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Summary

A kick in oil and gas drilling is an unwanted, unexpected leak of oil and gas from
the reservoir into the well-bore. This can happen when the surrounding formation
pore pressure exceeds the well-bore pressure. A loss of circulation is the leak of
drilling mud from the well-bore into the surrounding formation which occurs if the
well-bore pressure is sufficiently higher than the formation pressure. Both types of
leaks can have severe consequences related to the safety of the drilling crew, the
rig itself and the surrounding environment. Even if the risk of severe safety related
incidents is minimal, leaks are associated with high purely economical costs, both
related to down-time (non-productive time), or fracturing of the well which might
affect the future revenue-generating capabilities of the well. Besides preventive
actions to reduce the likelihood that a leak occurs, it is evident that the ability to
attenuate a leak when they do happen is an important part of any drilling operation.
Early kick & loss detection is an important factor in fast leak attenuation. Almost
equally important is early kick & loss estimation where information about the
leak, such as pore pressure, well pressure, formation permeability and inflow size,
is estimated in real-time and used to guide the controller for faster leak attenuation.

The well-bore can be several kilometers long and transient fluid flow effects are
significant. The fluid flow is therefore often modeled by hyperbolic partial differen-
tial equations (PDEs). Previous results on kick and loss detection and estimation
has mainly focused on using lumped ODE models (with some notable exceptions),
where the infinite dimensional PDE model is approximated by a finite dimensional
ordinary differential equation model. This thesis investigates the possibility of
using distributed PDE models directly in kick and loss estimation schemes.
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CHAPTER 1
Introduction

1.1 The kick & loss problem in oil & gas drilling
Figure 1.1 shows an illustration of an offshore drilling system. A rotating drill
string with a drill bit at the end is lowered down to the seabed and used to dig a
hole down to a prospective reservoir where oil and gas can be extracted through
porous formations. The drill string is hollow allowing a drilling fluid, referred to
as mud, to be circulated down into the well using a pump top-side at the rig. The
mud exits through nozzles on the drill bit down-hole and is circulated up in the
annulus between the drill string outer walls and the well. Between the seabed and
the rig, a riser is installed to separate the drilling system from the surrounding sea
water.

drill string

reservoir

drill bit

casing

riser

open-hole section

annulus

Figure 1.1: Illustration of an offshore drilling system.
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1. INTRODUCTION

The drilling mud is used to transport rock cuttings out of the well to the rig,
where the cuttings are separated from the mud and the mud recirculated down the
drill string. Equally important is that the mud provides well pressure control [26].
In steady state, the well pressure is the sum of the hydrostatic pressure, frictional
pressure loss and top-side pressure. Figure 1.2 shows a typical well pressure profile
and associated lower and upper pressure bounds. The process of isolating the well

pressure

choke pressure
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ng

well pressure

pore pressure

fracture pressure

Figure 1.2: Pressure margins in drilling.

from the surrounding formation is called completion and involves the insertion of a
casing pipe in the annulus which is typically cemented in place. The section below
the casing pipe is open to the surrounding formation and the well pressure in this
region must be carefully controlled. The lower pressure bound is determined by
the pore pressure. If the pore pressure exceeds the annular pressure, fluids from
the surrounding formations, which can be water, oil or gas, will start flowing into
the well. This phenomenon is called a kick. If not handled, a kick will lead to a
blowout on the surface endangering both the safety of personnel and the drilling
rig. The opposite situation with a high annular pressure might lead to fracturing
of the well and flow of drilling mud into the surrounding formation, potentially
damaging the formation. This phenomenon is called a loss (loss of circulation or
loss of drilling fluid). Even more severe, a loss of drilling fluids leads to a lower
hydrostatic pressure which in turn might cause a kick further up the annulus.

In conventional drilling the annular pressure gradient is controlled by varying
the density of the drilling mud. However, with a circulation speed in the magni-
tude of ∼ 1 m s−1, this process is too slow to handle an unexpected rise in reservoir
pressure and the resulting kick. Instead, various time-consuming shut-in and circu-
lation procedures must be initiated. This entails stopping the rotation of the drill
string, lifting the drill-bit up from the well-bottom, closing the top-side annular
seal known as a blow out preventer and circulating out any reservoir fluid in the

2



1.2 Mathematical preliminaries: Hyperbolic PDEs

annulus.
In Managed Pressure Drilling (MPD), the annular pressure is controlled more

actively. Various technologies exist, the most common being annular back-pressure
and dual-gradient systems. A back-pressure can be applied by sealing the annulus
top-side at the rig using a rotating control device and restricting the return flow
through a choke valve. This allows for continuous pressure control while drilling
by adjusting the valve opening. In addition, a back pressure pump can be used
to maintain the hydrostatic pressure in the case of lost circulation by pumping
additional mud into the annulus. In addition to being an enabling technology by
making wells with tight pressure margins drillable, MPD can be used for fast kick
attenuation by actively adjusting top-side pressure in response to changes in the
down-hole situation [82]. Using MPD, the kick can be attenuated without stopping
drilling, avoiding the costly shut-in procedures. However, the top-side separator
equipment can only handle a limited amount of production fluids. Early kick
detection and estimation are therefore essential to prevent the kick from developing
in magnitude to a level where shut-in procedures must be initiated [47, 50, 85, 92,
102].

1.2 Mathematical preliminaries: Hyperbolic PDEs
The models used to describe the drilling systems in this thesis are hyperbolic partial
differential equations (PDEs), so before presenting the physical drilling models,
some background material on hyperbolic PDEs are provided.

1.2.1 Notation
For a signal z : [0, 1] × [0,∞) → Rn, partial derivatives with respect to e.g. space
are denoted zx or ∂xzi for each element i = 1, ..., n. The L2-norm is denoted

||z|| :=

√∫ 1

0
zT (x, t)z(x, t)dx. (1.1)

For f : [0,∞)→ R, we use the vector spaces

f ∈ Lp ↔
(∫ ∞

0
|f(t)|pdt

) 1
p

<∞ (1.2)

for p ≥ 1 with the particular case
f ∈ L∞ ↔ sup

t≥0
|f(t)| <∞. (1.3)

Derivatives with respect to time are denoted ḟ .
To simplify the notation, for functions of time and space the temporal and

spatial arguments (x, t) are sometimes omitted.

1.2.2 Classes of hyperbolic PDEs
The most general system considered in this thesis has the form

zt + F (z, x)zx = S(z, x) (1.4)

3



1. INTRODUCTION

with solution z : [0, 1]× [0,∞)→ Z : (x, t) 7→ u(x, t) for some open subset Z of Rn
for any n ≥ 1, where x ∈ [0, 1] is the independent (normalized) space variable and
t ∈ [0,∞) the independent time variable. The flux density F : Z × [0, 1] → Rn×n
and source term S : Z × [0, 1]→ Rn are continuously differentiable functions with
respect to both z and x. As the system (1.4) is linear in the first order derivatives
zt and zx, but generally non-linear in z, it is referred to as a quasi-linear system.
If the flux density F (x) is independent of z, the system is called semi-linear and
if also the source term S(z, x) = S0(x)z is linear in z, the system is referred
to as a linear system. Systems in the form (1.4) arise naturally from various
physical balance laws describing how a certain quantity in the domain is balanced
through consumption/production and in- or out-fluxes through the boundaries. If
S(z, x) ≡ 0, the quantity is preserved in the domain, and the system is used to
represent conservation laws.

Only hyperbolic systems are considered which are systems where the flux density
matrix F (z) has n, real, eigenvalues. If, in addition, all eigenvalues are distinct,
the system is called strictly hyperbolic. If there exists a similarity transformation
P : Z → U ⊂ Rn : (z, x) 7→ P (z, x) =: w such that the diagonal matrix Λ(w, x) is
similar to F (z, x), i.e. satisfying

Λ(w, x)P (z, x) = P (z, x)F (u) (1.5)

for all (w, x) ∈ W × [0, 1], the system is said to be diagonalizable. The resulting
system is said to be on characteristic form and the coordinates w := P (z, x) are
called Riemann coordinates for general balance laws, or Riemann invariants for
conservation laws. In the following, only diagonalizable systems will be considered.
The diagonal elements of Λ(w, x), often called characteristic velocities for general
balance laws or transport velocities for conservation laws, are typically denoted
µi(w, x) for i = 1, ...,m and λi(w, x) for i = 1, ..., n and ordered such that

− µ1(w, x) ≤ · · · ≤ −µm(w, x) < 0 < λ1(w, x) ≤ · · · ≤ λn(w, x). (1.6)

Remark that λi(w, x), µi(w, x) > 0, i.e. non-vanishing in W × [0, 1]. For strictly
hyperbolic linear or semi-linear systems, the system is always diagonalizable.

For linear systems on characteristic form, the system state w(x, t) is often
divided into a positive convecting part u(x, t) ∈ Rn associated with the posi-
tive characteristic velocities Λ+(x) := diag(λ1(x), ..., λn(x)) and a negative con-
vecting part v(x, t) ∈ Rm associated with the negative characteristic velocities
−Λ−(x) := diag(−µ1(x), ...,−µm(x)):

ut + Λ+(x) = Σ++(x)u+ Σ+−(x)v (1.7a)
vt − Λ−(x) = Σ−+(x)u+ Σ−−(x)v (1.7b)

where [
Σ++(x)u Σ+−(x)
Σ−+(x)u Σ−−(x)

]
:= P (x)S0(x)P−1(x). (1.8)

The special case m = 1, referred to as n+ 1 systems, is often used to model multi-
phase flow systems, where n ≥ 1 denotes the number of phases (see Section 1.3.2).
Such systems are usually written in the form

ut + Λ(x) = Σ++(x)u+ σ+−(x)v (1.9a)

4



1.2 Mathematical preliminaries: Hyperbolic PDEs

vt − µ(x) = σ−+(x)u (1.9b)

where Λ(x) is the diagonal matrix with elements {λi(x)}i=1,..,n, and source terms
σ+−(x) ∈ Rn×1 and σ+−(x) ∈ R1×n. The missing source term σ−− ∈ R can always
be removed through a linear coordinate transformation and is therefore omitted.
The next special case, where also n = 1, is commonly used to model single-phase
flow systems. They are referred to as 2× 2 systems and are usually written in the
form

ut + λ(x)ux = σ+(x)v (1.10a)
vt − µ(x)vx = σ−(x)u (1.10b)

with source terms σ+(x), σ−(x) ∈ R, where again the diagonal source terms can be
removed by defining a linear coordinate transformation. Finally, the trivial system
with n = 0 and m = 1,

vt − µ(x)vx = 0, (1.11)
is used to model various quantity conservative transport phenomena.

1.2.3 Well-posedness
A system is said to be well-posed if the system has a unique solution which depends
continuously on the input data. In order to guarantee well-posedness, both the
boundary and initial conditions must therefore be specified. For many open-loop
systems or systems with static feedback written in characteristic form, this usu-
ally amounts to specifying the incoming information as a function of the outgoing
information [96], where incoming and outgoing information are defined to be the
originating and terminating boundary, respectively, of each convecting Riemann
state, i.e.

u(0, t) = B0(u(1, t), v(0, t)) (1.12a)
v(1, t) = B1(u(1, t), v(0, t)) (1.12b)

for some boundary functions B0 : Rn×Rm → Rn and B1 : Rn×Rm → Rm. In this
thesis, dynamic boundary control laws are often used, i.e.

u(0, t) = B0(u(1, ·), v(0, ·), t) (1.13a)
v(1, t) = B1(u(1, ·), v(0, ·), t) (1.13b)

where now the boundary functions, called control laws if specifiable, takes the ar-
guments u(1, ·) and v(0, ·) which are functions [0,∞) → Rn and [0,∞) → Rm
respectively. In this case, proving well-posedness is non-trivial without some re-
striction on the type of control law [10, Theorem 1.1]. Linear boundary conditions
are usually written in the form

u(0, t) = Q0v(0, t) + d(t) (1.14a)
v(1, t) = R1u(1, t) + U(t) (1.14b)

for some constant matrices Q0 ∈ Rn×m and R1 ∈ Rm×n and control law functions
d : [0, 1] → Rn and U : [0, 1] → Rm. The signal d(t) can also be used to model

5



1. INTRODUCTION

exogenous disturbances such as oil & gas reservoir interactions in a drilling system
(see Section 1.3.4). Here, opposite boundary dependencies (i.e. u(0, t) dependent
on u(·, t) and v(1, t) dependent on v(·, t) ), if they exist, are embedded into the
control laws.

1.2.4 Stability of PDEs
Based on the definitions in Section 1.2.1, various notions of stability are studied
throughout this thesis. For infinite dimensional vector spaces the Lp norms are
not equivalent. However, since the spatial domain has finite measure, the inclusion
Lp([0, 1]) ⊂ Lq([0, 1]) holds for any 1 < p < q. Although many of the systems stud-
ied can be shown to have continuous or even continuously differentiable solutions,
most stability results are proved in terms of the L2([0, 1])-norm, meaning that the
solution is only required to be square integrable.

A function u : [0,∞)→ L2([0, 1]) : t 7→ ||u(·, t)|| is said to be

• bounded in the L2-sense, or simply bounded, if ||u|| ∈ L∞,

• square integrable in the L2-sense, or simply square integrable, if ||u|| ∈ L2,

• converge to zero in the L2-sense, or simply converge to zero if ||u|| → 0 as
t→∞.

Many hyperbolic PDE systems, particularly non-adaptive systems, also have the
property that convergence to zero is achieved in a finite time specified by the char-
acteristic velocities. In particular, this is true for many systems without boundary
reflection (e.g. Q0 = 0, R1 = 0 in (1.14)).

1.3 Models for estimation and control in drilling
Transient effects in fluid flow systems have been studied for centuries [49, 93, 108].
Initial interest in transient analysis of fluid flows in pipe systems was motivated
by the observed water hammer problem in hydroelectric penstocks [49] which can
be described as the sudden change in pressure caused by a sudden change in fluid
velocity, often caused by opening or closing a valve. The Joukowsky equation [108],
also called the fundamental equation of water hammer, captures this relationship:

∆p = z∆q (1.15)

where ∆q is the change in volumetric flow rate, z is the hydraulic impedance, and
∆p is the resulting change in pressure. The hydraulic impedance is given by z = ρλ

A
where ρ is the fluid density, A is the cross-sectional area of the pipe and λ the speed
of sound in the fluid.

Due to the initial interest in the water hammer problem, the model describ-
ing unidirectional, axisymmetric flow of a compressible fluid in a pipe where the
Mach number is very small [49], has therefore been called the water hammer equa-
tions. This model is presented in Section 1.3.1. Structurally similar models include
the Saint-Venant shallow water equations, the telegrapher equations, or the Euler
equations. An overview can be found in [18].

6



1.3 Models for estimation and control in drilling

Some phenomena in fluid flow systems are only captured by a distributed model
such as the hyperbolic PDE systems described in Section 1.2. The significance of
these phenomena, such as the water hammer effect, when modeling for estimation
and control in oil & gas drilling systems however, is still an open question [5,
38, 79, 84, 105]. There is also a trade-of between increased model accuracy and
model complexity. For many applications, simple low order lumped-models (LOL-
models) may be adequate. In the following, a linear single-phase model (the water
hammer equations) and a more complex two-phase model (the drift-flux model)
will be presented. Qualitative aspects of these two models are then compared to a
commonly used LOL-model.

For the specific problem of kick & loss estimation and attenuation considered in
this thesis, modeling the well–reservoir interaction is important. Reservoir models,
sensing, actuation and control objectives specific to the kick & loss application are
therefore also briefly presented.

1.3.1 Single-phase distributed PDE models
For single-phase flows, the mass and momentum balance in the drill string and
annulus can be described by

∂tpi(x, t) + βi
Ai(x)∂xqi(x, t) =ϕi(pi(x, t), qi(x, t), x) (1.16a)

∂tqi(x, t) + Ai(x)
ρi

∂xpi(x, t) =φi(pi(x, t), qi(x, t), x) (1.16b)

where i = d for the drill string and i = a for the annulus, the pressure pi(x, t) and
volumetric flow qi(x, t) are functions of the along-string distance x ∈ [0, L] (mea-
sured depth where L is the well length), and time t ∈ [0,∞). Ai(x) is the cross-
sectional area, βi the bulk modulus of the drilling mud and ρi the drilling mud den-
sity. For the annulus with inflow qin(x, t), flow-induced friction Fa(qa(x, t), x) and
force equivalent momentum influx from the surrounding formation Fr(qin(x, t), x),
the source terms have the general structure

ϕa(pa(x, t), qa(x, t), x) = βa
Aa(x)∂xqin(x, t) (1.17a)

φa(pa(x, t), qa(x, t), x) =−Aa(x)g cos(ψ(x))
− ρ−1

a ∂xFa(qa(x, t), x) + ρ−1
a ∂xFr(qin(x, t), x), (1.17b)

where ψ(x) is the inclination of the well and g the gravitational acceleration. For
the drill string with flow-induced friction Fd(qa(x, t), x) (and no reservoir inflow),
the source terms have the general structure

ϕd(pd(x, t), qd(x, t), x) =0 (1.18a)
φd(pd(x, t), qd(x, t), x) =Ad(x)g cos(ψ(x))− ρ−1

d ∂xFd(qd(x, t), x). (1.18b)

However, for most problems considered in this thesis, only the flow in the annulus
is considered, reservoir inflow is assumed to only happen at the boundary, and the
friction terms are assumed to be linear in qa. In that case,

ϕa(pa(x, t), qa(x, t), x) =0 (1.19a)

7



1. INTRODUCTION

φa(pa(x, t), qa(x, t), x) =−Aa(x)g cos(ψ(x))− fa(x)qa(x, t), (1.19b)

for some friction coefficient fa(x) ≥ 0.
The boundary conditions can be modeled as

pd(0, t) =
{
pa(0, t) + kbitq

2
d(0, t), qd(0, t) > 0

0, qd(0, t) ≤ 0
(1.20a)

qd(L, t) =qp(t) (1.20b)
pa(L, t) =pc(t) (1.20c)
qa(0, t) =qa(0, t) + qin(t) (1.20d)

where qp(t) is the stand pipe pump rate, kbit is a constant relating the bit flow and
differential pressure over the bit, qin(t) is the reservoir inflow (see Section 1.3.4
below), and pc(t) is the choke pressure which for conventional drilling can be set
to pc(t) = 1 bar (atmospheric pressure). In Managed Pressure Drilling, the return
flow is usually modeled by the choke equation

qc(t) = kchoke(t)sign(pa(L, t)− p0)
√
|pa(L, t)− p0| (1.21)

where p0 is the pressure at the separator side, and kchoke(t) the adjustable choke
coefficient modeling both the specific choke characteristics and the variable choke
opening.

Let zi(x, t) = [pi(x, t), qi(x, t)]. The system (1.16) has the general form (1.4)
with flux density matrix

F (x) =
[

0 βi

Ai(x)
Ai(x)
ρi

0

]
(1.22)

which has constant eigenvalues λ =
√

βi

ρi
and −µ = −

√
βi

ρi
, and there exists a linear

transformation z(x, t) → (u(x, t), v(x, t)) transforming (1.16) into characteristic
form. For the linear case (1.19) with spatially constant cross-sectional area Ai and
friction factor fi, the system (1.16) is equivalent to the 2× 2 system (1.10) with

σ+(x) = σ−(−x) = − fi
2ρi

exp( Lfi√
βiρi

x). (1.23)

The details can be found in Appendix A which are based on [1, 17].
For a typical drilling fluid with density 1500 kg m−3 and bulk modulus 1.5 GPa,

the characteristic velocity is λ = µ = 1000 m s−1, but it can also be as low as
λ = µ = 10 m s−1 in certain gas-oil-water-mud mixtures. This mode represents the
propagation of pressure waves, or sound waves, and λ = |−µ| =

√
βi

ρi
is often called

the speed of sound of the medium. The Joukowsky equation (1.15) is obtained by
integrating the mass-balance (1.16a) (with ϕi = 0) along the characteristic lines
over the spatial interval [L− λt− ε, L− λt+ ε] and then taking the limit ε→ 0.

