Vis enkel innførsel

dc.contributor.advisorAamo, Ole Morten
dc.contributor.authorHolta, Haavard
dc.date.accessioned2020-08-20T11:14:16Z
dc.date.available2020-08-20T11:14:16Z
dc.date.issued2020
dc.identifier.isbn978-82-326-4815-3
dc.identifier.issn1503-8181
dc.identifier.urihttps://hdl.handle.net/11250/2673189
dc.description.abstractA kick in oil and gas drilling is an unwanted, unexpected leak of oil and gas from the reservoir into the well-bore. This can happen when the surrounding formation pore pressure exceeds the well-bore pressure. A loss of circulation is the leak of drilling mud from the well-bore into the surrounding formation which occurs if the well-bore pressure is sufficiently higher than the formation pressure. Both types of leaks can have severe consequences related to the safety of the drilling crew, the rig itself and the surrounding environment. Even if the risk of severe safety related incidents is minimal, leaks are associated with high purely economical costs, both related to down-time (non-productive time), or fracturing of the well which might affect the future revenue-generating capabilities of the well. Besides preventive actions to reduce the likelihood that a leak occurs, it is evident that the ability to attenuate a leak when they do happen is an important part of any drilling operation. Early kick & loss detection is an important factor in fast leak attenuation. Almost equally important is early kick & loss estimation where information about the leak, such as pore pressure, well pressure, formation permeability and inflow size, is estimated in real-time and used to guide the controller for faster leak attenuation. The well-bore can be several kilometers long and transient fluid flow effects are significant. The fluid flow is therefore often modeled by hyperbolic partial differential equations (PDEs). Previous results on kick and loss detection and estimation has mainly focused on using lumped ODE models (with some notable exceptions), where the infinite dimensional PDE model is approximated by a finite dimensional ordinary differential equation model. This thesis investigates the possibility of using distributed PDE models directly in kick and loss estimation schemes.en_US
dc.language.isoengen_US
dc.publisherNTNUen_US
dc.relation.ispartofseriesDoctoral theses at NTNU;2020:233
dc.relation.haspartPaper 1: Holta, Haavard H. F.; Anfinsen, Henrik; Aamo, Ole Morten. Improved Kick and Loss Detection and Attenuation in Managed Pressure Drilling by Utilizing Wired Drill Pipe. IFAC-PapersOnLine 2018 ;Volum 51.(8) s. 44-49 https://doi.org/10.1016/j.ifacol.2018.06.353en_US
dc.relation.haspartPaper 2: Holta, Haavard H. F.; Aamo, Ole Morten. Adaptive Observer Design for an n+1 Hyperbolic PDE with Uncertainty and Sensing on Opposite Ends. I: Proceeding of European Control Conference (ECC 2020). IEEE conference proceedings 2020 ISBN 978-3-907144-01-5.en_US
dc.relation.haspartPaper 3: Holta, Haavard H. F.; Aamo, Ole Morten. An Adaptive Observer Design for 2×2 Semi-linear Hyperbolic Systems using Distributed Sensing. American Control Conference (ACC) 2019 ;Volum 2019-July. s. 2540-2545en_US
dc.relation.haspartPaper 4: Holta, H. and Aamo, O. M. (2019c). Observer design for a class of semi-linear hyperbolic PDEs with distributed sensing and parametric uncertainties.en_US
dc.relation.haspartPaper 5: Holta, H. and Aamo, O. M. (2020d). A heuristic observer design for an uncertain hyperbolic PDE using distributed sensing. In Proceedings of the IFAC world congress 2020en_US
dc.relation.haspartPaper 6: Holta, H. and Aamo, O. M. (2020c). Exploiting wired-pipe technology in an adaptive observer for drilling incident detection and estimation.en_US
dc.relation.haspartPaper 7: Holta, Haavard H. F.; Anfinsen, Henrik; Aamo, Ole Morten. Adaptive set-point regulation of linear 2x2 hyperbolic systems with application to the kick and loss problem in drilling. Automatica 2020 ;Volum 119 https://doi.org/10.1016/j.automatica.2020.109078en_US
dc.relation.haspartPaper 8: Holta, H. and Aamo, O. M. (2020b). Adaptive set-point regulation of linear n+1 hyperbolic systems with uncertain affine boundary condition using collocated sensing and control.en_US
dc.relation.haspartPaper 9: Holta, Haavard H. F.; Aamo, Ole Morten. A Least-Squares Scheme Utilizing Fast Propagating Shock Waves for Early Kick Estimation in Drilling. 3rd IEEE Conference on Control Technology and Applications; 2019 http://doi.org/10.1109/CCTA.2019.8920692en_US
dc.relation.haspartPaper 10: Holta, H., Anfinsen, H., and Aamo, O. M. (2020b). Observer design for a two-timescale quasi-linear system.en_US
dc.titleKick & Loss Detection and Estimation using Distributed Modelsen_US
dc.typeDoctoral thesisen_US
dc.subject.nsiVDP::Technology: 500::Information and communication technology: 550::Technical cybernetics: 553en_US


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel