.6 m
dm Draught (m) 2.7 m

designed to store data over an extended period of time,
allowing it to capture the relatively slow changes observed in
data related to ship motion. Through the use of constant error
flow, embodied by the Constant Error Carousels (CECs) in
each LSTM block, and multiplicative gates that learn when
to allow access to the CEC, events, or relations between
input- and output data, spaced by a significant time interval,
may be approximated [34]. In order to ensure satisfactory
performance of the LSTM in predicting future vessel states,
hyperparameters need to be set. This is done using the Matlab
software, specifically the Bayesian optimization algorithm
described in [35]. To limit the search space, and thus the
required computation time, three parameters were included
in the search:

• Learning rate
• Number of LSTM layers
• Number of blocks per layer
1) Ensembles: Due to randomness in the weight initializa-

tion of the LSTM network, each instantiation of a network
with equal hyperparameters will output slightly different
predictions faced with the same input data. By averaging
the output of several networks, using the same optimized
hyperparameters, the prediction error on previously unseen
data can be reduced [36].

IV. EXPERIMENT

Table II shows the main physical dimensions of the RV
Gunnerus, a research vessel owned by the Norwegian Uni-
versity of Science and Technology. In terms of propulsors,
two azimuth thrusters are mounted at the stern as well as
a bow tunnel thruster. The two azimuth thrusters are each
driven by a 500 kW electric motor, while the electric motor
driving the bow thruster is rated at 200 kW. This yields a
cruising speed of about 10 knots.

A. Data

The experiment was conducted based on history data
acquired through log files created by a data acquisition
system onboard the RV Gunnerus. A one-year time period
was selected starting from August 2016 and ending in June
2017. For all variables in the data set a sampling rate of 1
Hz was observed.

In order to isolate successful dockings in the 2016-2017
period, three sensor channels were used. Two Boolean signals
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TABLE III
THE VARIABLES USED IN THIS STUDY AS INPUT TO THE VESSEL MODEL

AND LSTM MODEL.

Variable name Unit Range
(train)

Range
(test)

North m 1688/-2703 2267/-769
East m 1961/-486 1145/-1567

Heading angle deg 360/0 360/0
Surge speed knots 11.8/-1.82 11.98/-0.31
Sway speed knots 1.43/-1.43 1.05/-1.03
Heading rate deg/s 3.67/-3.43 2.84/-2.81

Roll deg 2.68/-3.9 2.99/-2.72
Pitch deg 0.53/-2.09 -0.02/-1.82
Heave m 0.14/-0.12 0.35/-0.41

Roll rate deg/s 2.22/-1.97 2.03/-2.17
Pitch rate deg/s 1.08/-1.28 0.89/-0.69
Heave rate m/s 0.17/-0.18 0.29/-0.25

Wind direction deg 360/0 360/0
Wind speed knots 19/0 15.6/0

Course deg 360/0 360/0
Total speed knots 11.8/0 12/0

Port thruster RPM % 93.96/-67.64 99.19/-51.89
Port thruster angle deg 121.93/-90.33 156.04/-89.83

Starboard thruster RPM % 93.95/-67.58 100.08/-56.62
Starboard thruster angle deg 106.33/-117.33 90.33/-146.44

Tunnel thruster RPM % 102.1/-99.8 93/-61.2

originating from the propulsion system, drive running (going
from true to false) and motor at zero speed (equals true),
were applied in combination with a requirement of having
a total speed of less than 0.1 m/s. When the docking time
instances were successfully determined, 1000 samples prior
to these instances were extracted and made up the data set for
each docking operation. This interval may contain an initial
period of automatic waypoint following control. However,
the majority of the time is spent in the manual control mode,
in which the ship operator guides the vessel to its docking
location. Twenty-one sensor channels related to the motion
of the vessel were sampled (see the first column of Table III),
leading to a 1000x21 matrix of measurements per operation,
spanning 15 locations along the west coast of Norway (see
Figure 3).

Table III gives all the input variables for the hybrid
predictor used in this study. Ranges are given as maximum
and minimum values observed in the time series of each
variable during 88 separate docking operations. Of these the
first 68 were used for training and the last 20 were kept for
testing purposes. The unit deg is short for degrees. To get a
clearer sense of the nature of each variable, and the extreme
values observed in the training data compared to the testing
data, the max/min values are given in columns 3 and 4 of
Table III.

A further processing of the position of the ship was made
in order to generalize the position coordinates across docking
locations. A conversion from position given as latitude and
longitude in the earth-centered, earth-fixed (ECEF) frame
to the local north-east-down (NED) frame in meters was

Fig. 3. The various docking locations of the RV Gunnerus along the west
coast of Norway.

performed for convenience. The ECEF position recorded at
the docking time instance was used as the origin for the
NED coordinates of each docking operation. Figure 4a and
4b shows the path taken by the vessel towards the docking
location at coordinates (0,0) m. The former shows all paths
included as training instances for the ML algorithms, while
the latter shows the test instances.