In the linear case, the source terms are dissipative in the sense that σ+(x), σ−(x)
≤ 0 for all x ∈ [0, 1]. In that case, the only source of instability is through the
boundaries. Even in the non-linear case, for many applications the momentum
source φi is dissipative in the sense that

φi(pi, q1, x)− φi(pi, q2, x)
q1 − q2

≤ 0 (1.24)

8



1.3 Models for estimation and control in drilling

for any q1, q2 and all x ∈ [0, 1]. This fact is exploited in Chapter 3 for observer
design.

1.3.2 Multi-phase distributed model: The drift-flux model
If the well consists only of liquids such as water, oil, mud and even cuttings, the
single-phase model in Section 1.3.1 is commonly used by lumping all phases into a
single state assuming uniform density. If, however, gas is present in the well, the
multi-phase flow dynamics are not accurately captured by the semi-linear model
(1.16). Gas–liquid multi-phase flows are commonly modeled by the classical Drift-
Flux Model (DFM) (see e.g. the review article [4])

∂t(αLρL) =− ∂z(αLρLvL) (1.25a)
∂t(αGρG) =− ∂z(αGρGvG) (1.25b)

∂t(αLρLvL + αGρGvG) =− ∂z(p+ αLρLv
2
L + αGρGv

2
G)

− ρMg cosψ − ρMF (vM ) (1.25c)

where mud, oil and water are lumped into a single liquid state with density ρL,
volume fraction αL and velocity vL, and the gas phase with density ρG, volume
fraction αG and velocity vG is kept separate. F (vM ) models frictional forces and
ψ is the inclination angle of the well. The mean density ρM and mean velocity vM
are defined as

ρM := αGρG + αLρL vM := αGvG + αLvL. (1.26)

In addition, since the liquid and gas phase are lumped into a single momentum
balance (1.25c), a set of closure relations must be specified. The pressure p is
related to the densities by

ρG = p

c2
G

, ρL = ρL,0 + p− pL,0
c2
L

(1.27)

where cG and cL are the speeds of sound, in the gas and liquid phase, respectively,
and pL,0 and ρL,0 are constants. The gas and liquid velocities are related by the
slip law

vG = vM
1− α∗L

+ v∞ (1.28)

where α∗L and v∞ are empirically estimated constant parameters. Moreover, the
former acts as a lower bound on αL as it was shown in [20] that the DFM is
hyperbolic for αL > α∗L. Similar to the single-phase model (1.16), the DFM can
be extended to model in-domain in- or out-flow [43]. The dissolution of gas into
the liquid phase is not modeled by (1.25). In cases where the gas solubility is
significant, such as when using oil-based mud, an additional mass balance must be
included. In [9] it was shown that the reduction in pit gain due to gas solubility
when using oil-based mud (as compared to water-based mud) is significant.

With in- or out-flow at the bottom-hole location x = 0, the boundary condition
takes the form

αLρLvL + αGρGvG = 1
A

(WL,res +WG,res +WL,bit) (1.29)

9



1. INTRODUCTION

where A is the cross-sectional area of the annulus, WL,res and WG,res are the mass
influx rate of formation liquid and formation gas respectively, and WL,bit is the
mud flow velocity through the drill-bit. For the top-side boundary condition, the
top-side pressure is either set constant as in conventional drilling or, as in MPD,
specified by the choke equation[

αLρLvL√
ρL

+ αGρGvG
Y
√
ρG

]
x=L

= k1,choke(t)sign(pa(L, t)− p0)
√
|pa(L, t)− p0| (1.30)

where p0 is the pressure at the separator side, k1,choke(t) the adjustable choke
coefficient modeling both the specific choke characteristics and the variable choke
opening, and Y ∈ [0, 1] is a gas expansion factor.

Mathematical properties of the drift-flux model have been studied extensively.
However, without any simplifying assumptions such as liquid incompressibility, low
gas density (αGρG� αLρL), or the no-slip case (vG = vM ), the quasi-linear form
(1.4) with analytical expressions for the flux density matrix is hard to obtain [20]. In
this thesis, with a focus on gas-kicks, the analysis of the DFM will be simplified by
using model reductions that isolate the dynamics relevant in a gas-kick scenario.
More specifically, following the approach in [48] and [3], by defining the pseudo
density

ρ = ρM − α∗LρL, (1.31)
the pseudo mass concentration

χ = (αL − α∗L)ρL
ρM − α∗LρL

, (1.32)

and neglecting higher order terms, it can be shown that system (1.25) can be
written in the quasi linear form (1.4) in terms of the coordinates w = (χ, ρ, vG) as

χt + vGχx =0 (1.33a)

∂t

[
ρ
vG

]
+ ᾱ0(w)c2

M (w)
ρ

χx +
[
vG ρ

c2
M (w)
ρ vG

]
∂x

[
ρ
vG

]
=
[

0
S(w)

]
(1.33b)

where
ᾱ0 := ρ(ρG − ρL)

ρL(1− α∗L)ρG
, c2

M (w) := (1− α∗L)p
αGρ

(1.34)

and

S(w) := −ρM
ρ
g cosψ − ρM

ρ
F (vM )

= −
(

1 + α∗LρL
ρ

)
(g cosψ − F ((1− α∗L)(vG − v∞))) . (1.35)

Observe that the pseudo mass concentration χ is a Riemann invariant propagating
with speed vG. The two other eigenvalues, denoted λ and −µ, are given by

λ(w) = vG + cM (w), −µ(w) = vG − cM (w). (1.36)

In [37], the flux density matrix and eigenvalues of the original system as posed in
[20] (without neglecting higher order terms) are characterized. Since cM � vG, for

10



1.3 Models for estimation and control in drilling

high frequencies, the pseudo mass concentration χ can be considered constant. The
pressure wave dynamics (1.33b) with eigenvalues λ and µ can then be considered
decoupled from the void fraction wave (1.33a) with eigenvalue vG. Indeed, the flux
density matrix associated with the subsystem (1.33b) resembles the isentropic Euler
equation which has been studied extensively. The linear coordinate transformation
w 7→ P (w)[ρ, vG]T where

P (w) := 1
2

[
cM (w)
ρ 1

− cM (w)
ρ 1

]
(1.37)

with Riemann coordinates [u, v]T := P (w)[ρ, vG]T , maps the sub-system (1.33b)
into the characteristic form

∂t

[
u
v

]
+ Λ(χ, u, v)∂x

[
u
v

]
=
[
S̃(χ, u, v)
S̃(χ, u, v)

]
(1.38)

where Λ(χ, u, v) := diag(λ(χ, u, v),−µ(χ, u, v)) and

S̃(χ;u, v) :=1
2S(V −1(u, v)T )

− ᾱ0(V −1(u, v)T )c2
M (V −1(u, v)T )

2ρ χx. (1.39)

The quasi-linear system (1.38) is often simplified to a semi-linear system. First,
note that since cM � vG, λ, µ ≈ c2

M is a reasonable approximation. Second, the
sound velocity model (1.34) is derived assuming the liquid is incompressible. This
assumption can not be used to model transitions between single to two-phase flows
as the pressure is undefined for αG = 0. To model such transitions, [44] proposes
to use the switching model

λ = µ =
{
cL, if αG < ε

cM , if ε ≤ αG < 1− α∗L
(1.40)

where ε > 0 is a small parameter. The case λ = µ = cL for αG < ε follows easily
when computing the eigenvalues of (1.25) in the limiting case αGρG � αLρL, which
as expected corresponds to the eigenvalues in the corresponding single-phase flow
model. Lastly, observing that c2

M in (1.34) can be written in the form

c2
M = 1− α∗L

α2
G

c2
G(1− χ) (1.41)

and that αG(s) ≈ αG(χ, ρ̄, v̄G) where (ρ̄, v̄G) are the steady state values of (ρ, vG)
for constant χ, we have α ≈ α(χ), so that cM ≈ cM (χ) and Λ ≈ Λ(χ). That is,
the quasi-linear system (1.38) can be approximated by the semi-linear system

∂t

[
u
v

]
+ Λ(χ)∂x

[
u
v

]
=
[
S̃(χ;u, v)
S̃(χ;u, v)

]
(1.42)

where χ is regarded as an external parameter governed by the separate system
(1.33a). The simplification χ = const, which makes the characteristic velocity
matrix Λ time-invariant, is exploited in Chapter 5 for observer design.

11



1. INTRODUCTION

Summarizing, DFM can be analyzed as having two distinct modes: The slowly
gas-convection wave governed by (1.33a) with a transport speed vG in the range
of magnitude 1 m s−1, and the fast propagating pressure wave governed by the
semi-linear, time-varying, system (1.42), which is similar to the 2 × 2 system in
Section 1.3.1.

1.3.3 Finite dimensional models
Lumping the distributed density into a single state by integrating (1.16) with
boundary conditions (1.20) over the spatial domain gives the low order lumped
mass balance from [75],

ṗp = βd
Vd

(qp − qbit) (1.43)

for the drill string, where Vd =
∫ L

0 Ad(x)dx is the total volume of the drill string,
and

ṗc = βa
Va

(qbit − qc + qin) (1.44)

for the annulus, where Va =
∫ L

0 Aa(x)dx is the total volume of the annulus. Simi-
larly, the model in [75] also includes a lumping of the momentum balance, obtained
by averaging over the spatial domain between two points. In particular, the mo-
mentum balance

q̇bit = 1
M

(pp − pc − Fd(qp)− Fa(qc)− (ρa − ρd)gh) (1.45)

is obtained by averaging flow over the combined drill string – annulus system, with

M =
∫ L

0

ρd(x)
Ad(x)dx+

∫ L

0

ρa(x)
Aa(x)dx. (1.46)

With constant pump-flow pp and choke flow pc given by the choke equation
(1.21), the time-constant of the system (1.43)–(1.45) is usually in the range of
magnitude 1 min. However, for two-phase systems, as a varying gas fraction αG
propagates through the system, the values of βa will vary and affect the time-
constant significantly. In any case, the mode, often called the compression mode,
usually has a time-constant somewhere between the fast propagating pressure waves
and the slower gas-convection wave.

The compression mode is also present in the distributed models presented in
Sections 1.3.1 and 1.3.2, where the same time-constant can be identified by study-
ing the dissipative properties of the boundary conditions. As mentioned in Sec-
tion 1.3.1, for many distributed systems, the only source of instability is through
the boundaries and investigating the boundary conditions are important in order
to understand the asymptotic behavior of a system. In fact, studying the stability
of the ODE model (1.43)–(1.45) obtained through spatial averaging, is structurally
similar to studying stability of a distributed system using the notions of stability
presented in Section 1.2.4.

12



1.3 Models for estimation and control in drilling

1.3.4 Reservoir and fault modeling
Darcy’s law states a relationship between flow through a porous medium and the
pressure differential over the same medium. Originally formulated for water flows,
it has later been generalized to fluids with different viscosity and varying density.
Assuming constant density, Darcy’s law can be stated as

qin = kA

µ

dp

dr
(1.47)

where µ is the viscosity, k is a constant characterizing the porous medium called the
permeability, A is the radial area (any area parallel to the formation–well interface
area), and dp

dr is the radial pressure differential. Following [36, Section 4.7], assume
that the inflow rate qin is constant over a well section with length h, then the flow
rate over any radial area A = 2πrh at the radial distance r from the well–formation
interface is also qin. Then for any r,

qin = 2πkh
µ

dp

dr
. (1.48)

Separating the variables, integrating between the well radius rw and any radius
r > rw, and defining pw = p(rw) gives the solution

p(r)− pw = qinµ

2πkh ln r

rw
. (1.49)

In particular, it is common to consider a far away radius re where the pressure
gradient is zero, and define the formation pressure as pres = p(re) [36, Section
4.7]. Then, in steady state, the following linear relationship between the pressure
differential (pres − pw) and the inflow qin holds

qin = 2πkh
µ(ln re

rw
+ S) (pres − pw), (1.50)

where in addition, a so-called skin factor S is included. The skin factor models the
additional pressure drop due to a partial plugging of the formation caused by loss
of drilling mud in overbalanced drilling. The constant coefficient

J := qin
pres − pw

= 2πkh
µ(ln re

rw
+ S) (1.51)

is often called the productivity index (PI). The constant flow assumption is obvi-
ously violated in a kick scenario. As an alternative to the steady state model (1.50),
the transient flow can be modeled by the following parabolic PDE [36, Section 5.2]

pt = k

rφcµ
∂r(r∂rp) (1.52)

where c is a compressibility constant and φ a porosity constant. The sol-called
constant terminal rate solution [36] is obtained by assuming constant flow and a
zero pressure gradient infinitely far away (at re =∞)

qin = 4πkh
µ

pres − pw
ln( 4kt

γφµcr2
w

) + 2S
(1.53)
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where γ is the exponent of Euler’s constant (= 1.782...).
Both the linear, steady state, PI model (1.50) [8, 99, 120] and the transient

constant terminal rate solution model (1.53) [90, 114] have been used for reservoir
characterization and estimation during drilling. There even exists some results
designing observers for the parabolic model (1.52) directly [115].

In this thesis however, due to its simplicity, the linear inflow model qin =
J(pw − pres) is used exclusively. Moreover, in an adaptive setting where J is
assumed unknown, parameter adaptation on J adds some flexibility and robustness
with respect to varying flow regimes. For multi-phase systems with both liquid and
gas inflow, a separate PI model is used for each phase. That is,

WL,res =JLρL(pres − p(0, t)) (1.54a)
WG,res =JGρG(pres − p(0, t)). (1.54b)

The linear inflow model (1.50) can be used to model both spatially distributed
inflow, or a single point bottom-hole inflow. In the latter case, the inflow model
specifies the bottom-hole boundary conditions. Using Riemann coordinates, the
model (1.50) can be written in the form

u(0, t) + v(0, t) = k(θ − v(0)) (1.55)

where k is a function of the PI, and θ is proportional to pres. Note that (1.55) can be
written in the affine form (1.14a) with Q0 = −(1 + k) and d = kθ. Alternatively,
if the bottom-hole pressure p(0, t) is measured, the boundary condition can be
written in the form

u(0, t) + v(0, t) = k0(θ0 − y0(t)) (1.56)
for some k0 dependent on the PI, θ0 proportional to pres, and y0(t) proportional
to p(0, t). The details can be found in Appendix A.

1.4 Sensing, actuation and control objectives

1.4.1 Flow and pressure sensing
A pervasive problem in drilling systems is the absence of reliable measurements.
The flow into the drill string, provided by the mud pump, is a clean, single-phase
fluid with known rheological properties and conventional meters such a mud pump
stroke counter, a rotary speed transducer, a magnetic flowmeter, or a Doppler
ultrasonic flowmeter can be used [98]. The return flow, on the other hand, is
contaminated by rock cuttings and formation fluids. The most common return flow
indicator used in conventional drilling is still a simple flow paddle. This, however,
is not a direct flow measurement, and can only be considered indicative [28, 29].
Coriolis, electromagnetic and ultrasonic flow meters are also used [80, 91, 94]. Of
these, the Coriolis meter is the most accurate and is increasingly being used in both
MPD and conventional drilling. The Semi-kidd project (see Section 1.7.1) aims at
developing low-cost return flow estimates using an open flow Venturi channel. For
kick detection, [91] claims that an accuracy of minimum 3 L s−1 in the return flow
measurements is necessary.

At the rig-side, both the mud pump pressure (stand pipe pressure) and return-
flow pressure (discharge pressure) measurements are fairly accurate, and depending
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on the range, can typically provide an accuracy of 1 bar. Bottom-hole, various
logging tools collectively referred to as logging while drilling (LWD), are embedded
into the bottom-hole assembly [41]. While these measurements are fairly accurate,
the transmission bandwidth is often insufficient. Traditionally, mud pulse telemetry
has been used to transmit LWD data to the rig in real-time. The bandwidth of
mud pulse telemetry is typically in the range of 10 − 40 bit/second, but can drop
to as low as 0.5 bit/s in long wells [116]. Either way, it is too low for kick &
loss detection. As an alternative, wired pipe technology offers bandwidths up to
1 Mbit/s [7]. However, possibly due to high cost and complexity of deployment,
this technology has so far seen limited use. Another interesting application of wired
drill-pipe is along-string pressure sensing where pressure sensors are installed at a
fixed interval inside the annulus [45]. This application is the topic of Chapter 3.

1.4.2 Sensing and actuation in Riemann coordinates
In the flow – pressure models discussed in Section 1.3, there is a clear distinction
between measured quantities and controlled quantities: The stand pipe pressure
and discharge pressure are measured while the pump flow and choke opening are
controlled. If the system is formulated in characteristic form using Riemann coor-
dinates, this distinction becomes less clear. The Riemann coordinates are uniquely
related to the physical quantities through a diffeomorphism, but does not represent
any physical quantity directly. Instead, the Riemann coordinates are abstractly said
to represent unidirectional convecting information (see Appendix A). By conven-
tion, if all physical quantities at a boundary are either measured or controlled, the
signals defining the Riemann coordinates originating at the boundary are called
control laws and the Riemann coordinates terminating at the boundary are said
to be measured at the boundary. Furthermore, a distinction is made between sys-
tems only using sensing at the same boundary as the control law, which is called
collocated control and sensing, and systems with sensing on the opposite boundary,
which is called non-collocated sensing and control. Some authors reserve the desig-
nation non-collocated to systems with sensing and control on opposite boundaries
only. In this thesis, however, non-collocated is used to describe all systems with
sensing and control on opposite boundaries, which includes systems with sensing
at both boundaries. Control and estimation schemes using only top-side measure-
ments are therefore said to employ collocated sensing and control, while schemes
also relying on down-hole pressure measurements are said to employ non-collocated
sensing and control.

1.4.3 Kick & loss attenuation and actuation
A striking feature of closed loop output-feedback adaptive control schemes is that
parameter convergence is often not necessary to achieve output regulation. As such,
isolating the estimation problem and studying the parameter and state estimation
properties in open-loop rather than in combination with feedback control, does not
fully illustrate the utility of the estimation scheme.

Traditionally, kicks are handled by changing the mud density and thereby chang-
ing the hydrostatic pressure in the well. Various procedures of circulating out and
replacing the mud are in use with generalizing names such as the driller’s method
or engineer’s method (also called wait and weight) (see e.g. [51]). Common to both
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methods is that they require a full shut-in of the well and at least one full circula-
tion of drilling fluid. The MPD technology offers an alternative to the traditional
time-consuming shut-in methods, often called dynamic shut-in [27]. In MPD, the
choke opening and back pressure pump can be used to actively manage the top-side
return flow, and the bottom-hole pressure can be controlled with an accuracy of up
to ∼ 2 bar [82]. More importantly, MPD is an enabling technology, enabling the
use of automated well control systems [50, 85, 92]. Adaptive estimation schemes
based on flow and pressure measurements are therefore well suited to be used in a
closed loop system with active MPD choke control.

1.4.4 Estimation and control objectives
Most of the results included in this thesis are formulated using Riemann coor-
dinates, but the particular form of presentation is selected with the kick & loss
application in mind. For example, for single phase system, the objective is often
to stabilize the bottom-hole pressure at the reservoir pressure. That is,

p(0)→ pres. (1.57)

In Riemann coordinates, for the 2 × 2 hyperbolic system (1.10) with boundary
condition (1.55), this objective can be shown to be equivalent to

u(0) + v(0)→ 0 (1.58)

or
v(0)→ θ. (1.59)

In adaptive output-feedback problems where (k, θ) and (u, v) are unknown, the
estimation problem is typically to design state parameter estimates (û, v̂) and (k̂, θ̂)
such that

||u− û||, ||v − v̂|| → 0 (1.60)

and
θ̂ → θ. (1.61)

Generally in adaptive control, parameter convergence is only guaranteed if the
input data ψ is sufficiently rich. More formally, the parameter estimates converge
to their true value if the persistence of excitation (PE) condition

k1I ≥
1
T

∫ t+T

t

ψ(τ)ψT (τ)dτ ≥ k2I (1.62)

for some positive constants T, k1, k2, is satisfied for t > T . For the specific
parametrization (1.55), this condition can be shown to be trivially satisfied if
v(0) → θ. In other words, if the bottom-hole pressure p(0) stabilizes at the reser-
voir pressure pres, then the estimate of the reservoir pressure will converge to
the true value. From the structure (1.55), it can also be observed that whenever
v(0) → θ, identifiability of k, which models the unknown permeability, is lost. In
other words, identification of permeability and simultaneous stabilization of the
well are incompatible goals.
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1.5 Control of distributed systems
Most model-based observer and controller schemes developed for drilling systems
are based on finite dimensional lumped models. Moreover, schemes based on PDE
models are often derived by first doing a spatial discretization of the PDE, approx-
imating the PDE as a set of ODEs and then applying the rich observer and control
toolbox developed for finite dimensional ODE systems. Even schemes derived in a
fully distributed sense, must at some point be discretized if they are to be imple-
mented in a computer. It is therefore timely to question the added value of using
more complicated schemes based on distributed models. The difference between
lumped model and fully distributed models might seem fundamental. At the same
time, many of the design and analysis methods developed for finite dimensional
systems have intuitive extensions into the domain of infinite dimensional systems,
so that the practical utility of schemes based on finite dimensional methods and
that of infinite dimensional might be more similar than expected. This section
presents an overview of some control design and stability analysis methods for hy-
perbolic PDEs, and an overview of previous results related to the specific problem
of kick and loss estimation in drilling using both distributed and lumped models.

1.5.1 Early vs. late lumping
There exist several methods for numerical integration of hyperbolic PDEs. E.g.
finite element methods [24, 101, 107], various collocation methods [42, 109], or finite
difference schemes: As an example, consider the 2×2 system (1.10). Let x1, ..., xN
be uniformly distributed points on [0, 1] such that xi − xi−1 = 1

N+1 =: ∆x and let
ui(t) := u(xi, t), vi(t) := v(xi, t) for i = 1, ..., N such that

∂tui + λ(xi)∂xui = σ+(xi)vi (1.63a)
∂tvi − µ(xi)∂xvi = σ−(xi)ui. (1.63b)

The spatial derivatives can be approximated using various types of finite difference
schemes, e.g. the second order upwind scheme

∂xui ≈
3ui − 4ui−1 + ui−2

2∆x (1.64a)

∂xvi ≈
−3vi + 4vi+1 − vi+2

2∆x . (1.64b)

With linear boundary conditions in the form (1.14), the endpoints are found by
extrapolation as

u0(t) =Q0v0(t) + d(t) (1.65)
≈Q0(2v1(t)− v2(t)) + d(t) (1.66)

and

vN+1(t) =R1uN+1(t) + U(t) (1.67)
≈R1(2uN (t)− vN−1(t)) + U(t). (1.68)
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As a special case, the spatial derivatives closest to the boundary can be approxi-
mated using the first order upwind scheme

∂xu1 ≈
u1 − u0

∆x (1.69a)

∂xvN ≈
vN+1 − vN

∆x . (1.69b)

Defining w = [u1, ..., uN , v1, ..., vN ] gives the following set of ODEs on state space
form:

ẇ = Aw +B1d(t) +B2U(t) (1.70)

where
A = M

[
A1 Q0D1 + C1

R1D2 + C2 A2

]
, (1.71)

M = diag(−λ(x1), ...,−λ(xN ), µ(x1), ..., µ(xN )), (1.72)

A1 = 1
2∆x


2 0 0 · · · 0 0 0
−4 3 0 · · · 0 0 0
1 −4 3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −4 3

 , (1.73)

A2 = 1
2∆x


−3 4 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −3 4 −1
0 0 0 · · · 0 −3 4
0 0 0 · · · 0 0 −2

 , (1.74)

D1 = 1
2∆x


−4 2 0 · · · 0
2 −1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , (1.75)

D2 = 1
2∆x


0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 1 −2
0 · · · 0 −2 4

 , (1.76)

B1 = 1
2∆xM

[
−2 1 0 · · · 0

]T
, (1.77)

B2 = 1
2∆xM

[
0 · · · −1 2

]T
, (1.78)

and
Ci =

[
σ+(x1) · · · σ+(xN )

]T
, i = 1, 2. (1.79)

Similar discretization procedures as shown above where a PDE system in the form
(1.10) is approximated by the ODE system (1.70)–(1.79) are used in all computer
implemented controller or observer schemes. In early lumping schemes, the PDE
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model is discretized before estimation methods for finite dimensional systems are
applied. In the alternative late-lumping schemes, the design is carried out for the
original distributed model and the system is only discretized before simulation or
computer implementation.

An important feature of the PDE model, is the finite-time propagation prop-
erty which is another way of saying that information can not travel infinitely fast.
For the ODE model, this feature only holds in the limiting case where ∆x → 0
(in which case (1.64) holds exactly). An implication of the finite-time propaga-
tion property is that without any boundary reflection (Q0 = R1 = 0) or inter-
nal damping (σ+(x) = σ−(x) = 0) the PDE model will actually converge in
finite time. This property is used extensively in control of PDEs, in particular
the infinite-dimensional backstepping method discussed in Section 1.5.3 where in-
ternal damping (the source terms) are actively compensated for using boundary
control and the PDE system can be controlled in finite-time. Also in adaptive
control, where even though the adaptive laws only converge asymptotically, the
finite-time propagation property is used extensively to find parametric relation-
ships that hold exactly after some finite initial time. In the ODE approximation
(1.70)–(1.79) on the other hand, even without any boundary reflection or internal
damping (C1 = C2 = Q1 = R1 = 0) so that the off-diagonal elements in (1.71) are
all zero, the system will still include state feedback terms, however small, whenever
∆x is non-zero.

Note that the lumped model discussed in Section 1.3.3 is the special case N = 1
in which no attempt to capture the distributed effects are made. As such, this model
only models the boundary effects and the cumulative in-domain sources/sinks.

1.5.2 Stability conditions and control Lyapunov functions
To further highlight some stability properties of hyperbolic PDEs, consider as an
example the n + m system (1.7) with all source terms identically equal to zero
(Σij = 0, i, j = {+,−} for all x ∈ [0, 1]), and linear boundary conditions (1.14).
Consider the Lyapunov function

V =
∫ 1

0

(
n∑
i=1

aie
−δ1xu2

i (x)dx+
m∑
i=1

bie
δ2xv2

i (x)
)
dx (1.80)

for some positive constants ai, bi, δ1, δ2. Since,

c1(
n∑
i=1
||ui||2 +

m∑
i=1
||v||2) ≤ V ≤ c2(

n∑
i=1
||ui||2 +

m∑
i=1
||v||2) (1.81)

can be shown to hold for some c1, c2 > 0, the Lyapunov function (1.80) can be used
to study stability in the L2([0, 1]) norm. The weights e−δ1x and eδ2x are essential
to get a Lyapunov function with a strictly negative derivative, and was first used
in [32] for stabilization of the Euler equation.

By lumping the state into a single scalar variable, local stability properties are
ignored and similar stability conditions should be expected to hold for the lumped
model described in the previous section, including the lowest order model with
N = 1. Indeed it was shown in [33] that if

inf
{
||∆diag(Q0, R1)∆−1||2, ∆ ∈ D+

n+m
}
< 1 (1.82)
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where D+
n denotes the set of diagonal strictly positive matrices in Rn×n, then

V̇ ≤ −cV for some c > 0. In other words, as pointed out in [18, Section 3.1.1.],
the stability condition is independent of the system dynamics (1.7). To further
highlight this point, [18] suggest to view (1.7) and (1.14) as two interconnected
systems where the former has unit gain (if the source terms are identically equal
to zero), and the latter has gain given by (the left hand side of) (1.82).

1.5.3 Infinite dimensional backstepping
The idea behind (infinite-dimensional) backstepping is to shift the gain of the
input-output system (1.7) to the input-output system (1.14) where it easier can be
handled [78]. This technique is particularly useful for systems with either bound-
ary sensing or boundary control. For observers, the necessary in-domain damping
needed to ensure stability is first identified. Using a backstepping transformation,
this necessary in-domain damping can be represented as the equivalent necessary
boundary damping. Since the boundary is measured, the boundary condition can
be specified so that this necessary boundary damping is achieved. Equivalently, for
boundary control, for any unwanted in-domain source terms, the necessary bound-
ary damping needed to cancel these terms can be identified using a backstepping
transformation. The boundary control signal can then be used to provide this level
of boundary damping.

As an example, in [35, 111] it was shown that the backstepping transformation

α(x, t) = u(x, t)−
∫ x

0
Kuu(x, ξ)u(ξ, t)dξ −

∫ x

0
Kuv(x, ξ)v(ξ, t)dξ (1.83a)

β(x, t) = v(x, t)−
∫ x

0
Kvu(x, ξ)u(ξ, t)dξ −

∫ x

0
Kvv(x, ξ)v(ξ, t)dξ (1.83b)

where the kernels Kuu,Kuv,Kvu,Kvv : {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1} → R are the
solution to a well-posed 4 × 4 hyperbolic system (see [35] or Paper [68] included
in Section 4.3), maps the 2× 2 system (1.10) with boundary conditions (1.14) (for
the special case d = 0 and R1 = 1) into the system

αt + λ(x)αx =0 (1.84a)
βt − µ(x)βx =0 (1.84b)

with boundary conditions

α(0, t) =Q0β(0, t) (1.85a)

β(1, t) =R1u(1, t) + U(t)−
∫ 1

0
Kvu(1, ξ)u(ξ, t)dξ

−
∫ 1

0
Kvv(1, ξ)v(ξ, t)dξ. (1.85b)

As discussed in the previous section, (1.84) has unit gain, and the potentially
problematic source terms are now included in the input-output system (1.85). The
system can now be formulated as a difference equation for β(1, t) and stability
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conditions in terms of λ, µ, c1, c2, Q0, R1 can be formulated by studying the char-
acteristic equation associated with the resulting difference equation [14, 97]. More
importantly, using boundary control, the boundary terms can be canceled by se-
lecting

U(t) =
∫ 1

0
Kvu(1, ξ)u(ξ, t)dξ −

∫ 1

0
Kvv(1, ξ)v(ξ, t)dξ −R1u(1, t). (1.86)

As a side note, in [13] it was shown that preserving some boundary reflection might
be preferable in certain situations in order to provide some robustness to actuation
and sensing delays, i.e. selecting U(t) such that

β(1, t) = R̄1β(1, t). (1.87)

for some R̄1 such that |Q0R̄1| ≤ 1.
The idea of using Volterra integral transformation to study observability and

stabilization properties of PDEs dates back to at least the 1970’s [31, 95]. In
[31] the method was referred to as the method of integral operators. The name
infinite-dimensional backstepping came into use in the 1990’s when the recursive
backstepping method for finite dimensional ODE systems was extended to PDEs
[16, 25, 81, 103, 104]. The method of infinite-dimensional backstepping was first
used to stabilize a first-order hyperbolic PDE in [77] and has later been extended
to linear 2 × 2 systems [111], n + 1 system [40] and general n + m systems [70].
The method has also been used to (locally) stabilize quasi-linear systems [35, 71].
Infinite-dimensional backstepping is especially well suited for adaptive control. The
topic of adaptive control of hyperbolic PDE using infinite-dimensional backstepping
has been studied extensively in [10].

1.6 Previous results on model-based kick & loss
estimation

Early examples of model-based in-/out-flux estimation include problems studied in
the framework of pipeline leak detection and estimation which are modeled using
the water-hammer equations (1.16). Most examples are based on some form of
early lumping. In [22, 23, 76, 100], various finite difference schemes are used, while
[109, 110] use collocation methods. Using the lumped models, leak size and location
can be estimated using Kalman filters [22, 76, 109, 110], special correlation methods
[19] or Lyapunov-based non-linear observers [100]. As an alternative to the early
lumping approaches, a late-lumping approach is presented in [2] where boundary
output injection is used to design observers estimating the distributed pipe-flow,
and adaptive laws are used to estimate the leak size and location.

In contrast to pipe-flow leak problems, where the leak is either assumed constant
or governed by some choke equation with known external pressure (atmospheric),
in- and out-flows in drilling systems depend on both the well dynamics and the
reservoir dynamics. As discussed in Section 1.3.4, the well-reservoir relationships
are complicated and even estimation schemes based on the simple linear PI model
(1.50) with only two unknown parameters (or n+1 parameters for systems with n-
phases), will require some level of excitation to achieve parameter convergence. If,
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however, the in- or out-flow can be assumed constant, the well-reservoir dynamics
can be ignored. In [53], the low order lumped model described in Section 1.3.3
(from [75]) is used to estimate and locate unknown constant inflow rates using
an adaptive observer. The same model is used in [118, 119] to detect, isolate
and locate various drilling faults, such as in- or out-fluxes, using a set of adaptive
observers and distributed pressure measurements. Yet another low order lumped
model for percolating gas is used in [55] for gas kick estimation and localization
using an unscented Kalman filter. The first results on using late-lumping infinite-
dimensional backstepping for inflow estimation was presented in [1, 54] where the
inflow is modeled as a constant additive term appearing in the boundary condition
of the single phase model (1.16).

An adaptive observer for flow estimation assuming constant inflow was also
presented in [121]. However, the main contribution of this paper is a closed loop
kick estimation and mitigation scheme. It was shown that in a closed loop setting
where pbit → pres, pore pressure estimation is also possible using the linear PI
model (1.50). The necessary excitation is here achieved by attenuating the kick.
In [112, 113, 114], the inflow is modeled by the transient reservoir model (1.53).
The drift-flux model is then approximated by a lumped model and both pore
pressure and permeability are estimated using non-linear least squares estimation
in [112, 114] and ensemble Kalman filters in [113, 114]. Forced excitation of the
well is however needed for parameter convergence. Various other schemes based
on early lumping approximations of the drift-flux models using Kalman filters for
reservoir characterization are also presented in [6, 52, 86] . Even low order lumped
models have been used for reservoir characterization. In [89], reservoir permeability
estimation schemes using extended, unscented and ensemble Kalman filters are
compared. Permeability estimation using a moving horizon estimation scheme
is presented in [87], and using a non-linear adaptive observer is presented in [88],
both using low order lumped models. In [8], the pore pressure and permeability are
estimated using a recursive least squares estimation scheme for the reduced drift-
flux model and early lumping scheme presented in [3]. In a result similar to the
adaptive backstepping observer in [1], an adaptive observer based on the method
of infinite-dimensional backstepping is used in [39] to estimate the pore pressure,
which is formulated as an unknown additive term in the boundary condition of a
linearized version of the drift-flux model.

1.7 Contributions

1.7.1 The Semi-Kidd project
This PhD study is part of the Semi-Kidd project (Sensors and models for improved
Kick/loss detection in drilling), which is funded by the Research Council of Norway
and Equinor ASA (project no. 255348/E30). The primary objective of the project
is to

“enable cost-effective and automatic kick/loss detection by developing
new knowledge on model-based estimation and utilization of new sensor
technology for drilling operations”.

The central idea of the project is to use an open Venturi channel to measure the
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return flow rates in real-time [72, 117]. This, as an easy-to-implement alternative to
the still commonly used flow paddle and possibly also as an alternative to existing
flow meters such as Coriolis, electromagnetic or ultrasonic flow meters [21, 30].
Information about the return flow rate obtained from the Venturi channel can be
used both for early kick & loss detection and as input to a kick & loss estimation
algorithm.

The project is divided into 4 research tasks. In the first research task [117], a
model of the flow rate and fluid level in the Venturi channel with cuttings transport
effects is developed and simulated. In the second research task [72], a real-time,
model-based estimator for the flow rate of the return flow is developed. This thesis
is the product of the third research task, which aims at developing new model-
based kick & loss estimation schemes. Data fusion of new and existing sensors for
flow estimation is the topic of the fourth research task [74].

From the perspective of research task 3, research task 1, 2 and 4 will provide
reliable return flow estimates as input to research task 3. This relationship is
depicted in Figure 1.3.

Research 3:
Kick/loss estimation system

Research task 1, 2 and 4:

Return flow 
estimates

- Distributed flow and pressure estimates
- Reservoir property estimates

Kick/loss handling 
systems

Well Active 
Mud Pit 

Drill Cutting 
Removal 

Equipment

Pump

Losses

Open Channel

Return Flow Line

Figure 1.3: Schematic overview of the Semi-Kidd research tasks from the perspec-
tive of research task 3. Modified from [72].

1.7.2 Scope and Outline
In naturally fractured reservoirs, the reservoir can act as a buffer-tank for drilling
mud: For increasing well pressures, drilling mud flows into the reservoir, filling up
the reservoir buffer-tank. If the pressure is reduced, drilling fluid will flow back into
the well. This effect, called breathing or ballooning [56, 83], is often misinterpreted
as a kick. Another effect often misinterpreted as a kick is the change in pressure
and temperature in high pressure, high temperature wells, caused by starting or
stopping the circulation [15]. Characterizing all such effects will require a large set

23



1. INTRODUCTION

of different models. Alternatively, an attempt to incorporate all possible effects in
any single model will yield a high order model too complicated to be useful in any
real-time estimation or control scheme. Furthermore, measurements corrupted by
noise and un-modeled dynamics makes the model output uncertain. The problem of
kick detection is consequently a statistical problem, where competing explanatory
models should be weighted against each other based on uncertain observed and
estimated data.

Early kick detection and key performance indicators for kick detection and
handling are discussed in [46]. The following two key performance indicators (KPIs)
are proposed.

1. Kick Detection Volume: How much of an influx occurs before it is positively
identified as a kick?

2. Kick Response Time: Once a kick has been positively identified, how much
time elapses before well control procedures have stopped the influx from pro-
gressing?

The first KPI is related to the kick detection problem and the second KPI is
related to the kick handling problem. Somewhere in between is the kick estimation
problem. Kick & loss estimation is a different problem downstream the kick &
loss detection problem. That is, kick & loss estimation schemes answer question
about size, location and type, given that a kick is detected. Although not directly
affecting the first KPI proposed in [46], the second KPI is improved by providing
faster and more accurate decision support data to the kick & handling systems (see
Figure 1.3).

A final word of caution: The output of a kick (or loss) detection system is
binary; a kick is detected or not detected. Although the model-based estimation
schemes presented in this thesis might be useful in a larger kick detection system
to confirm the presence of a kick, using any of the schemes on a stand-alone basis
to answer the binary kick detection question is a logical fallacy. The kick & loss
estimates provided by the schemes in this thesis will only be reliable after all other
possible causes are eliminated.

This thesis has the following structure.

• Chapter 2 presents state and parameter estimation schemes for kick & loss
estimation. The observers are derived using infinite-dimensional backstepping
and boundary sensing only.

• The schemes in Chapter 3 utilize distributed pressure measurements for
in-domain fault estimation and localization. A wide range of drilling faults,
including in- and out-flows, can be modeled by the proposed design.

• Closed loop kick & loss attenuation schemes are presented in Chapter 4.
As discussed in Section 1.4.3, some properties of adaptive observer systems
are not well illustrated in open-loop estimation schemes. The closed loop
attenuation schemes presented here are direct extensions of the estimation
schemes in Chapter 2.

• Chapter 5 investigates gas kick estimation in over-balanced drilling, using
the modeling assumption that the well dynamics prior to a gas kick, and some
time after, can be approximated by a single-phase model.
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Some of the papers are purely theoretical with no mentioning of the kick & loss
problem. Yet, the motivation for studying each theoretical problem is clear. An
introduction to each paper and the relevance to the kick & loss problem is pro-
vided in the introduction to each chapter. Each chapter is concluded by a section
discussing various limitations and flaws in the proposed designs the authors have
been made aware of after submission or publication.