B. Prediction for one docking approach

As mentioned in the previous section, training data for the
ML predictor consisted of 68 individual docking operations.
First running the vessel model predictor on each time instance
(1000 instances per docking operation), predicting 30 seconds
ahead of real time, made it possible to generate an error signal
by subtracting the vessel model position prediction from the
actual position of the vessel. Thereby, the training targets,
one vector with a 30-second prediction horizon per sampling
instance, for the supervised training of the LSTM networks
was created. Figure 5 shows the accuracy of the predictions
in terms of average distance errors, calculated by (5), in the
North-East plane for each docking operation in the training
data.

ȳerr,i =

 M∑
j=1

√
(Nij − N̂ij)2 + (Eij − Êij)2

 /M (5)

ȳerr is the mean distance error between the predicted and the
true position of the ship in the prediction interval, M is the
number of samples per docking operation and i ∈ [1, 30] is
the index of the prediction horizon, th. N and E represent
the true north and east position, respectively, while N̂ and Ê
are the predicted north and east positions.

Given input data according to Section III-B at a certain
time instance, the vessel model predictor iteratively predicts
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(a) Training

(b) Testing

Fig. 4. The North-East path taken by the RV Gunnerus for all docking
operations used in this study.

the position of the vessel 30 seconds ahead. In parallel, the
ML predictor offers predictions of the position prediction
error made by the vessel model predictor. The sum of
these two 30-element vectors constitute the end result of the
prediction approach: a set of coordinates given for future time
instances in the North-East plane.

This is visualized in the plots of Figure 6, which shows
the actual track of the docking approach and predictions
made every 45 seconds. The red circle marks the start of
each prediction, while the green star marks the end for both
the hybrid predictor and the vessel model predictor. The red
star shows the true position at the prediction interval end.
If the red and green stars overlap, the position is predicted
perfectly at 30 seconds ahead of real time. As the area
between the true track of the vessel (red solid line) and
the hybrid prediction vector (black dashed line) is smaller
compared to the vessel model prediction vector, the hybrid

Fig. 5. The average distance between the true position and the position
estimated by the vessel model at 10, 20, and 30 seconds prediction horizons
on the training examples.

predictor has better position prediction accuracy. This is also
evident from the prediction error for the prediction horizon
end (distance between each green star and the adjacent red
star).

Both the vessel model predictions and the hybrid model
predictions diverge from the true position close to the origin.
This is attributed to the use of thrusters to temporarily push
the vessel against the dock while preparing the mooring
ropes. Figures 7 and 8 show that while the speed of the vessel
approaches zero at t ≈ 700s, indicating that the vessel has
docked, the thrusters are still producing thrust. In the same
time period the course angle of Figure 7 is invalid due to
zero speed. At t ≈ 630s the top plot of Figure 8 shows the
port thruster being rotated. This is to push the vessel towards
the dock with the starboard side facing the dock.

The top plot of Figure 7 plots the course angle against
the heading angle. For the final approach to the Trondheim
docking location, the course and heading angle deviate by
several degrees in the time period 300-500 s. This is due to
the dock being located in the outlet of the Nidelva river, and
the water flowing towards the sea induces force on the hull.
The effect on the vessel model prediction was a steady error
of approximately 5 m in the North-East plane during this
time period.

C. Average performance

Figure 9 shows the performance of the hybrid predictor
and the vessel model predictor. The number of samples
for the averaging of the position prediction at future times
th = [1, 30]s includes the entire 1000 seconds prior to com-
pleting the docking operation. Typically this involves a short
initial period of transit speed, followed by deceleration to a
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Fig. 6. The prediction of ship position in the horizontal plane in the port
of Trondheim, Norway.

low-speed approach and finally gliding/decelerating towards
close-to-zero speeds. This final period usually involves the
application of the bow tunnel thruster (see the bottom plot
of Figure 8). Both the vessel model predictor and the LSTM
model predictor can introduce prediction error to the overall
hybrid predictor. However, the main sources of error come
from the vessel model and are due to the following reasons:

• the vessel model predictor does not account for forces
induced by current as they are not measured;

• change in the control commands input by the vessel
operator is unknown within each prediction interval and
therefore the initial value is applied.

The LSTM predictor assumes a portion of this error, which
results in an improved overall position prediction, reducing
the average prediction error at th = 30s by almost half.
While there are three docking operations that exhibit close
to the same accuracy as the vessel model prediction average
(three black lines close to the red dashed line of Figure 9),

Fig. 7. The top plot shows the heading and course angle of the ship while
docking in Trondheim, while the bottom plot holds the ship speed.