1.7.3 List of publications
Journal papers

• Holta, H., Anfinsen, H., and Aamo, O. M. (2020a). Adaptive set-point regu-
lation of linear 2× 2 hyperbolic systems with application to the kick and loss
problem in drilling. Automatica, 119:109078 (Section 4.3)

• Holta, H. and Aamo, O. M. (2019c). Observer design for a class of semi-linear
hyperbolic PDEs with distributed sensing and parametric uncertainties. Un-
der review, IEEE Transactions on Automatic Control, submitted September
2019 (Section 3.3)

• Holta, H. and Aamo, O. M. (2020c). Exploiting wired-pipe technology in
an adaptive observer for drilling incident detection and estimation. Under
review, SPE Journal, submitted January 2020 (Section 3.5)

• Holta, H. and Aamo, O. M. (2020b). Adaptive set-point regulation of lin-
ear n+1 hyperbolic systems with uncertain affine boundary condition using
collocated sensing and control. Under review, Systems & Control Letters,
submitted January 2020 (Section 4.4)

• Holta, H., Anfinsen, H., and Aamo, O. M. (2020b). Observer design for a
two-time-scale quasi-linear system. Unpublished (Section 5.3)

Conference papers

• Holta, H., Anfinsen, H., and Aamo, O. M. (2018). Improved kick and loss
detection and attenuation in managed pressure drilling by utilizing wired
drill pipe. In Proceedings of the 3rd IFAC Workshop on Automatic Control
in Offshore Oil and Gas Production (OOGP), 51(8):44–49 (Section 2.2)

• Holta, H. and Aamo, O. M. (2018). Boundary set-point regulation of a lin-
ear 2 × 2 hyperbolic PDE with uncertain bilinear boundary condition. In
Proceedings of the 2018 IEEE Conference on Decision and Control (CDC),
pages 2156–2163. IEEE (Section 4.2)

• Holta, H. and Aamo, O. M. (2019a). An adaptive observer design for 2 × 2
semi-linear hyberbolic systems using distributed sensing. In Proceedings of
the 2019 American Control Conference (ACC), pages 2540–2545 (Section 3.2)

• Holta, H. and Aamo, O. M. (2019b). A least-squares scheme utilizing fast
propagating shock waves for early kick estimation in drilling. In Proceedings of
the 2019 IEEE Conference on Control Technology and Applications (CCTA),
pages 1081–1086 (Section 5.2)
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• Holta, H. and Aamo, O. M. (2020a). Adaptive observer design for an n+1
hyperbolic PDE with uncertainty and sensing on opposite ends. In Pro-
ceedings of the 2020 European Control Conference (ECC), pages 1159–1164
(Section 2.3)

• Holta, H. and Aamo, O. M. (2020d). A heuristic observer design for an
uncertain hyperbolic PDE using distributed sensing. In Proceedings of the
IFAC world congress 2020 (Section 3.4)

Publications not included in this thesis The following list of publications
includes work conducted during the time-span of this project, but that are outside
the scope of this thesis.

• Holta, H., Anfinsen, H., and Aamo, O. M. (2017a). Adaptive set-point reg-
ulation of linear 2 × 2 hyperbolic systems with uncertain affine boundary
condition using collocated sensing and control. In Proceedings of the 2017
Asian Control Conference (ASCC), pages 2766–2771

• Holta, H., Anfinsen, H., and Aamo, O. M. (2017b). Estimation of an uncertain
bilinear boundary condition in linear 2×2 hyperbolic systems with application
to drilling. In Proceedings of the 17th International Conference on Control,
Automation, and Systems (ICCAS), pages 188–193

• Anfinsen, H., Holta, H., and Aamo, O. M. (2020b). Adaptive control of a
scalar 1-D linear hyperbolic PDE with an uncertain transport speed using
boundary sensing. In Proceedings of the 2020 American Control Conference
(ACC)

• Anfinsen, H., Holta, H., and Aamo, O. M. (2020a). Adaptive control of a
linear hyperbolic PDE with an uncertain transport speed and a spatially
varying coefficient. In Proceedings of the 28th Mediterranean Conference on
Control and Automation (MED)

• Jinasena, A., Holta, H., Jondahl, M. H., Welahettige, P., Sharma, R., Aamo,
O. M., and Lie, B. (2020). Model based early kick/loss detection and at-
tenuation in managed pressure drilling with topside sensing using a Venturi
flowmeter. Submitted to the 61st International Conference of Scandinavian
Simulation Society, SIMS
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CHAPTER 2
Kick & loss estimation using boundary sensing

2.1 Introduction
In the first paper [67], an adaptive observer derived using infinite-dimensional back-
stepping and a set of swapping filters is used to estimate the distributed pressure
and flow in the annulus and bottom-hole unknown parameters. The bottom-hole
pressure is assumed measured using wired drill-pipe. The bottom-hole reservoir
inflow is modeled using the linear PI model (1.50) where both parameters are
assumed unknown.

In the second paper [61], the results from [67] are extended in two directions.
First, measurements are assumed to be only taken at one boundary (top-side),
anti-collocated with the uncertain parameters. Second, the design is extended to
any linear n + 1 system. The analysis is carried out using Riemann coordinates.
Possible applications include under-balanced drilling where the drift-flux model is
linearized around a constant draw-down pressure.
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2.2 Paper [67]: Improved kick and loss detection
and attenuation in managed pressure drilling
by utilizing wired drill pipe

Holta, H., Anfinsen, H., and Aamo, O. M. (2018). Improved kick and loss detection
and attenuation in managed pressure drilling by utilizing wired drill pipe. In
Proceedings of the 3rd IFAC Workshop on Automatic Control in Offshore Oil and
Gas Production (OOGP), 51(8):44–49
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Abstract: A model based method for kick and loss detection and attenuation in Managed Pressure
Drilling is presented. The drilling system is modeled as a distributed parameter system combined with a
reservoir flow equation containing reservoir pressure and the so-called productivity index as uncertain
parameters. A swapping-based design for state and parameter estimation utilizing bottom-hole pressure
measurements available via wired drill pipe is combined with a closed loop controller for kick and loss
attenuation. The performance of the proposed method is compared to earlier results on kick attenuation in
a simulation, showing significant improvement.
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1. INTRODUCTION

1.1 Problem Statement

In order to carry cuttings to the surface and maintain an
appropriate pressure barrier down-hole during drilling, a drilling
mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used

pt(z, t) = − β

A1
qz(z, t) (1a)

qt(z, t) = −A1

ρ
pz(z, t) −

F1

ρ
q(z, t) −A1g (1b)

where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions

Drilling �uid

Oil & Gas 
in�ux 3-10 km

Fig. 1. Schematic of the drilling system. Courtesy of Ulf Jakob
Aarsnes (Aarsnes et al. (2016b)).

q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0, t) = pr such that flow
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1. INTRODUCTION

1.1 Problem Statement

In order to carry cuttings to the surface and maintain an
appropriate pressure barrier down-hole during drilling, a drilling
mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used

pt(z, t) = − β

A1
qz(z, t) (1a)

qt(z, t) = −A1

ρ
pz(z, t) −

F1

ρ
q(z, t) −A1g (1b)

where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions
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Fig. 1. Schematic of the drilling system. Courtesy of Ulf Jakob
Aarsnes (Aarsnes et al. (2016b)).

q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0, t) = pr such that flow
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1. INTRODUCTION

1.1 Problem Statement

In order to carry cuttings to the surface and maintain an
appropriate pressure barrier down-hole during drilling, a drilling
mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used
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where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions
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q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0, t) = pr such that flow
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appropriate pressure barrier down-hole during drilling, a drilling
mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
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model the flow dynamics in the annulus, the following model
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where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions
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q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0, t) = pr such that flow
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mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used
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where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions
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q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0, t) = pr such that flow
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from the reservoir into the drill string is zero. This implies that
the flow through the annulus is equal to the drill bit flow.

1.2 Previous Work

Control of coupled distributed systems like (1) and (3) can be
achieved by using the method of infinite-dimensional backstep-
ping for PDEs. This method was first introduced for parabolic
PDEs in Liu (2003); Smyshlyaev and Krstic (2004, 2005),
where the gain kernel was expressed as a solution to a well-
posed PDE. The first result for hyperbolic PDEs was in Krstic
and Smyshlyaev (2008) for first order systems, for second
order hyperbolic systems in Smyshlyaev et al. (2010), and to
two coupled first order hyperbolic systems in Vazquez et al.
(2011). The results in the latter were used in Aamo (2013) for
disturbance attenuation in managed pressure drilling which has
similarities to the problem considered in this paper.

Results on adaptive control for parabolic PDEs can be found
in Smyshlyaev and Krstic (2010). Adaptive observers for n + 1
hyperbolic systems using sensing collocated with the uncertain
boundary parameters can be found in Anfinsen et al. (2016)
using swapping filters, and in Bin and Di Meglio (2017) using a
Lyapunov approach. The extension to general m + n systems is
given in Anfinsen et al. (2017). The extension to stabilization,
without additive boundary parameter and sensing at the left
boundary restricted to the form y0(t) = v(0, t), is given in
Anfinsen and Aamo (2017c) (n + 1 case) and Anfinsen and
Aamo (2017b) (m + n case). An adaptive observer for n + 1
systems with a multiplicative boundary condition is developed
in Di Meglio et al. (2014) and for 2 × 2 systems with an affine
boundary condition in Anfinsen and Aamo (2016). Adaptive
stabilization of the same type of systems, but without the additive
parameter is considered in Anfinsen and Aamo (2017a) and with
only the additive parameter unknown in Aamo (2013).

Kick attenuation in MPD has mainly been studied in the
context of lumped drilling models. A lumped ODE model is
applied to a gas kick detection and mitigation problem in Zhou
et al. (2011) by using a method for switched control of the
bottom-hole pressure. Another lumped model for estimation
and control of in-/outflux is presented in Hauge et al. (2012).
Kick handling methods for a first-order approximation to the
PDE system is presented in Aarsnes et al. (2016a) using LMI
(Linear Matrix Inequality) based controller design. An infinite-
dimensional observer for kick & loss detection is presented in
Hauge et al. (2013). Another observer for state and reservoir
pressure estimation in under-balanced drilling is given in Di
Meglio et al. (2014). In Holta et al. (2018, 2017), a distributed
PDE model is combined with a model of the reservoir inflow
relation (given in Equation 2a). Kick & loss detection with
sensing non-collocated with control is studied in Holta et al.
(2017), while a method for kick & loss attenuation for the same
system is presented in Holta et al. (2018).

1.3 Contributions and Paper Structure

This paper considers both kick/loss detection and attenuation.
The main contribution of this paper is an improved version
of the parameter estimation scheme presented in Holta et al.
(2018), better utilizing the bottom-hole pressure measurement.
The estimation scheme presented in this paper is combined with
the closed loop controller derived in Holta et al. (2018) and
applied to the kick & loss application. In Section 2, the main

results from Holta et al. (2018) are included for completeness.
Section 3 presents the improved estimation scheme. In Section 4
the estimator from Section 3 is combined with the control law
from Holta et al. (2018) and applied to the kick & loss problem
in MPD where the performance of the new estimation scheme is
compared to results from Holta et al. (2018) in a simulation.

1.4 Mapping to Riemann Invariants

To ease the design process, as well as generalize the control
problem, it can be shown that system (1) with boundary
conditions (2) can be transformed, through a suitable coordinate
transformation (see Holta et al. (2018)), to an equivalent system
written in terms of Riemann invariants as

ut(x, t) + λux(x, t) = c1(x)v(x, t) (3a)
vt(x, t) − µvx(x, t) = c2(x)u(x, t) (3b)

u(0, t) = rv(0, t) + k(θ − y0(t)) (3c)
v(1, t) = U(t) (3d)

defined for x ∈ [0, 1], t ≥ 0, where u, v are the system states,
U(t) is the control input, λ, µ > 0 and c1(x), c2(x) ∈ C([0, 1])
are known, while k ∈ R and θ ∈ R are unknown boundary
parameters, but where sign(k) is known. The measurement
collocated with actuation is given by

y1(t) = u(1, t) (4)
while the measurement anti-collocated with actuation is gener-
ated as a linear combination of the system states. That is,

y0(t) = a0u(0, t) + b0v(0, t) (5)
with a0 �= 0. The objective is generalized to stabilization in the
L2-sense and boundedness uniformly and point-wise in x. In
addition, based on the design goal p(0, t) = pr(t), we select the
weaker control objective

lim
t→∞

∫ t+T

t

|rv(0, τ) − u(0, τ)| dτ = 0 (6)

for
r �= − b0

a0
(7)

and for some arbitrary T > 0. Furthermore, it is assumed that
the initial conditions u(x, 0) = u0(x), v(x, 0) = v0(x) satisfy
u0, v0 ∈ L2([0, 1]).

2. ESTIMATION AND CONTROL WITH ADAPTATION
BASED ON TOP-SIDE SENSING (OLD METHOD)

The main results on state and parameter estimation from Holta
et al. (2017) are given in Section 2.1 and Theorem 1 in particular.
Section 2.2 presents the main results from Holta et al. (2018)
with the control law given formally in Theorem 2.

2.1 State and Parameter Estimation

In Holta et al. (2017), a swapping based design is used to
generate on-line state and parameter estimates. The same
swapping filters will be used in this paper. The filters are given
by

at(x, t) + λax(x, t) =c1(x)b(x, t)

+ P1(x)(y1(t) − a(1, t)) (8a)
bt(x, t) − µbx(x, t) =c2(x)a(x, t)

+ P2(x)(y1(t) − a(1, t)) (8b)
a(0, t) =rb(0, t) (8c)
b(1, t) =U(t) (8d)
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1. INTRODUCTION

1.1 Problem Statement

In order to carry cuttings to the surface and maintain an
appropriate pressure barrier down-hole during drilling, a drilling
mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used

pt(z, t) = − β

A1
qz(z, t) (1a)

qt(z, t) = −A1

ρ
pz(z, t) −

F1

ρ
q(z, t) −A1g (1b)

where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions
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Fig. 1. Schematic of the drilling system. Courtesy of Ulf Jakob
Aarsnes (Aarsnes et al. (2016b)).

q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0, t) = pr such that flow
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1. INTRODUCTION

1.1 Problem Statement

In order to carry cuttings to the surface and maintain an
appropriate pressure barrier down-hole during drilling, a drilling
mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used
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where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions
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q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
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1. INTRODUCTION

1.1 Problem Statement

In order to carry cuttings to the surface and maintain an
appropriate pressure barrier down-hole during drilling, a drilling
mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used

pt(z, t) = − β

A1
qz(z, t) (1a)

qt(z, t) = −A1

ρ
pz(z, t) −

F1

ρ
q(z, t) −A1g (1b)

where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions

Drilling �uid

Oil & Gas 
in�ux 3-10 km

Fig. 1. Schematic of the drilling system. Courtesy of Ulf Jakob
Aarsnes (Aarsnes et al. (2016b)).

q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0, t) = pr such that flow
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bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
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When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
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q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
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mud is circulated down the drill string, through the drill bit
and up in a casing surrounding the drill string (see Figure 1).
In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the
annulus so that pressure can be controlled quickly and precisely.
The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used
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where z ∈ [0, l] and t ≥ 0 are the independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, ρ is the density of the mud, β is the
bulk modulus of the mud, F1 is the friction factor, A1 is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal pl(t), this gives
the boundary conditions
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q(0, t) = J (pr − p(0, t)) + qbit (2a)
p(l, t) = pl(t) (2b)

where J > 0 is called the productivity index and is assumed
unknown, pr is the unknown reservoir pressure, and qbit the
known flow through the drill bit. It is assumed that pr satisfies
0 < pr ≤ p̄r where p̄r is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure pl regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow q(l, t).

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0, t) = pr such that flow
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from the reservoir into the drill string is zero. This implies that
the flow through the annulus is equal to the drill bit flow.

1.2 Previous Work

Control of coupled distributed systems like (1) and (3) can be
achieved by using the method of infinite-dimensional backstep-
ping for PDEs. This method was first introduced for parabolic
PDEs in Liu (2003); Smyshlyaev and Krstic (2004, 2005),
where the gain kernel was expressed as a solution to a well-
posed PDE. The first result for hyperbolic PDEs was in Krstic
and Smyshlyaev (2008) for first order systems, for second
order hyperbolic systems in Smyshlyaev et al. (2010), and to
two coupled first order hyperbolic systems in Vazquez et al.
(2011). The results in the latter were used in Aamo (2013) for
disturbance attenuation in managed pressure drilling which has
similarities to the problem considered in this paper.

Results on adaptive control for parabolic PDEs can be found
in Smyshlyaev and Krstic (2010). Adaptive observers for n + 1
hyperbolic systems using sensing collocated with the uncertain
boundary parameters can be found in Anfinsen et al. (2016)
using swapping filters, and in Bin and Di Meglio (2017) using a
Lyapunov approach. The extension to general m + n systems is
given in Anfinsen et al. (2017). The extension to stabilization,
without additive boundary parameter and sensing at the left
boundary restricted to the form y0(t) = v(0, t), is given in
Anfinsen and Aamo (2017c) (n + 1 case) and Anfinsen and
Aamo (2017b) (m + n case). An adaptive observer for n + 1
systems with a multiplicative boundary condition is developed
in Di Meglio et al. (2014) and for 2 × 2 systems with an affine
boundary condition in Anfinsen and Aamo (2016). Adaptive
stabilization of the same type of systems, but without the additive
parameter is considered in Anfinsen and Aamo (2017a) and with
only the additive parameter unknown in Aamo (2013).

Kick attenuation in MPD has mainly been studied in the
context of lumped drilling models. A lumped ODE model is
applied to a gas kick detection and mitigation problem in Zhou
et al. (2011) by using a method for switched control of the
bottom-hole pressure. Another lumped model for estimation
and control of in-/outflux is presented in Hauge et al. (2012).
Kick handling methods for a first-order approximation to the
PDE system is presented in Aarsnes et al. (2016a) using LMI
(Linear Matrix Inequality) based controller design. An infinite-
dimensional observer for kick & loss detection is presented in
Hauge et al. (2013). Another observer for state and reservoir
pressure estimation in under-balanced drilling is given in Di
Meglio et al. (2014). In Holta et al. (2018, 2017), a distributed
PDE model is combined with a model of the reservoir inflow
relation (given in Equation 2a). Kick & loss detection with
sensing non-collocated with control is studied in Holta et al.
(2017), while a method for kick & loss attenuation for the same
system is presented in Holta et al. (2018).

1.3 Contributions and Paper Structure

This paper considers both kick/loss detection and attenuation.
The main contribution of this paper is an improved version
of the parameter estimation scheme presented in Holta et al.
(2018), better utilizing the bottom-hole pressure measurement.
The estimation scheme presented in this paper is combined with
the closed loop controller derived in Holta et al. (2018) and
applied to the kick & loss application. In Section 2, the main

results from Holta et al. (2018) are included for completeness.
Section 3 presents the improved estimation scheme. In Section 4
the estimator from Section 3 is combined with the control law
from Holta et al. (2018) and applied to the kick & loss problem
in MPD where the performance of the new estimation scheme is
compared to results from Holta et al. (2018) in a simulation.

1.4 Mapping to Riemann Invariants

To ease the design process, as well as generalize the control
problem, it can be shown that system (1) with boundary
conditions (2) can be transformed, through a suitable coordinate
transformation (see Holta et al. (2018)), to an equivalent system
written in terms of Riemann invariants as

ut(x, t) + λux(x, t) = c1(x)v(x, t) (3a)
vt(x, t) − µvx(x, t) = c2(x)u(x, t) (3b)

u(0, t) = rv(0, t) + k(θ − y0(t)) (3c)
v(1, t) = U(t) (3d)

defined for x ∈ [0, 1], t ≥ 0, where u, v are the system states,
U(t) is the control input, λ, µ > 0 and c1(x), c2(x) ∈ C([0, 1])
are known, while k ∈ R and θ ∈ R are unknown boundary
parameters, but where sign(k) is known. The measurement
collocated with actuation is given by

y1(t) = u(1, t) (4)
while the measurement anti-collocated with actuation is gener-
ated as a linear combination of the system states. That is,

y0(t) = a0u(0, t) + b0v(0, t) (5)
with a0 �= 0. The objective is generalized to stabilization in the
L2-sense and boundedness uniformly and point-wise in x. In
addition, based on the design goal p(0, t) = pr(t), we select the
weaker control objective

lim
t→∞

∫ t+T

t

|rv(0, τ) − u(0, τ)| dτ = 0 (6)

for
r �= − b0

a0
(7)

and for some arbitrary T > 0. Furthermore, it is assumed that
the initial conditions u(x, 0) = u0(x), v(x, 0) = v0(x) satisfy
u0, v0 ∈ L2([0, 1]).

2. ESTIMATION AND CONTROL WITH ADAPTATION
BASED ON TOP-SIDE SENSING (OLD METHOD)

The main results on state and parameter estimation from Holta
et al. (2017) are given in Section 2.1 and Theorem 1 in particular.
Section 2.2 presents the main results from Holta et al. (2018)
with the control law given formally in Theorem 2.

2.1 State and Parameter Estimation

In Holta et al. (2017), a swapping based design is used to
generate on-line state and parameter estimates. The same
swapping filters will be used in this paper. The filters are given
by

at(x, t) + λax(x, t) =c1(x)b(x, t)

+ P1(x)(y1(t) − a(1, t)) (8a)
bt(x, t) − µbx(x, t) =c2(x)a(x, t)

+ P2(x)(y1(t) − a(1, t)) (8b)
a(0, t) =rb(0, t) (8c)
b(1, t) =U(t) (8d)
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and parameter filters
mt(x, t) + λmx(x, t) =c1(x)n(x, t) − P1(x)m(1, t) (9a)
nt(x, t) − µnx(x, t) =c2(x)m(x, t) − P2(x)m(1, t) (9b)

m(0) =rn(0, t) + 1 (9c)
n(1) =0 (9d)

and
wt(x, t) + λwx(x, t) =c1(x)z(x, t) − P1(x)w(1, t) (10a)
zt(x, t) − µzx(x, t) =c2(x)w(x, t) − P2(x)w(1, t) (10b)

w(0, t) =rz(0, t) − y0(t) (10c)
z(1, t) =0 (10d)

where P1, P2 are gains to be designed. The input filters model
how the control signal U(t) affect the system states u, v, while
the parameter filters model the effect of the boundary parameters
k and θ on the system states.

Using the swapping filters, the following static relationship
between the system states (u, v) and unknown parameters k
and θ can be found

u(x, t) =a(x, t) + k (θm(x, t) + w(x, t)) + e(x, t) (11a)
v(x, t) =b(x, t) + k (θn(x, t) + z(x, t)) + ε(x, t) (11b)

where e, ε represent the non-adaptive estimation error. It is
shown in Holta et al. (2017) that if the gains P1, P2 are selected
as

P1(x) = λPuu(x, 1) (12a)
P2(x) = λP vu(x, 1), (12b)

where (Puu, P vu) is the solution to
λPuu

x (x, ξ) + λPuu
ξ (x, ξ) =c1(x)P vu(x, ξ) (13a)

µP vu
x (x, ξ) − λP vu

ξ (x, ξ) = − c2(x)Puu(x, ξ) (13b)
P vu(x, x)λ + P vu(x, x)µ =c2(x) (13c)

Puu(0, ξ) =rP vu(0, ξ) (13d)
defined over T1 = {(x, ξ) | 0 ≤ x ≤ ξ ≤ 1}, then the error
terms e, ε will tend to zero in a finite time given by

tF =
1

λ
+

1

µ
. (14)

It is shown in Coron et al. (2013) that the system (13) has a
continuous, bounded and unique solution (Puu, P vu).

Motivated by the bilinear form of the static relationship (11), the
following adaptive state estimates are generated:

û(x, t) =a(x, t) + k̂(t)
(
θ̂(t)m(x, t) + w(x, t)

)

=u(x, t) − ê(x, t) (15a)

v̂(x, t) =b(x, t) + k̂(t)
(
θ̂(t)n(x, t) + z(x, t)

)

=v(x, t) − ε̂(x, t) (15b)

where ê, ε̂ represent the adaptive estimation error, and θ̂ and k̂
are estimates of θ and k, respectively.

Evaluating (15a) at x = 1, inserting (4) and rearranging then
give

ê(1, t) = y1(t)−a(1, t)−k̂(t)
(
θ̂(t)m(1, t) + w(1, t)

)
. (16)

Assuming the sign of k is known, the gradient method for
bilinear parametric models in Ioannou and Sun (2012, Theorem
4.52) can be used to minimize a cost function based on the
square error ê2(1, t) and thereby forming an adaptive law for
the parameter estimates θ̂, k̂. The following theorem presents
the main results from Ioannou and Sun (2012, Theorem 4.52)

together with some additional properties needed to prove
stability of the closed loop system.
Theorem 1. Consider the adaptive laws

˙̂
θ(t) =γ1sign(k)

ê(1, t)

1 + w2(1, t)
m(1, t) (17a)

˙̂
k(t) =γ2

[
θ̂(t)m(1, t) + w(1, t)

] ê(1, t)

1 + w2(1, t)
(17b)

for t ≥ tF and ˙̂
θ(t) =

˙̂
k(t) = 0 for t < tF , where γ1, γ2 > 0

are the adaptation gains, m(1, t) and w(1, t) are the filters given
in (9) and (10), ê(1, t) is the adaptive estimation error in (16)
and tF is defined in (14). Suppose system (3) has a unique
solution u, v for all t ≥ 0. Then, the adaptive laws (17) have the
following properties:

(1) θ̂, k̂, ∈ L∞.
(2) ˙̂

θ,
˙̂
k, ∈ L∞ ∩ L2.

(3) θ̂(t) → θ̂(t− dβ) and k̂(t) → k̂(t− dβ).

(4) k̃(θ−y0)+k̂θ̃√
1+w2(1,·)

∈ L2 where θ̃ = θ − θ̂ and k̃ = k − k̂.

(5) If w(1, ·) ∈ L∞ and θ̂m(1, ·) + w(1, ·) ∈ L2, then θ̂

converges to θ and k̂ converges to some constant.

Proof. See Holta et al. (2017).

2.2 Closed Loop Adaptive Control

The control law from Holta et al. (2018) is given in terms of
the state estimates (û, v̂) and parameter estimates θ̂, k̂. The
parameter estimates are generated from the adaptive laws
in Theorem 1. Once these estimates are found, the adaptive
relationship (15) can be used to generate state estimates.
Theorem 2. Consider system (3), the state estimates (15) and
the adaptive law (17), and suppose (7) holds. Then, the control
law

U(t) = K[û, v̂](1) +
1

a0r + b0
θ̂(t) (18)

where K : L2([0, 1]) × L2([0, 1]) → L2([0, 1]) is the operator
given by

K[û, v̂](x) =v̂(x) −
∫ x

0

Kvu(x, ξ)û(ξ)dξ

−
∫ x

0

Kvv(x, ξ)v̂(ξ)dξ (19)

defined for x ∈ [0, 1] where (Kvu,Kvv) is the unique solution
to (see Coron et al. (2013))

Kvu
x (x, ξ)µ−Kvu

ξ (x, ξ)λ =Kvv(x, ξ)c2(x) (20a)
Kvv

x (x, ξ)µ + Kvv
ξ (x, ξ)µ =Kvu(x, ξ)c1(x) (20b)

Kvu(x, x)λ + Kvu(x, x)µ = − c2(x) (20c)
Kvu(x, 0)λr =Kvv(x, 0)µ (20d)

defined over T2 = {(x, ξ) | 0 ≤ ξ ≤ x ≤ 1}, guarantees (6).
Moreover, all signals in the closed loop system are bounded
and the parameter estimate θ̂ converges to its true value θ in the
sense ∫ t+T

t

|θ̂(τ) − θ|dτ → 0 (21)

for some T > 0.

IFAC OOGP 2018
Esbjerg, Denmark. May 30 - June 1, 2018

46

3. ESTIMATION WITH ADAPTATION BASED ON
BOTTOM-HOLE SENSING (NEW METHOD)

The adaptive law in Theorem 1 is designed to minimize the top-
side estimation error and the bottom-hole pressure measurement
is only used indirectly in the filters (8)-(10). Even though
new measurements y0(t) are instantly available to the control
unit by wired drill-pipe technology, the old design forces new
measurements to propagate through the filter systems before
the state estimates are updated, and consequently, the top-side
error ê(1, t) is only affected by y0(t − λ−1). In contrast, the
proposed method of this section, which is the main result
of the paper, utilizes the bottom-hole pressure measurement
immediately and directly in the adaptive law, which is designed
to minimizes the bottom-hole estimation error rather than the
top-side error. The artificial time delay introduced by the filters
in the old method is therefore avoided and the parameter and
state estimates approach their true values significantly faster, as
demonstrated in simulations in Section 4.

The new design goes as follows. Using that e(0, t) = ε(0, t) = 0
for all t ≥ tF and inserting (5) into the static relationship (11),
and evaluating at x = 0 give

y0(t) =a0u(0, t) + b0v(0, t)

=a0 (a(0, t) + k (θm(0, t) + w(0, t)))

+ b0 (b(0, t) + k (θn(0, t) + z(0, t))) .

(22)

Defining
ă(t) =a0a(0, t) + b0b(0, t) (23a)
m̆(t) =a0m(0, t) + b0n(0, t) (23b)
w̆(t) =a0w(0, t) + b0z(0, t) (23c)

and rearranging the terms, give the bilinear parametric model
y0(t) − ă(t) = k (θm̆(t) + w̆(t)) . (24)

The same adaptive state estimates (15) will be reused here.
Evaluating (15) at x = 0, inserting (5) and defining

ĕ(t) = a0ê(0, t) + b0ε̂(0, t) (25)
then give

ĕ(t) = y0(t) − ă(t) − k̂(t)
(
θ̂(t)m̆(t) + w̆(t)

)
. (26)

Assuming the sign of k is known, the gradient method for
bilinear parametric models in Ioannou and Sun (2012, Theorem
4.52) can be used to minimize a cost function based on the
square error ĕ2(t) and thereby forming an adaptive law for the
parameter estimates θ̂, k̂.
Theorem 3. Consider the adaptive laws

˙̂
θ(t) =




γ1sign(k)

ĕ(t)

1 + w̆2(t)
m̆(t) t ≥ tF

0 otherwise
(27a)

˙̂
k(t) =




γ2

[
θ̂(t)m̆(t) + w̆(t)

] ĕ(t)

1 + w̆2(t)
t ≥ tF

0 otherwise
(27b)

for some adaptation gains γ1, γ2 > 0 where m̆(t) and w̆(t) are
given in (23), ĕ(t) is the adaptive estimation error (25) and tF is
defined in (14). Suppose system (3) has a unique solution u, v
for all t ≥ 0. Then, the adaptive laws (27) have the following
properties:

(1) θ̂, k̂ ∈ L∞.
(2) ˙̂

θ,
˙̂
k ∈ L2 ∩ L∞.

(3) ĕ√
1+w̆2(1,·)

∈ L∞ ∩ L2

(4) If w̆ ∈ L∞ and θ̂m̆ + w̆ ∈ L2, then θ̂ converges to θ and
k̂ converges to some constant.

Proof. Consider the Lyapunov function candidate

V0 = |k| 1

2γ1
θ̃2 +

1

2γ2
k̃2 (28)

where θ̃ = θ − θ̂ and k̃ = k − k̂. Differentiating, inserting the
adaptive laws (27) for t ≥ tF and using relation (26) give

V̇0 = −|k| 1

γ1
θ̃

˙̂
θ − 1

γ2
k̃

˙̂
k

= − ĕ(t)

1 + w̆2(t)

(
|k|θ̃sign(k)m̆(t) − k̃

[
θ̂(t)m̆(t) + w̆(t)

])

= − ĕ(t)

1 + w̆2(t)
(a0u(0, t) + b0v(0, t) − a0û(0, t) − b0v̂(0, t))

= − ĕ2(t)

1 + w̆2(t)
≤ 0 (29)

which shows that V0, θ̃, k̃ ∈ L∞. The adaptive estimation error
ĕ can be written on the form

ĕ(t) = Θ(t)TΨ(t) (30)
where

Θ(t) =
[
k̃(t),

√
|k|θ̃(t)

]T
(31a)

Ψ(t) =
[
θ̂m̆(t) + w̆(t), sign(k)

√
|k|m̆(t)

]T
(31b)

It is shown in Holta et al. (2017) that the filter system (m,n) in
(9) is bounded point-wise in x. We then have

1√
1 + w̆2(1, ·)

Ψ(t) ∈ L∞ (32)

which together with Property 1 and (30) give
ĕ√

1 + w̆2(1, ·)
∈ L∞. (33)

Integrating (29) from t = 0 to t = ∞ and using that V0 ≥ 0 is a
non-increasing function of time give

∫ ∞

0

(
ĕ2(1, τ)

1 + w̆2(τ)

)
dτ = −

∫ ∞

0

V̇0(τ)dτ

=V0(0) − V0(∞) < ∞ (34)
and therefore

ĕ(1, ·)√
1 + w̆2(·)

∈ L2. (35)

From (27a), one has
∣∣∣ ˙̂θ(t)

∣∣∣ ≤ γ1

∣∣∣∣∣
ĕ(t)√

1 + w̆2(t)

∣∣∣∣∣

∣∣∣∣∣
m̆(t)√

1 + w̆2(t)

∣∣∣∣∣ (36)

which together with (33), (35) and boundedness of m̆ give
˙̂
θ ∈ L∞ ∩ L2 and the first part of Property 2. For the second
part, one has similarly

∣∣∣ ˙̂k(t)
∣∣∣ ≤ γ2

∣∣∣∣∣
ĕ(t)√

1 + w̆2(t)

∣∣∣∣∣

∣∣∣∣∣
θ̂m̆(t) + w̆(t)√

1 + w̆2(t)

∣∣∣∣∣ (37)

which together with (33), (35) and boundedness of m̆ give
˙̂
k ∈ L∞ ∩ L2 and the second part of Property 2. Inserting
(26) into (27a) yields
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and parameter filters
mt(x, t) + λmx(x, t) =c1(x)n(x, t) − P1(x)m(1, t) (9a)
nt(x, t) − µnx(x, t) =c2(x)m(x, t) − P2(x)m(1, t) (9b)

m(0) =rn(0, t) + 1 (9c)
n(1) =0 (9d)

and
wt(x, t) + λwx(x, t) =c1(x)z(x, t) − P1(x)w(1, t) (10a)
zt(x, t) − µzx(x, t) =c2(x)w(x, t) − P2(x)w(1, t) (10b)

w(0, t) =rz(0, t) − y0(t) (10c)
z(1, t) =0 (10d)

where P1, P2 are gains to be designed. The input filters model
how the control signal U(t) affect the system states u, v, while
the parameter filters model the effect of the boundary parameters
k and θ on the system states.

Using the swapping filters, the following static relationship
between the system states (u, v) and unknown parameters k
and θ can be found

u(x, t) =a(x, t) + k (θm(x, t) + w(x, t)) + e(x, t) (11a)
v(x, t) =b(x, t) + k (θn(x, t) + z(x, t)) + ε(x, t) (11b)

where e, ε represent the non-adaptive estimation error. It is
shown in Holta et al. (2017) that if the gains P1, P2 are selected
as

P1(x) = λPuu(x, 1) (12a)
P2(x) = λP vu(x, 1), (12b)

where (Puu, P vu) is the solution to
λPuu

x (x, ξ) + λPuu
ξ (x, ξ) =c1(x)P vu(x, ξ) (13a)

µP vu
x (x, ξ) − λP vu

ξ (x, ξ) = − c2(x)Puu(x, ξ) (13b)
P vu(x, x)λ + P vu(x, x)µ =c2(x) (13c)

Puu(0, ξ) =rP vu(0, ξ) (13d)
defined over T1 = {(x, ξ) | 0 ≤ x ≤ ξ ≤ 1}, then the error
terms e, ε will tend to zero in a finite time given by

tF =
1

λ
+

1

µ
. (14)

It is shown in Coron et al. (2013) that the system (13) has a
continuous, bounded and unique solution (Puu, P vu).

Motivated by the bilinear form of the static relationship (11), the
following adaptive state estimates are generated:

û(x, t) =a(x, t) + k̂(t)
(
θ̂(t)m(x, t) + w(x, t)

)

=u(x, t) − ê(x, t) (15a)

v̂(x, t) =b(x, t) + k̂(t)
(
θ̂(t)n(x, t) + z(x, t)

)

=v(x, t) − ε̂(x, t) (15b)

where ê, ε̂ represent the adaptive estimation error, and θ̂ and k̂
are estimates of θ and k, respectively.

Evaluating (15a) at x = 1, inserting (4) and rearranging then
give

ê(1, t) = y1(t)−a(1, t)−k̂(t)
(
θ̂(t)m(1, t) + w(1, t)

)
. (16)

Assuming the sign of k is known, the gradient method for
bilinear parametric models in Ioannou and Sun (2012, Theorem
4.52) can be used to minimize a cost function based on the
square error ê2(1, t) and thereby forming an adaptive law for
the parameter estimates θ̂, k̂. The following theorem presents
the main results from Ioannou and Sun (2012, Theorem 4.52)

together with some additional properties needed to prove
stability of the closed loop system.
Theorem 1. Consider the adaptive laws

˙̂
θ(t) =γ1sign(k)

ê(1, t)

1 + w2(1, t)
m(1, t) (17a)

˙̂
k(t) =γ2

[
θ̂(t)m(1, t) + w(1, t)

] ê(1, t)

1 + w2(1, t)
(17b)

for t ≥ tF and ˙̂
θ(t) =

˙̂
k(t) = 0 for t < tF , where γ1, γ2 > 0

are the adaptation gains, m(1, t) and w(1, t) are the filters given
in (9) and (10), ê(1, t) is the adaptive estimation error in (16)
and tF is defined in (14). Suppose system (3) has a unique
solution u, v for all t ≥ 0. Then, the adaptive laws (17) have the
following properties:

(1) θ̂, k̂, ∈ L∞.
(2) ˙̂

θ,
˙̂
k, ∈ L∞ ∩ L2.

(3) θ̂(t) → θ̂(t− dβ) and k̂(t) → k̂(t− dβ).

(4) k̃(θ−y0)+k̂θ̃√
1+w2(1,·)

∈ L2 where θ̃ = θ − θ̂ and k̃ = k − k̂.

(5) If w(1, ·) ∈ L∞ and θ̂m(1, ·) + w(1, ·) ∈ L2, then θ̂

converges to θ and k̂ converges to some constant.

Proof. See Holta et al. (2017).

2.2 Closed Loop Adaptive Control

The control law from Holta et al. (2018) is given in terms of
the state estimates (û, v̂) and parameter estimates θ̂, k̂. The
parameter estimates are generated from the adaptive laws
in Theorem 1. Once these estimates are found, the adaptive
relationship (15) can be used to generate state estimates.
Theorem 2. Consider system (3), the state estimates (15) and
the adaptive law (17), and suppose (7) holds. Then, the control
law

U(t) = K[û, v̂](1) +
1

a0r + b0
θ̂(t) (18)

where K : L2([0, 1]) × L2([0, 1]) → L2([0, 1]) is the operator
given by

K[û, v̂](x) =v̂(x) −
∫ x

0

Kvu(x, ξ)û(ξ)dξ

−
∫ x

0

Kvv(x, ξ)v̂(ξ)dξ (19)

defined for x ∈ [0, 1] where (Kvu,Kvv) is the unique solution
to (see Coron et al. (2013))

Kvu
x (x, ξ)µ−Kvu

ξ (x, ξ)λ =Kvv(x, ξ)c2(x) (20a)
Kvv

x (x, ξ)µ + Kvv
ξ (x, ξ)µ =Kvu(x, ξ)c1(x) (20b)

Kvu(x, x)λ + Kvu(x, x)µ = − c2(x) (20c)
Kvu(x, 0)λr =Kvv(x, 0)µ (20d)

defined over T2 = {(x, ξ) | 0 ≤ ξ ≤ x ≤ 1}, guarantees (6).
Moreover, all signals in the closed loop system are bounded
and the parameter estimate θ̂ converges to its true value θ in the
sense ∫ t+T

t

|θ̂(τ) − θ|dτ → 0 (21)

for some T > 0.
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3. ESTIMATION WITH ADAPTATION BASED ON
BOTTOM-HOLE SENSING (NEW METHOD)

The adaptive law in Theorem 1 is designed to minimize the top-
side estimation error and the bottom-hole pressure measurement
is only used indirectly in the filters (8)-(10). Even though
new measurements y0(t) are instantly available to the control
unit by wired drill-pipe technology, the old design forces new
measurements to propagate through the filter systems before
the state estimates are updated, and consequently, the top-side
error ê(1, t) is only affected by y0(t − λ−1). In contrast, the
proposed method of this section, which is the main result
of the paper, utilizes the bottom-hole pressure measurement
immediately and directly in the adaptive law, which is designed
to minimizes the bottom-hole estimation error rather than the
top-side error. The artificial time delay introduced by the filters
in the old method is therefore avoided and the parameter and
state estimates approach their true values significantly faster, as
demonstrated in simulations in Section 4.