Fig. 8. The top plot shows the rotation angle of the main thrusters, while
the bottom plot shows the RPM percentage of all three thrusters.

two of them are at a docking location not covered in the
training data set. The third line is generated by predictions
carried out while docking in a port, which is covered only
once in the training data set, and in an irregular fashion as
well. It is irregular in the sense that the vessel did not follow
the usual pattern of deceleration, but moved toward the dock
in lurches. The remaining black lines in Figure 9 depict the
prediction errors incurred while docking at more frequently
visited docking locations.

Due to the nature of data-based models, where training
data dictates the performance of the trained model, the more
repetitions of docking at a certain port will lead to the
hybrid predictor providing better predictions at this location.
For the application described in this paper, if the trained
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Fig. 9. The average position prediction error of the vessel model predictor
by itself (dashed red line) and the hybrid predictor (dashed blue line) over
the 20 test sets and the prediction horizon (1-30 seconds). The solid black
lines represent the average position prediction error of the 20 individual
docking operations included in the test set for the hybrid predictor.

hybrid predictor was applied while docking the ship at a
port for the first time, it would perform worse than if it
docked at its home port of Trondheim. However, by including
the vessel model predictor, which provides a deterministic
evaluation of the position prediction, along with facilities in
the LSTM predictor to maintain its generalization abilities
(regularization, early stopping training and dropout layer),
an increase in position prediction accuracy is seen compared
to the predictions made by the vessel model predictor alone.
Downsides to this hybrid predictor include the requirement
of having both sufficient amount of data for training of the
data-based model as well as the parameters of the dynamic
model described in Section III-B.

The second column of Table IV displays the averages of
the values seen for th = [10, 20, 30]s in Figure 5. A lower av-
erage prediction error is observed for the testing data relative
to the training data. This is due to the diversity of docking
locations contained in each set. Out of 15 docking locations,
four are represented in the test set, while 14 are represented
in the training set. Thus, as every docking location has its
own set of challenges with respect to geographical layout and
environmental conditions, the ship operator needs to adapt
his or her docking strategy. This results in a larger spread
in terms of thruster commands, which in turn affects the
prediction accuracy of the vessel model.

V. CONCLUSION

Predicting the motion of a ship is complex. As a way to
reduce the uncertainty of the position predictor performance,
predictions originating from the vessel dynamic model were

TABLE IV
THE AVERAGE POSITION PREDICTION ERROR MADE BY THE VESSEL

MODEL PREDICTOR.

th [s] Training error [m] Testing error [m]
10 3.04 2.34
20 7.11 5.23
30 12.11 8.85

combined with a data-based predictor. The latter was im-
plemented using the LSTM neural network methodology.
This resulted in a hybrid predictor, where the data-based
LSTM corrected the predictions made by the vessel model.
A substantial increase in average accuracy was observed
throughout the prediction interval. At the maximum predic-
tion horizon of 30 seconds, the average distance error in the
position predictions was reduced by about 4 m, from 8.9 m
(vessel model) to 4.7 m (hybrid model). Although the black-
box nature of the LSTM does not allow for direct insight
into what causes the vessel model predictions to deviate,
it compensates for the deviations, producing more accurate
predictions when both predictors are combined.

The current study applies prediction solely to provide
additional information for the ship operator while docking.
Utilizing the proposed hybrid position prediction as input to
an automatic motion controller could improve the efficiency
and accuracy of autonomous docking operations. Providing a
hybrid predictor that meets the two-sided goal of maintaining
stability of the cascaded predictor-controller system, as well
as to accurately predict the vessel dynamics, would be a key
challenge. Along with the inclusion of wind predictions into
the hybrid predictor, this constitutes the direction of future
work.

ACKNOWLEDGEMENT

This work was supported in part by a grant from the
Knowledge-Building Project for Industry “Digital Twins for
Vessel Life Cycle Service” (Project 280703) and in part by a
grant from the Research-Based Innovation “SFI Marine Op-
eration in Virtual Environment” (Project 237929) in Norway.
The third author was partially funded by the Norwegian Re-
search Council (NTNU AMOS) at the Norwegian University
of Science and Technology (grant no. 223254).

REFERENCES

[1] X. Yang, “Displacement motion prediction of a landing deck for
recovery operations of rotary UAVs,” Int. J. Control. Autom. Syst.,
vol. 11, no. 1, pp. 58–64, 2013.

[2] P. From, J. Gravdahl, and P. Abbeel, “On the influence of ship
motion prediction accuracy on motion planning and control of robotic
manipulators on seaborne platforms,” in Int. Conf. Robot. Autom., 2010,
pp. 5281–5288.
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