The new design goes as follows. Using that e(0, t) = ε(0, t) = 0
for all t ≥ tF and inserting (5) into the static relationship (11),
and evaluating at x = 0 give

y0(t) =a0u(0, t) + b0v(0, t)

=a0 (a(0, t) + k (θm(0, t) + w(0, t)))

+ b0 (b(0, t) + k (θn(0, t) + z(0, t))) .

(22)

Defining
ă(t) =a0a(0, t) + b0b(0, t) (23a)
m̆(t) =a0m(0, t) + b0n(0, t) (23b)
w̆(t) =a0w(0, t) + b0z(0, t) (23c)

and rearranging the terms, give the bilinear parametric model
y0(t) − ă(t) = k (θm̆(t) + w̆(t)) . (24)

The same adaptive state estimates (15) will be reused here.
Evaluating (15) at x = 0, inserting (5) and defining

ĕ(t) = a0ê(0, t) + b0ε̂(0, t) (25)
then give

ĕ(t) = y0(t) − ă(t) − k̂(t)
(
θ̂(t)m̆(t) + w̆(t)

)
. (26)

Assuming the sign of k is known, the gradient method for
bilinear parametric models in Ioannou and Sun (2012, Theorem
4.52) can be used to minimize a cost function based on the
square error ĕ2(t) and thereby forming an adaptive law for the
parameter estimates θ̂, k̂.
Theorem 3. Consider the adaptive laws

˙̂
θ(t) =




γ1sign(k)

ĕ(t)

1 + w̆2(t)
m̆(t) t ≥ tF

0 otherwise
(27a)

˙̂
k(t) =




γ2

[
θ̂(t)m̆(t) + w̆(t)

] ĕ(t)

1 + w̆2(t)
t ≥ tF

0 otherwise
(27b)

for some adaptation gains γ1, γ2 > 0 where m̆(t) and w̆(t) are
given in (23), ĕ(t) is the adaptive estimation error (25) and tF is
defined in (14). Suppose system (3) has a unique solution u, v
for all t ≥ 0. Then, the adaptive laws (27) have the following
properties:

(1) θ̂, k̂ ∈ L∞.
(2) ˙̂

θ,
˙̂
k ∈ L2 ∩ L∞.

(3) ĕ√
1+w̆2(1,·)

∈ L∞ ∩ L2

(4) If w̆ ∈ L∞ and θ̂m̆ + w̆ ∈ L2, then θ̂ converges to θ and
k̂ converges to some constant.

Proof. Consider the Lyapunov function candidate

V0 = |k| 1

2γ1
θ̃2 +

1

2γ2
k̃2 (28)

where θ̃ = θ − θ̂ and k̃ = k − k̂. Differentiating, inserting the
adaptive laws (27) for t ≥ tF and using relation (26) give

V̇0 = −|k| 1

γ1
θ̃

˙̂
θ − 1

γ2
k̃

˙̂
k

= − ĕ(t)

1 + w̆2(t)

(
|k|θ̃sign(k)m̆(t) − k̃

[
θ̂(t)m̆(t) + w̆(t)

])

= − ĕ(t)

1 + w̆2(t)
(a0u(0, t) + b0v(0, t) − a0û(0, t) − b0v̂(0, t))

= − ĕ2(t)

1 + w̆2(t)
≤ 0 (29)

which shows that V0, θ̃, k̃ ∈ L∞. The adaptive estimation error
ĕ can be written on the form

ĕ(t) = Θ(t)TΨ(t) (30)
where

Θ(t) =
[
k̃(t),

√
|k|θ̃(t)

]T
(31a)

Ψ(t) =
[
θ̂m̆(t) + w̆(t), sign(k)

√
|k|m̆(t)

]T
(31b)

It is shown in Holta et al. (2017) that the filter system (m,n) in
(9) is bounded point-wise in x. We then have

1√
1 + w̆2(1, ·)

Ψ(t) ∈ L∞ (32)

which together with Property 1 and (30) give
ĕ√

1 + w̆2(1, ·)
∈ L∞. (33)

Integrating (29) from t = 0 to t = ∞ and using that V0 ≥ 0 is a
non-increasing function of time give

∫ ∞

0

(
ĕ2(1, τ)

1 + w̆2(τ)

)
dτ = −

∫ ∞

0

V̇0(τ)dτ

=V0(0) − V0(∞) < ∞ (34)
and therefore

ĕ(1, ·)√
1 + w̆2(·)

∈ L2. (35)

From (27a), one has
∣∣∣ ˙̂θ(t)

∣∣∣ ≤ γ1

∣∣∣∣∣
ĕ(t)√

1 + w̆2(t)

∣∣∣∣∣

∣∣∣∣∣
m̆(t)√

1 + w̆2(t)

∣∣∣∣∣ (36)

which together with (33), (35) and boundedness of m̆ give
˙̂
θ ∈ L∞ ∩ L2 and the first part of Property 2. For the second
part, one has similarly

∣∣∣ ˙̂k(t)
∣∣∣ ≤ γ2

∣∣∣∣∣
ĕ(t)√

1 + w̆2(t)

∣∣∣∣∣

∣∣∣∣∣
θ̂m̆(t) + w̆(t)√

1 + w̆2(t)

∣∣∣∣∣ (37)

which together with (33), (35) and boundedness of m̆ give
˙̂
k ∈ L∞ ∩ L2 and the second part of Property 2. Inserting
(26) into (27a) yields
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˙̃
θ(t) = −γ1sign(k)

1 + w̆2(t)

(
kθ̃m̆(t) + k̃(t)

(
θ̂m̆(t) + w̆(t)

))
m̆(t)

(38)
where the last term can be treated as an external input. Using
that m̆ ∈ L∞ and if the last term k̃(t)

(
θ̂m̆(t) + w̆(t)

)
is square

integrable, then (38) forms an exponentially stable system and
it follows that θ̃ → 0 as t → ∞ or equivalently the first part
of Property 4. The second part of Property 4 can be seen by
applying Cauchy-Schwarz’ inequality to (27b).
Remark 4. Property 4 in Theorem 3 gives sufficient conditions
for parameter convergence. For t > tF , we have m̆(t) =
m(0, t) = 1 and w̆(t) = w(0, t) = −y0(t). The conditions
are then simplified to y0 ∈ L∞ and (θ̂ − y0) ∈ L2. If
the adaptive laws are used in conjunction with a closed loop
controller guaranteeing these properties, parameter convergence
will follow.

4. SIMULATION

The swapping based estimation scheme presented in Section 3,
consisting of the swapping filters (8)-(10), state estimates (15)
and the adaptive law of Theorem 3, is combined with the
control law from Holta et al. (2018) given in Theorem 2 and
implemented in MATLAB (the new method). This design is
compared to the design from Holta et al. (2017) (the old method),
consisting of the swapping filters (8)-(10), state estimates (15),
the adaptive law of Theorem 1 and the control law of Theorem 2,
which is also implemented in MATLAB. In addition, a simple
controller (the simple method) where the top-side flow is kept
equal to the drill bit flow q(l, t) = qbit is also implemented. For
all control schemes, the system parameters are chosen as
β = 7317Pa, ρ = 1250 kg m−3 (39a)
l = 2500m, A1 = 0.024 m2 (39b)
F1 = 200, g = 9.81 m s−2 (39c)
qbit = 1/60m3 s−1, J = 1.1 × 10−8 m3 s−1 Pa−1. (39d)

The reservoir pressure is initially set to pr(0) = 400 bar and
kept constant until a step to pr(t ≥ t0) = 450 bar occurs at
t0 = 10 s. The system is at steady state at t = 0 with the initial
bottom-hole pressure set equal to the reservoir pressure and the
bottom-hole flow equal to the drill bit flow. The adaptation gains
are selected as γ1 = γ2 = 5.

Figures 2 and 3 show the bottom-hole pressure and flow when
using the three methods. The figures show that all three methods
are able to attenuate the kick. The bottom-hole pressure is
stabilized at the reservoir pressure and the net gain into the
well converges to zero. It is seen that both the new method
and the old method converge in an approximately finite time
after ∼ 10 s, whereas the simple method has a much slower
asymptotic convergence time. In addition, as can be seen from
Figure 6, the new method offers a ∼ 35 % reduction in total
accumulated inflow compared to the old method. This is due to
the better utilization of the bottom-hole measurement as can be
seen from the state estimation error in Figures 4, 5 and 7. Figure 7
also shows that the reservoir pressure estimates converge to the
true value for both methods.

5. CONCLUSIONS AND FURTHER WORK

A new method for kick detection and attenuation in managed
pressure drilling is presented. A swapping based estimator

Fig. 2. Bottom-hole pressure.

Fig. 3. Bottom-hole flow.

Fig. 4. Bottom-hole pressure estimation error.

Fig. 5. Bottom-hole flow estimation error.

utilizing bottom-hole pressure estimates for fast parameter
adaption is presented. The estimation scheme is combined with
a recently developed closed loop controller for kick & loss
attenuation. The new design was compared to earlier works
on kick & loss attenuation in a simulation, suggesting that
significant performance improvement is possible by exploiting
downhole pressure measurements made available in real-time
by wired drill-pipe technology. Further work include a rigorous
proof of closed loop stability in the L2-sense and convergence
of the bottom-hole pressure to the desired set-point.
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Fig. 6. Accumulated net inflow.

Fig. 7. Reservoir pressure estimate.
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Adaptive Observer Design for an n+1 Hyperbolic PDE with
Uncertainty and Sensing on Opposite Ends

Haavard Holta and Ole Morten Aamo

Abstract— An adaptive observer design for a system of n+1
coupled 1-D linear hyperbolic partial differential equations
with an uncertain boundary condition is presented, extending
previous results by removing the need for sensing collocated
with the uncertainty. This modification is important and moti-
vated by applications in oil & gas drilling where information
about the down-hole situation is crucial in order to prevent or
deal with unwanted incidents. Uncertainties are usually present
down-hole while measurements are available top-side at the
rig, only. Boundedness of the state and parameter estimates
is proved in the general case, while convergence to true values
requires bounded system states and, for parameter convergence,
persistent excitation. The central tool for analysis is the infinite-
dimensional backstepping method applied in two steps, the first
of which is time-invariant, while the second is time-varying
induced by the time-varying parameter estimates.

I. INTRODUCTION

A. Problem formulation

We consider the system of linear first-order hyperbolic Par-
tial Differential Equations (PDEs) with n positive convecting
invariants and 1 negative convecting invariant given by

ut +Λux =Σ(x)u+ω(x)v (1a)
vt −µvx =ϖ(x)u (1b)

where u∈Rn is the upward propagating Riemann invariants,
v∈R is the single downward propagating Riemann invariant,
Σ : [0,1]→Rn×n with diagonal terms being zero, ω : [0,1]→
Rn×1, ϖ : [0,1] → R1×n, and Λ = diag(λ1, ...,λn) and µ
satisfying −µ < 0 < λ1 < · · · < λn. We consider boundary
conditions on the form

u(0, t) =qv(0, t)+d (2a)
v(1, t) =ρu(1, t)+U(t) (2b)

where q = {qi}1≤i≤n ∈ Rn and d = {di}1≤i≤n ∈ Rn are
unknown, ρ ∈ R1×n is known, and U : [0,∞)→ R can be
any known time-varying function. In addition, we assume
that

y(t) := u(1, t) (3)

is measured. The initial conditions

u(x,0) =:uic(x) (4a)
v(x,0) =:vic(x) (4b)
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satisfy certain compatibility conditions, making the Cauchy
problem (1)–(4) well-posed (see e.g. [1, Theorem 3.1]).

B. A motivating application
The system (1) can be used to model, among others,

various phenomena in multiphase fluid flows. An overview
of other possible applications ranging from open-channel
networks to transmission lines can be found in [2]. In this
paper, we are concerned with the problem of state estimation
in fluid flow systems where one of the boundaries is specified
in terms of uncertain parameters and sensing is limited to
the opposite boundary. The motivation is an application in
oil & gas drilling where only top-side flow measurements
are available and the bottom-hole flow is influenced by an
oil/gas reservoir with unknown properties.

In the drilling application, mud is circulated down the drill-
string, through the drill-bit at the bottom, and up in the open
annulus surrounding the drill-string back up to the rig where
flow is measured. See Figure 1. If the pressure down-hole
is lower than the reservoir pressure, oil, water or even gas
might start flowing into the well and up the annulus. This
is called a kick and can, if not handled, lead to catastrophic
consequences when the reservoir fluids reach the surface.
If properties such as the reservoir pressure is unknown,
handling and even detecting such influxes of reservoir fluids
is a very challenging problem. Previous methods of detecting
and estimating influxes have mainly focused on lumped-
order models [3]–[11], were the distributed dynamics are
neglected. Some results using the so called early-lumping
approach where the PDE model is spatially discretized and
approximated by a set of ODEs have also been explored
[12]–[14]. In this paper, we propose to use the contrasting
late-lumping approach where the observer is derived for the
distributed model, and discretization is only necessary for
computer implementation.

In the drift-flux model, which is the most commonly used
model for drilling applications involving gas, all liquids
(mud, oil, water) are lumped into a single phase, and gas
is considered separately. Following [15], the drift flux model
proposed in [16] can be written on conservative form in terms
of pressure, gas fraction and gas velocity by the quasi-linear
3×3 system

wt +A(w)wx = S(w) (5)

over the domain (x, t) ∈ [0,1]× [0,∞), where A and S are
complicated and given in [15]. System (5) can be linearized
around a given operating profile, diagonalized and written
in terms of Riemann invariants to obtain the form (1) with
n = 2 [17].
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Fig. 1. Schematic of the drilling system.

Interaction with the reservoir is modeled by the boundary
conditions which are assumed to equal the bottom-hole net
liquid and gas inflow qL(0, t) and qG(0, t), respectively. It
is common to model them as proportional to the pressure
difference between the bottom-hole pressure p(0, t) and
reservoir pressure pres(t), that is,

qL(0, t) =JL(pres(t)− p(0, t)) (6a)
qG(0, t) =JG(pres(t)− p(0, t)) (6b)

where JL and JG are constants called production indices
(PI). Both PI’s JG and JL and the reservoir pressure pres
are assumed to be unknown and (6) can be rephrased in the
form (2a). For the top-side boundary condition at x = 1, we
assume that the pressure p(1, t) and flow q(1, t) are known
(one is measured, the other is a control input).

C. Relevant previous results

We use the much celebrated backstepping method for
infinite dimensional systems, first derived for hyperbolic
systems in [18] and later extended to 2×2 systems [19] and
m+ n systems [20]. In the adaptive setting with uncertain
boundary parameters, an observer for a 2× 2 system only
relying on measurements on the boundary opposite of the
boundary with the uncertain parameters is derived in [21],
[22]. For n + 1 systems, the adaptive observer problem
has been solved in [23]–[25] utilizing sensing at the same
boundary as the uncertain parameters. Particularly relevant to
this paper is [25] which considers an application in under-
balanced drilling. Worth mentioning is also [17] where the
backstepping approach is used to control multiphase flows
in drilling using state-feedback.

In this paper, we extend the observer in [21] and derive
an observer for n+1 systems with parametric uncertainties
on one boundary and measurements taken at the opposite
boundary. A disadvantage of the method in [21] is that the
observer injection gains have to be updated on-line with
every new time-varying parameter estimate. We propose a
design avoiding the on-line recalculation of injection gains

by instead solving a set of computationally simpler transport
equations on-line. The estimation scheme with state observer
and adaptive laws including stability proofs are presented
in Section II. Some concluding remarks are offered in
Section III.

D. Notation

For a signal z : [0,1]× [0,∞)→Rn , partial derivatives with
respect to i.e. space are denoted zx or ∂xzi for each element
i = 1, ...,n. The L2-norm is denoted

||z|| :=
√∫ 1

0
zT (x, t)z(x, t)dx. (7)

For f : [0,∞)→ R, we use the vector spaces

f ∈Lp↔
(∫ ∞

0
| f (t)|pdt

) 1
p

< ∞ (8)

for p≥ 1 with the particular case

f ∈L∞↔ sup
t≥0
| f (t)|< ∞. (9)

Derivatives with respect to time are denoted ḟ . If not
otherwise stated, a statement for a variable with subscript
i refers to all variables with subscript i = 1, ...,n.

II. STATE AND PARAMETER ESTIMATION

Let (û, v̂) ∈ Rn+1 denote the state estimates. We consider
the observer system

ût +Λûx =Σ(x)û+ω(x)v̂

+P1(x, t)(y(t)− û(1, t)) (10a)
v̂t −µ v̂x =ϖ(x)û+P2(x, t)(y(t)− û(1, t)) (10b)

û(0, t) =q̂(t)v̂(0, t)+ d̂(t) (10c)
v̂(1, t) =ρu(1, t)+U(t) (10d)

with compatible initial conditions (û(x,0), v̂(x,0)) =
(ûic(x), v̂ic(x)) and where q̂i(t) and d̂i(t) are the parameter
estimates of q and d. The injection gains P1 and P2 have
the structure

P1(x, t) =M(x,1)Λ+G(x,1, t)Λ

+
∫ 1

x
M(x,ξ )G(ξ ,1, t)Λdξ (11a)

P2(x, t) =N(x,1)Λ+
∫ 1

x
N(x,ξ )G(ξ ,1, t)Λdξ (11b)

where (M,N,G) are Volterra integral kernels and will be
specified further in the next sections. The state estimation
error ũ = u− û, ṽ = v− v̂ then satisfies

ũt +Λũx =Σ(x)ũ+ω(x)ṽ−P1(x, t)ũ(1, t) (12a)
ṽt −µ ṽx =ϖ(x)ũ−P2(x, t)ũ(1, t) (12b)

ũ(0, t) =q̂(t)ṽ(0, t)+ q̃(t)v(0, t)+ d̃(t) (12c)
ṽ(1, t) =0 (12d)

where q̃(t) = q− q̂(t) and d̃ = d− d̂(t). The design strategy
is as follows: In Section II-A, we specify the (M,N)-kernels
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and show that the estimation error system (12) is equivalent
to a simpler target system. This target system is used to
derive a parametric model relating the unknown parameters
to some known signals in Section II-B. Equivalence to
yet another target system are shown in Section II-C by
specifying the remaining G-kernel. Properties of this final
target system together with appropriate adaptive laws based
on the parametric model are used in Theorem 1 in Section II-
D to state the main contribution of this paper on state end
parameter estimation.

A. Backstepping transformation

Lemma 1: Let q̄ = {q̄i}1≤i≤n ∈ Rn. On the triangular
domain T1 = {(x,ξ )|0 ≤ x ≤ ξ ≤ 1}, the backstepping
transformation

ũ(x, t) =α(x, t)+
∫ 1

x
M(x,ξ )α(ξ , t)dξ (13a)

ṽ(x, t) =β (x, t)+
∫ 1

x
N(x,ξ )α(ξ , t)dξ , (13b)

with kernels M = {Mi j(x, t)}1≤i, j≤n : T1 → Rn×n, N =
{Ni(x, t)}1≤i≤n : T1→ R1×n satisfying

Mξ Λ+ΛMx =Σ(x)M+ω(x)N (14a)

Nξ Λ−µNx =ϖ(x)M, (14b)

Σ(x) =M(x,x)Λ−ΛM(x,x) (15a)
ϖ(x) =N(x,x)Λ+µN(x,x), (15b)

Mi j(0,ξ ) =q̄iN j(0,ξ ), 1≤ i≤ j ≤ n (16)

and
Mi j(x,1) =

Σi j(x)
λ j−λi

, 1≤ j < i≤ n (17)

is invertible and maps the target system

αt(x, t)+Λαx(x, t) =ω(x)β (x, t)−G(x,1, t)Λα(1, t)

−
∫ 1

x
A(x,ξ )β (ξ , t)dξ (18a)

βt(x, t)−µβx(x, t) =−
∫ 1

x
B(x,ξ )β (ξ , t)dξ (18b)

α(0, t) =q̂(t)β (0, t)+
∫ 1

0
H(ξ , t)α(ξ , t)dξ

+ q̃(t)v(0, t)+ d̃(t) (18c)
β (1, t) =0 (18d)

where G = {gi j(x, t)}1≤i, j≤n is an upper triangular matrix to
be decided, A and B satisfy

A(x,ξ ) =M(x,ξ )ω−
∫ ξ

x
M(x,s)A(s,ξ )ds (19a)

B(x,ξ ) =N(x,ξ )ω−
∫ ξ

x
N(x,s)A(s,ξ )ds, (19b)

and H(ξ , t) = {hi j(ξ , t)}1≤i, j≤n is defined by

hi j(ξ , t) :=q̂i(t)N j(0,ξ )−Mi j(0,ξ ), (20)

into the error system (12) with injection gains (11). More-
over, the kernel equation (14)–(17) has a unique solution.
The target system (18), but without the G(x,1, t)α(1, t) term,
and injection gains P1(x) = M(x,1)Λ and P2(x) = N(x,1)Λ,
was first used in [24] for non-collocated observer design for
n+1 systems, which itself was a straightforward application
of the kernel equations derived in [20]. The effect of includ-
ing the G(x,1, t)α(1, t) term in the target system can be seen
by substituting G(x,1, t)α(1, t) for α(ξ , t) in (13) showing
the origin of the injection gains (11). The proof of Lemma 1
is therefore omitted.

Remark 1: The constant q̄ can be chosen arbitrarily, but
better performance is expected if it is chosen as close to q
as possible, i.e. q̄ = q̂(0), presuming q̂(0) is our best guess
of q at t = 0. Due to (16), we have

hi j(ξ , t) = (q̂i− q̄i)N j (21)

for all j ≥ i, meaning that H(ξ , t) will in general only be
strictly lower triangular for all ξ ∈ [0,1] if q̄ = q̂(t). The
remaining injection gain G(x,1, t)Λ left unspecified in (18a)
(specified later in Section II-C) will be used to handle the
time-varying discrepancy (q̄− q̂(t)).

B. Parametric model

The advantage of transforming the error system to the form
(18) is that, for t ≥ µ−1, β ≡ 0 and the α-dynamics can be
solved independently for each element αi. This solution is
exploited in the next lemma to obtain a bilinear parametric
model relating the unknown parameters to known signals.

Lemma 2: Let λ =min
i

λi = λ1. For t ≥ tF := µ−1+2λ−1,

ψi(t) = qiφ(t)+di, 1≤ i≤ n (22)

where

ψi(t) =ỹi(t +λ−1
i −λ−1)

+ q̂i(t−λ−1)φ(t)+ d̂i(t−λ−1)

−
n

∑
j=i

∫ t+λ−1
i −λ−1

t−λ−1
gi j((τ− t +λ−1)λi,τ)λ j ỹ j(τ)dτ

−
n

∑
j=1

∫ 1

0
hi j(ξ , t−λ−1)

(
ỹ j(t +λ−1(1−ξ )−λ−1)

−
n

∑
l= j

∫ t+λ−1
j (1−ξ )−λ−1

t−λ−1
k jl(ξ +λ j(τ +λ−1− t),τ)

× ỹl(τ)dτ
)

dξ , (23)

φ(t)≡−v̂(0, t−λ−1)+
n

∑
i=1

∫ 1

0
Ni(0,ξ , t−λ−1)

×
(

n

∑
j=1

∫ t+λ−1
i (1−ξ )−λ−1

t−λ−1
gi j(ξ +λi(τ +λ−1− t),τ)

×λ j ỹ j(τ)dτ− ỹi(t +λ−1
i (1−ξ )−λ−1)

)
dξ , (24)
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and
ỹi(t) := αi(1, t) = yi(t)− ûi(1, t). (25)

Proof: Consider the target system (18) in Lemma 1.
Since β ≡ 0 for t ≥ µ−1, we have on component form

∂tαi +λi∂xαi =
n

∑
j=i

gi j(x, t)λ j ỹ j(t) (26a)

αi(0, t) =
n

∑
j=1

∫ 1

0
hi j(ξ , t)α j(ξ , t)dξ

+ q̃i(t)v(0, t)+ d̃i(t) (26b)

with the solution

αi(x, t) =
n

∑
j=i

∫ t

t+λ−1
i (x0−x)

gi j(x+λi(τ− t),τ)λ j ỹ j(τ)dτ

+αi(x0, t +λ−1
i (x0− x)) (27)

valid for all t ≥ µ−1 +λ−1
i and some x0 ∈ [0,1]. Selecting

x0 = 0 and inserting (18c) yield

αi(x, t) =
n

∑
j=i

∫ t

t−λ−1
i x

gi j(x+λi(τ− t),τ)λ j ỹ j(τ)dτ

+
n

∑
j=1

∫ 1

0
hi j(ξ , t−λ−1

i x)α j(ξ , t−λ−1
i x)dξ

+ q̃i(t−λ−1
i x)v(0, t−λ−1

i x)+ d̃i(t−λ−1
i x). (28)

Selecting x0 = 1 and inserting (25) yield

αi(x, t) =−
n

∑
j=i

∫ t+λ−1
i (1−x)

t
gi j(x+λi(τ− t),τ)λ j ỹ j(τ)dτ

+ ỹi(t +λ−1
i (1− x)). (29)

We have from (13b) for t ≥ µ−1, and (29) that

v(0, t) = v̂(0, t)+
∫ 1

0
N(0,ξ )α(ξ , t)dξ

=v̂(0, t)+
n

∑
i=1

∫ 1

0
Ni(0,ξ ) ỹi(t +λ−1

i (1−ξ ))

−
n

∑
j=i

∫ t+λ−1
i (1−ξ )

t
gi j(ξ +λi(τ− t),τ)λ j ỹ j(τ)dτ

)
dξ . (30)

Thus,
v(0, t−λ−1) =−φ(t). (31)

Next, inserting the right hand side of (29) into the left hand
side of (28) evaluated at x = 1 and t = t + λ−1

i − λ−1 ≤ t
yields

ỹi(t +λ−1
i −λ−1) = q̃i(t−λ−1)v(0, t−λ−1)+ d̃i(t−λ−1)

+
n

∑
j=i

∫ t+λ−1
i −λ−1

t−λ−1
gi j((τ− t +λ−1)λi,τ)λ j ỹ j(τ)dτ

+
n

∑
j=1

∫ 1

0
hi j(ξ , t−λ−1)α j(ξ , t−λ−1)dξ

=
n

∑
j=i

∫ t+λ−1
i −λ−1

t−λ−1
gi j((τ− t +λ−1)λi,τ)λ j ỹ j(τ)dτ

+qiv(0, t−λ−1)+di

− q̂i(t−λ−1)v(0, t−λ−1)− d̂i(t−λ−1)

+
n

∑
j=1

∫ 1

0
hi j(ξ , t−λ−1)

(
ỹ j(t +λ−1(1−ξ )−λ−1)

−
n

∑
l= j

∫ t+λ−1
j (1−ξ )−λ−1

t−λ−1
k jl(ξ +λ j(τ +λ−1− t),τ)

× ỹl(τ)dτ
)

dξ (32)

which is equivalent to (22) in view of (23)–(25) and (31).

C. Properties of estimation error target system

We now show equivalence to yet another target system by
specifying the G-kernel.

Lemma 3: For t ≥ µ−1, the backstepping transformation

α(x, t) = η(x, t)+
∫ 1

x
G(x,ξ , t)η(ξ , t)dξ (33)

with kernel G = {gi j}1≤i, j≤n : T1× [0,∞)→Rn×n satisfying

∂tgi j =−λ j∂ξ gi j−λi∂xgi j (34a)

gi j(x,x, t) =0 (34b)

gi j(0,ξ , t) =hi j(ξ , t)+
j

∑
k=1

∫ ξ

0
hik(s, t)gk j(s,ξ , t)ds (34c)

for 1 ≤ i ≤ j ≤ n and gi j ≡ 0 for 1 ≤ j < i ≤ n, which has
a unique, bounded solution for every bounded hi j, maps the
sub-system (18a) and (18c) (recall that β ≡ 0 for t ≥ µ−1)
into the target system

ηt(x, t)+Ληx(x, t) =0 (35a)

η(0, t) =
∫ 1

0
H̄(ξ , t)η(ξ , t)dξ

+q̃(t)v(0, t)+ d̃(t) (35b)

where H̄ is the strictly lower triangular matrix

H̄(ξ , t) :=H(ξ , t)−G(0,ξ , t)+
∫ ξ

0
H(s, t)G(s,ξ , t)ds. (36)

Proof: Differentiating (33) with respect to time and
space, inserting the dynamics (35), and integrating by parts
yield

αt(x, t)+Λαx(x, t)+G(ξ ,1, t)Λα(1, t)
=ηt(x, t)+Ληx(x, t)+G(ξ ,1, t)Λα(1, t)

+
∫ 1

x
Gt(x,ξ , t)η(ξ , t)dsdξ

+G(x,x, t)Λη(1, t)−G(x,1, t)Λη(1, t)

+
∫ 1

x
Gξ (x,ξ , t)Λη(ξ , t)dξ

−ΛG(x,x, t)η(x, t)+
∫ 1

x
ΛGx(x,ξ , t)η(ξ , t)dξ

=
∫ 1

x

(
Gt(x,ξ , t)+Gξ (x,ξ , t)Λ+ΛGx(x,ξ , t)

)
η(ξ , t)dξ

+(G(x,x, t)Λ−ΛG(x,x, t))η(x, t)

+G(x,1, t)Λ(α(1, t)−η(1, t)) (37)
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Fig. 2. Characteristic lines of gi j for j > i.

which in view of (34) and α(1, t) =η(1, t) verifies (18) (with
β ≡ 0). For the boundary condition, we have

η(0, t) =q̃(t)v(0, t)+ d̃(t)−
∫ 1

0
G(0,ξ , t)η(ξ , t)dξ

+
∫ 1

0
H(ξ , t)

(
η(ξ , t)+

∫ 1

ξ
G(ξ ,s, t)η(s, t)ds

)
dξ

=
∫ 1

0

(
H(ξ , t)−G(0,ξ , t) +

∫ ξ

0
H(s, t)G(s,ξ , t)ds

)

×η(ξ , t)dξ + q̃(t)v(0, t)+ d̃(t). (38)

Defining H̄ as in (36), which due to (34c) is strictly lower
triangular, yields (35b).

The system (34) is a set of Riemann invariants parame-
terized by (ξ , t) with characteristic lines (λiλ−1

j s,ξ + s, t +
λ−1

j s) originating from the (0,ξ , t)-boundary for λiξ−λ jx≥
0 . See Figure 2. Since (34c) is causal for all ξ ∈ [0,1] in
the sense that gi j(0,ξ , t) is uniquely specified by hi j(ξ , t),
hik = (s, t) and gk j(0,s, t−λ−1

j ) for s ∈ [0,ξ ),k = 1, ..., j, it
follows that there exist a unique solution gi j(0,ξ , t) to (34c),
which in turn implies the existence of a unique solution
gi j(x,ξ , t) to (34) for all bounded hi j. Since gi j(0,ξ , t) can
be upper bounded in terms of hi j, gi j(x,ξ , t) is bounded.

D. Adaptive law and stability of estimation error

Theorem 1: Consider the system (1) and observer (10).
Let q̃i(t) = qi− q̂i(t), d̃i(t) = d− d̂i(t) and ψ̃i(t) := ψi(t)−
q̂i(t)φ(t)+ d̂i(t). If

˙̂qi =γqi

ψ̃i(t)φ(t)
2+φ 2(t)

, ˙̂di = γdi

ψ̃i(t)
2+φ 2(t)

(39)

for t ≥ tF and ˙̂qi =
˙̂d = 0 otherwise, where γqi ,γdi > 0 are the

adaptation gains, then

q̂i, d̂i ∈L∞, ˙̂qi,
˙̂di ∈L∞∩L2 (40)

and
(ũ(x, ·), ṽ(x, ·)) ∈L∞. (41)

If in addition v(0, t) is bounded for all t ≥ 0, then

||ũ||, ||ṽ|| → 0. (42)

Lastly, if the persistence of excitation condition

c1I2×2 ≥
1
T

∫ t+T

t
[φ(τ),1]T [φ(τ),1]dτ ≥ c2I2×2 (43)

is satisfied for some constants c1,c2,T > 0, the parameter
estimates q̂i and d̂i converge exponentially to their true values
qi and di.

Proof: Consider the parametric model (22) in Lemma 2.
The properties (40) of q̂ and d̂ follow from [26, Theorem
4.3.2], along with the fact that ψ̃i(2+φ 2)−1 ∈L2∩L∞. Let

Θ̃i(t) =:
[
q̃i(t), d̃i(t)

]T (44)

Φi(t) =:
1√

1+φ 2(t)
[φ(t),1]T . (45)

so that ψ̃i(t)(2+φ 2(t))−1 = ΦT
i (t)Θ̃i(t). We have

ΦT
i (t)Θ̃i(t) = ΦT

i (t)
(∫ t

t−λ−1

˙̃Θi(τ)dτ + Θ̃i(t−λ−1)

)
(46)

which after rearranging and squaring both sides give the
inequality

(ΦT
i (t)Θ̃i(t−λ−1))2

≤ 2(ΦT
i (t)Θ̃i(t))2 +2

(
ΦT

i (t)
∫ t

t−λ−1

˙̃Θi(τ)dτ
)2

≤ 2(ΦT
i (t)Θ̃i(t))2 + c

∫ t

t−λ−1
˙̃q2
i (τ)+

˙̃d2
i (τ)dτ (47)

for some constant c > 0. As already stated, the first term is
integrable. For the second term, we have by changing the
order of integration

lim
T→∞

∫ T

λ−1

∫ t

t−λ−1
˙̃q2
i (τ)dτdt

= lim
T→∞

∫ λ−1

0

∫ τ+λ−1

λ−1
dtλ ˙̃q2

i (τ)dτ

+
∫ T−λ−1

λ−1

∫ τ+λ−1

τ
dtλ ˙̃q2

i (τ)dτ

+
∫ T

T−λ−1

∫ T

τ
dtλ ˙̃q2

i (τ)dτ (48)

Since all the inner integrals evaluate to λ−1 or less,

lim
T→∞

∫ T

λ−1

∫ t

t−λ−1
˙̃q2
i (τ)dτdt ≤ lim

T→∞
λ−1

∫ T

λ−1
˙̃q2
i (τ)dτ (49)

which by (40) is bounded. The term involving ˙̃di can simi-
larly be shown to be bounded and integrable, showing that
the left hand side of (47) is bounded and integrable. That is

πi :=
q̃iv(0, ·)+ d̃i√

2+ v2(0, ·)
∈L2∩L∞. (50)

We construct the Lyapunov function candidate

V (t) =
∫ 1

0
e−xηT (x, t)Πη(x, t)dx (51)

where Π is a positive definite diagonal matrix. Differentiating
(51) with respect to time inserting the system dynamics (35)
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and integrating by parts give the upper bound

V̇ (t)≤−
∫ 1

0
ηT (x, t)

[
Πλ1− H̄T (x, t)ΠH̄(x, t)λn

]
η(x, t)dx

− c1ηT (1, t)η(1, t)+ c2πT (t)π(t). (52)

where π = {πi}1≤i≤n. Since H̄(x, t) is strictly lower trian-
gular and by (40) bounded for all t ≥ 0, it is possible to
(recursively, see e.g. [27, Appendix B.2.]) select Π such that
Πλ1− H̄T (x, t)ΠH̄(x, t)λn � 0 yielding

V̇ (t)≤− c3V1(t)− c1ηT (1, t)η(1, t)

+ c2πT (t)π(t) (53)

for some constants c1,c2,c3 > 0. The bound (53) is of the
form considered [28, Lemma 3] yielding V → 0 which in
turn implies ||η || → 0. Invertibility of the transformations
(13) and (33) and boundedness of all kernels finally give
(42).

III. CONCLUDING REMARKS

We have designed an adaptive observer estimating bound-
ary parameters and distributed states in an n + 1 linear
hyperbolic system using measurements on the boundary
opposite the uncertainty. Boundedness of state estimates are
proved. The state and parameter estimates are shown to
converge to their true value assuming bounded system states
and persistence of excitation, respectively. The observer can
be applied to a multiphase fluid flow system in drilling to
estimate distributed flow and pressure profiles and reservoir
properties. The drift-flux model mentioned in Section I-B is
quasi-linear and linearization is only a valid simplification
for limited variations around an equilibrium profile. This is
violated for kick and loss scenarios, but may be fine for
underbalanced drilling operations. An interesting option to
pursue in applications, is to allow the non-linear terms in
the observer even though output injections are designed for
the linearization.
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2.4 Comments, flaws, limitations and further work

2.4 Comments, flaws, limitations and further work
The swapping filters introduced in [67] are unnecessary. The states can be estimated
in finite time using a clever restatement of the system and observer boundary
condition. This is done in [68] in Chapter 4. The original bilinear boundary
condition is still used when designing the adaptive laws, however.

In [61], it is suggested that the drift-flux model is linearized around a given
operating profile and thereby in the form of the linear, n + 1, homo-directional,
hyperbolic PDE considered in the paper. The validity of this linearized drift-
flux model is questionable. As discussed in the last section of the paper, the
linearized drift-flux model is certainly not sufficiently accurate to be used in a
gas-kick scenario where the flow regime is fast changing. Even in under-balanced
drilling where the flow regimes are more stable, any linearization must be carried
out with care, and the boundaries of the operating envelope of the model must be
investigated. If too narrow, the model might be useless in some scenarios.
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CHAPTER 3
Fault estimation & localization using distributed

sensing

3.1 Introduction
In the first paper [58], the annulus flow dynamics are modeled by the general
single-phase model (1.16) with source terms (1.17). The pressure in the annulus is
assumed measured using along-string pressure measurements and wired drill pipe.
The dissipative structure of source terms and boundary conditions are utilized in an
observer estimating the distributed flow in the annulus. In addition, the momentum
balance source terms are modeled by a set of unknown parameters which can be
used to model various drilling faults. The unknown parameters are estimated by a
set of adaptive laws.

In the second paper [60], the method from [58], developed for single-phase 2×2
systems, is extended to general hetero-directional hyperbolic systems with general
boundary structures.

In the third paper [64], the method from [58] is extended to allow parametric
uncertainties also in the mass balance.

In the final fourth paper [63], the theoretical observer designs from [58, 60, 64]
are applied to a drilling system and used to estimate a set of drilling faults.
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2×2 semi-linear hyperbolic systems using dis-
tributed sensing
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Observer Design for a Class of Semi-linear Hyperbolic PDEs with
Distributed Sensing and Parametric Uncertainties

Haavard Holta and Ole Morten Aamo

Abstract—We study a class of heterodirectional semi-linear
hyperbolic PDEs where the distributed state vector is partially
measured. An observer estimating the unmeasured part of the
state vector is designed. The design is, for instance, applicable
to multi-phase one-dimensional fluid models where the pressure
is measured, but the distributed flow and phase-concentrations
are not. Furthermore, the observer is extended to systems
with parametric uncertainties appearing in the dynamics of the
unmeasured part of the state. While required to be linear in the
uncertain parameter, the uncertain term may be nonlinear in the
state, even in the unmeasured part of the state. Terms of this type
appear often in applications, and cover for instance viscous drag
in fluid flow systems. A noteworthy property of the design is that
convergence of the state estimate is achieved without requiring
persistent excitation. Two example applications are presented and
the design is illustrated in a simulation.

I. INTRODUCTION

A. Motivation

Hyperbolic PDE systems are used to model various physical
systems ranging from fluid flows in pipes, heat exchangers
and electrical transmission lines to road traffic models (see
[7] for an overview). In this paper, we consider a class
of hyperbolic PDEs termed systems of semi-linear balance
laws. They allow the source terms, which model in-domain
production or consumption of the balanced quantities, to be
nonlinear. Our main motivation for studying such systems
comes from an application in oil and gas drilling, where the
balanced quantities are mass and momentum of drilling mud,
oil, gas, water, etc. inside the well bore-hole. Before casings
are inserted into the bore-hole, the bottom section is open
to the surrounding formations. Depending on the pressure in
the well relative to the formation pressure, drilling fluids and
formation fluids like oil, gas or water might flow either way,
representing either a production or consumption of mass and
momentum in the system modeling flow inside the bore-hole. A
sufficiently accurate model capturing this relationship between
well and formation pressure and resulting mass and momentum
production or consumption can be very complex and nonlinear.
Furthermore, even if the structure of the relationship is known,
the exact parameters for a specific well might be unknown
and even varying with operating conditions. For this reason
we also study systems with linearly parametrized (non-linear)
source terms where the parameters are assumed unknown.

The problem we study is state and parameter estimation. This
is a challenging problem even for linear systems without para-

The authors are with the Department of Engineering Cybernetics. Norwegian
University of Science and Technology, Trondheim N-7491, Norway (e-mail:
haavard.holta@ntnu.no; aamo@ntnu.no).

Economic support from The Research Council of Norway and Equinor ASA
through project no. 255348/E30 Sensors and models for improved kick/loss
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metric uncertainties. Observer design for hyperbolic systems
are often based on the backstepping approach using boundary
sensing. To tackle the semi-linear problem, we go one step
further and assume that some in-domain measurements are
available. That is, a part of the state is measured in the entire
domain, while the rest of the state remains unmeasured. In the
drilling application, so-called wired pipe technology allows a
finite number of pressure sensors to be placed along the drill-
string, providing in an approximate manner measurement of
the pressure distribution in the well. The other part of the state
vector, which is related to flow and concentration of each phase
(oil,gas,water,mud etc.), is unmeasured, but observable. The
theoretical results obtained in this paper have been applied in
a simulation study in [15], demonstrating detection capability
of various important fault scenarios in oil well drilling by
means of state and parameter estimation exploiting wired pipe
technology. In what follows, the class of systems considered
contains the drilling application, but is more general with an
arbitrary number of states convecting in each direction through
the domain.

B. Notation

A function u : [0,1]→ Rn is said to be in L2([0,1],Rn) if
√∫ 1

0
uT (x)u(x)dx < ∞. (1)

For u1,u2 ∈ L2([0,1],Rn) the inner product is

〈u1,u2〉 :=
∫ 1

0
uT

1 (x)u2(x)dx (2)

with the associated norm ||u||=
√
〈u,u〉. Furthermore, for a

function u : [0,1]×R+→Rn, we denote by u(·, t) the function
[0,1]→ Rn obtained from u at t, and by u(x, ·) the function
R+ → Rn obtained from u at x. For convenience, we will
sometimes omit the arguments. In particular, we will sometimes
write ||u|| for the scalar-valued function of time ||u(·, t)||, and
φ(y,z) instead of φ(y(x, t),z(x, t),x).

For f : [0,∞)→ R, we use the spaces

f ∈Lp↔
(∫ ∞

0
| f (t)|pdt

) 1
p

< ∞ (3)

for p≥ 1 with the particular case f ∈L∞↔ supt≥0 | f (t)|< ∞.
The notation f → 0 means that f converges to zero as time

goes to infinity, i.e. lim
t→∞

f (t) = 0.
The partial derivative of a function is denoted with a

subscript, for example ut(x, t) = ∂
∂ t u(x, t). For a function of

one variable, the derivative is denoted using a prime, that is
f ′(x) = d

dx f (x). The dot notation is reserved for the derivative
of functions of time only; ḟ (t) = d

dt f (t).
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An operator Ξ : L2([0,1],Rn)→ R is called Fréchet differ-
entiable at u ∈ L2([0,1],Rn) if there exists a bounded linear
operator DuΞ : L2([0,1],Rn)→ R such that

lim
h→0

|Ξ[u+h]−Ξ[u]−DuΞ[h]|
||h|| = 0 (4)

for h ∈ L2([0,1],Rn). If there exist bounded
linear operators Da

(a,b)Ξ : L2([0,1],Rm)→ R and
Db

(a,b)Ξ : L2([0,1],Rn−m)→ R such that

lim
h1→0

|Ξ[(a+h1,b)]−Ξ[(a,b)]−Da
(a,b)Ξ[h1]|

||h1||
= 0 (5a)

lim
h2→0

|Ξ[(a,b+h2)]−Ξ[(a,b)]−Db
(a,b)Ξ[h2]|

||h2||
= 0 (5b)

for a,h1 ∈ L2([0,1],Rm) and b,h2 ∈ L2([0,1],Rn−m) we call
Da

(a,b)Ξ and Db
(a,b)Ξ the Fréchet partial derivatives of Ξ at

(a,b) with respect to a and b respectively. If the operators
exist, they are unique.

C. Problem statement

We study a class of n× n semi-linear heterodirectional
hyperbolic systems where an m-dimensional part of the state
vector is measured. Consider

yt(x, t)+Ayx(x, t)+Bzx(x, t) = f (y(x, t),x) (6a)
zt(x, t)+Cyx(x, t)+Dzx(x, t) =g(y(x, t),x)

+φ(y(x, t),z(x, t),x)θ (6b)

where y : [0,1]×R+→ Rm is the measured part of the state
and z : [0,1]×R+→Rn−m is the unmeasured part of the state.
The known functions f : Rm× [0,1]→ Rm, g : Rm× [0,1]→
Rn−m and φ : Rm×Rn−m× [0,1]→R(m−n)×q together with the
potentially uncertain parameter θ ∈Rq define the source terms,
and may be nonlinear. The system coefficient matrix

[
A B
C D

]
(7)

is nonsingular with n real, distinct, eigenvalues so that (6)
is strictly hyperbolic with non-zero characteristic speeds.
Although the method can be extended to spatially varying
coefficient matrices, for simplicity the method is derived
assuming constant matrices.

To estimate the unmeasured state z based on measurements
y we rely on the following observability condition.

Assumption 1. The pair (D,B) is observable.

A complicating factor is that the uncertainty
φ((y(x, t),z(x, t)),x)θ appears in the unmeasured dynamics
(6b) and depends on the unmeasured state z. Dealing with
uncertainties appearing in this way is difficult even for the
ODE case [22], [23]. The regressor φ and source terms f and
g are known functions and satisfy the following assumption.

Assumption 2. For all (y,z) ∈ L2([0,1],Rn), we have

( f (y, ·),g(y, ·)) ∈ L2([0,1],Rn), (8)

φ((y,z), ·) ∈ L2([0,1],R(n−m)×q) (9)

and

||(y,z)|| ∈L∞⇒ || f (y, ·)||, ||g(y, ·))||, ||φ((y,z), ·)|| ∈L∞.
(10)

Furthermore, in the analysis that follows we will require that
the uncertain term φ(y,z,x)θ satisfy a monotone damping
property specified by the sector condition

(z1− z2)
T Q(x)(φ(y,z1,x)−φ(y,z2,x))θ ≤ 0 (11)

for all y ∈ Rm, z1,z2 ∈ Rn−m and x ∈ [0,1], where Q(x) is a
symmetric positive definite matrix (Q(x)> 0 for all x ∈ [0,1])
that will be further characterized in the next section.

Remark 1. For the special case when Q(x) is diagonal, and the
ith row of φ(y,z,x), denoted φi, depends only on the ith element
of z, denoted zi, then the sector conditions are separated and
can be written element-wise as

φi(y,z1,i,x)θ −φi(y,z2,i,x)θ ≤ z1,i− z2,i (12)

for any y ∈ Rm, z1,i,z2,i ∈ R, x ∈ [0,1], and i = 1, ...,n−m.
Condition (12) implies that φi(y,zi,x)θ is monotonic in zi, and
is satisfied for a large class of passive elements, for example
resistive loads in transmission lines in terms of electric current
or friction loss in fluid flows in terms of volumetric flow.

The observer design in this paper is valid for a broad range
of boundary conditions and boundary measurements which
will be specified later (Assumption 3). For now we assume
that the associated Cauchy problem for (6) with a given set of
boundary conditions and initial conditions

y(x,0) =:yic(x) (13a)
z(x,0) =:zic(x) (13b)

with (yic,zic)∈ L2([0,1],Rn), has a unique solution (y,z)(·, t)∈
L2([0,1],Rn) for all t ≥ 0.

D. Background and previous work

In recent years, the infinite dimensional backstepping ap-
proach has become a popular method for observer design using
boundary sensing. The method was originally developed for
parabolic PDEs and has been extended to 2×2 and general
m+n linear hyperbolic systems in [27] and [16], respectively.
Local results for quasilinear systems using the same approach
was presented in [26], [17]. A global result was presented in
[24] for semi-linear systems and for quasi-linear systems in
[25], both using a method where the solution are predicted
along each characteristic. Adaptive estimation and control of
linear hyperbolic systems with uncertain boundary parameters
are extensively studied in [3], with the most relevant result
for state and boundary parameter estimation first presented
in [4] for n+ 1 systems and [5] for m+ n linear systems.
Estimation of uncertain source terms are also studied in [3],
but these results either require full state measurements [1],
or rely on transformations involving the unknown parameters
into so-called canonical form such that true state estimates
can only be reconstructed if the system is persistently excited
[2], [8]. Adaptive output feedback estimation of semi-linear
systems without relying on PE, seems to be a challenging
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topic. Transformations into canonical forms have also been
used to design observers for non-linear ODEs. All systems
that can be observed using such canonical transformations are
characterized in [20], [21]. Provided the systems satisfies a
uniform observability condition [12], the high-gain approach
can be used to design adaptive observer [9], [13]. The extension
to hyperbolic systems was presented in [18] for systems with
distributed state measurements. Various results using semigroup-
based methods for observer design of hypertbolics systems
with distributed measurements has also been investigated [10].
For systems with non-linear terms satisfying a sector condition,
stability can be proved using a passivity argument without
relying on any dominating input gain [6]. This approach
was used in [22], [23] to design adaptive observers for finite
dimensional systems, and recently for a 2×2 hyperbolic system
in [14].

E. Contribution and paper structure

We extend the result from [14] in several directions. Firstly,
the method is extended to general hetero-directional systems
and the special coefficient matrix in [14] is replaced by a
general observability condition. Secondly, we study more
general source terms all depending on the measured state
y. Thirdly, since measurements might be corrupted by noise,
to which reduced order designs are sensitive, we replace the
reduced order observer in [14] by a full state observer including
filtering of the y-dynamics. Lastly, the boundary conditions
and boundary measurements are generalized.

In Section II, we first consider the non-adaptive state
estimation problem with θ known. Then, in Section III we
study the full adaptive state and parameter estimation problem
assuming uncertain θ . A simulation example is presented in
Section IV.

II. NON-ADAPTIVE STATE ESTIMATION

To estimate the unknown state component z, we utilize
the y-measurements and define a coordinate transformation
(y,z) 7→ P(y,z) of the form

P :=
[

P1 0
P2L P2

]
. (14)

Lemma 1. For any diagonal Λ1 ∈ Rm×m and Λ2 ∈
R(n−m)×(n−m) with distinct entries, and any C̄ ∈ R(n−m)×m,
there exist matrices K1 ∈ Rm×m, K2 ∈ R(n−m)×m, L∈R(n−m)×m

and diag(P1,P2) ∈ Rn×n such that [α,β ]T := P[y,z]T maps
system (6) into

αt +Λ1αx + B̄βx = f̄ (α,x)−K̄1αx (15a)
βt +C̄αx +Λ2βx =ḡ(α,x)+ φ̄((α,β ),x)θ−K̄2αx (15b)
(α(x,0),β (x,0)) =P(yic(x),zic(x)) (15c)

where

K̄1 = P1K1P−1
1 , B̄ = P1BP−1

2 (16a)

K̄2 = P2K2P−1
1 , C̄ = P2(C− (D+LB)L+LA−K2)P1 (16b)

and
[

f̄ (α,x)
ḡ(α,x)

]
=P
[

f (P−1
1 α,x)

g(P−1
1 α,x)

]
(17)

φ̄((α,β ),x) =P2φ(P−1(α,β ),x). (18)

Proof. Pre-multiplying equation (6) by P, inserting [y,z]T =
P−1[α,β ]T and then subtracting [K̄1, K̄2]

T αx from both sides
yield (15)–(18) where
[

Λ1 B̄
C̄ Λ2

]
:= P

[
A B
C D

]
P−1−

[
K̄1 0
K̄2 0

]
=

[
P1(A−BL−K1)P−1

1 P1BP−1
2

P2(C− (D+LB)L+LA−K2)P−1
1 P2(D+LB)P−1

2

]
. (19)

Since (D,B) is observable (Assumption 1), there exists L such
that the eigenvalues of D+LB correspond to the entries in Λ2.
Since the entries in Λ2 are distinct, D+LB is diagonalizable
and P2 exists such that Λ2 = P2(D+LB)P−1

2 . We then select
K1 such that A−BL−K1 has eigenvalues corresponding to the
entries in Λ1. Since the entries in Λ1 are distinct, A−BL−K1
is diagonalizable and P1 exists such that Λ1 = P1(A−BL−
K1)P−1

1 .

The significance of (15) is that the eigenvalues of Λ2 for the
β -subsystem (15b) can be specified as desired. To shape the
system’s dependence on α , we rely on the measurements and
design an observer with output injection terms in αx = P2yx
and scaled by the output injection gains (K1,K2). We suggest
the following observer for the (α,β )-system:

α̂t +Λ1α̂x + B̄β̂x = f̄ (α,x)−K̄1αx (20a)

β̂t +C̄α̂x +Λ2β̂x =ḡ(α,x)+ φ̄((α, β̂ ),x)θ̂−K̄2αx (20b)
α̂(x,0) =α̂ic(x) (20c)

β̂ (x,0) =β̂ic(x), (20d)

(ŷ(x, t), ẑ(x, t)) =P−1(α̂(x, t), β̂ (x, t)) (20e)

where (α̂ic, β̂ic) ∈ L2([0,1],Rn) and θ̂(t) ∈ Rq is the parameter
estimate. Remark that θ̂ = θ for the non-adaptive case studied
in this section. But since the observer equations (20) is being
reused in the next section where θ is assumed unknown, the
notation θ̂ is used.

The estimation error α̃ := α− α̂ and β̃ := β − β̂ satisfy

α̃t +Λ1α̃x + B̄β̃x =0 (21a)

β̃t +C̄α̃x +Λ2β̃x =φ̃(α,β , β̃ ,x)θ + φ̄((α, β̂ ),x)θ̃ (21b)
α̃(x,0) =α̃ic(x) := αic(x)− α̂ic(x) (21c)

β̃ (x,0) =β̃ic(x) := βic(x)− β̂ic(x) (21d)

(ỹ(x, t), z̃(x, t)) =P−1(α̃(x, t), β̃ (x, t)). (21e)

where θ̃ = θ − θ̂ and

φ̃(α,β , β̃ ,x) := φ̄((α,β ),x)− φ̄((α,β − β̃ ),x). (22)

where
β̃ T Q̄(x)φ̃(α,β , β̃ ,x)θ ≤ 0 (23)

as can be seen from Assumption 2 with y = P−1
1 α ,

z1 = −LP−1
1 α + P−1

2 β , z2 = −LP−1
1 α + P−1

2 β̂ and Q̄(x) =
P−T

2 Q(x)P−1
2 .
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Remark 2. Even though α(·, t) is measured, we include an
observer for the α-dynamics and achieve some robustness
with respect to measurement noise and modeling errors. The
injection gains add some degrees of freedom in that K1
specifies the convergence rate of α̃ and K2 can be used to
achieve anywhere between zero and full cancellation of the
C̄α̃x coupling term. Note also that for each t ≥ 0, the signal
α(x, t), which is a linear combination of y(x, t), is causal for
all x ∈ [0,1] and delay-free filtering techniques can be applied
to suppress noise and estimate αx(x, t) for all x ∈ [0,1].

To characterize the boundaries, let

Π1 :=
[

E+
1

E−1

]
∈ Rm×m, Π2 :=

[
E+

2
E−2

]
∈ R(n−m)×(n−m) (24)

be permutation matrices such that

E+
1 Λ1(E+

1 )T � 0, E−1 Λ1(E−1 )T ≺ 0 (25)

and
E+

2 Λ2(E+
2 )T � 0, E−2 Λ2(E−2 )T ≺ 0. (26)

As mentioned in the introduction, the observer design in
this paper is valid for a broad range of boundary conditions
and boundary measurements. We will thus not state explicit
boundary conditions for either the system (15) nor the observer
system (20) directly. Instead, to proceed with the stability
analysis of (21), for the β̃ dynamics, we assume the following.

Assumption 3. The boundary condition is dissipative in the
sense that

β̃ T (x, t)Q̄(x)Λ2β̃ (x, t)
∣∣∣
x=1

x=0
≤ 0 (27)

for all t ≥ 0. Furhteremore, the state estimation error system
(21) with the selected boundary conditions, is well-posed.

For the α̃-subsystem, since y(x, t) is measured for all x ∈
[0,1] we have the additional freedom of specifying zero bound-
ary conditions by choosing E+

1 P−1
1 ŷ(0, t) = E+

1 P−1
1 y(0, t) and

E−1 P−1
1 ŷ(1, t) = E−1 P−1

1 y(1, t). We can thus select E+
1 α̂(0, t)

and E−1 α̂(1, t) such that

E+
1 α̃(0, t) = E−1 α̃(1, t) = 0. (28)

Before proceeding with the stability analysis, we provide
two examples of boundary conditions satisfying Assumption 3.

Example 1. For each element βi in β , measurements are
available at least on one of the boundaries. That is, for i =
1, ...,n, βi(0, t) and/or βi(1, t) are measured. For each diagonal
element λ2,i in Λ2, we select λ2,i > 0 if βi(0, t) is measured and
λ2,i < 0 if βi(1, t) is measured. A well posed estimation error
system is then constructed by selecting boundary conditions
for the observer as E+

2 β̂ (0, t) = E+
2 β (0, t) and E−2 β̂ (1, t) =

E−2 β (1, t), so that Assumption 3 holds trivially with

E+
2 β̃ (0, t) = E−2 β̃ (1, t) = 0 (29)

.

Example 2. Suppose the boundary functions are linear and
have the form

[
E+

2 β̃ (0, t)
E−2 β̃ (1, t)

]
= H

[
E−2 β̃ (0, t)
E+

2 β̃ (1, t)

]
(30)

with H ∈ R(n−m)×(n−m) satisfying

inf
{
||∆H∆−1||2, ∆ ∈D+

n−m
}
< 1 (31)

where D+
n denotes the set of diagonal strictly positive matrices

in Rn×n. Then by [11, Theorem 2.3], Assumption 3 is satisfied.

To study the stability of the state estimation error system
(21), consider the Lyapunov function candidate

V0 =
1
2

∫ 1

0
α̃TW1(x)α̃dx+

∫ 1

0
β̃ TW2(x)β̃dx (32)

where Wi(x) are positive definite diagonal matrices for all x ∈
[0,1] and such that (23) holds with Q̄(x) =W2(x). In addition,
we impose the restriction

W ′i (x)=− c1Wi(x)Λ−1
i , i, j = 1,2 (33)

for all x ∈ [0,1] for some c1 > 0. Differentiating (32) with
respect to time gives

V̇0 =−
∫ 1

0
α̃TW1(x)(Λ1α̃x + B̄β̃x)dx

−
∫ 1

0
(Λ1α̃x + B̄β̃x)

TW1(x)α̃dx

−
∫ 1

0
β̃ TW2(x)(Λ2β̃x +C̄α̃x)dx

−
∫ 1

0
(Λ2β̃x +C̄α̃x)

TW2(x)β̃dx

+
∫ 1

0
β̃ TW2(x)φ̃(α,β , β̃ ,x)θdx

+
∫ 1

0
β̃ TW2(x)φ̄((α, β̂ ),x)θ̃dx. (34)

Integrating by parts and using (33) yield

V̇0=

−
[
α̃TW1(x)(Λ1α̃ + B̄β̃ )+ β̃ TW2(x)(Λ2β̃ +C̄α̃)

]x=1

x=0

− c1

∫ 1

0
α̃TW1(x)(α̃ +Λ−1

1 B̄β̃ )+ β̃ TW2(x)(β̃ +Λ−1
2 C̄α̃)dx

−c1

∫ 1

0
(α̃ +Λ−1

1 B̄β̃ )TW1(x)α̃ +(β̃ +Λ−1
2 C̄α̃)TW2(x)β̃dx

+
∫ 1

0
β̃ TW2(x)φ̃(α,β , β̃ ,x)θdx

+
∫ 1

0
β̃ TW2(x)φ̄((α, β̂ ),x)θ̃dx. (35)

The second and third term are quadratic in (α̃, β̃ ) and since
the products Λ−1

1 B̄ and Λ−1
2 C̄ can be made arbitrary small by

selecting sufficiently large Λ1 and Λ2, we have

c1

[
2W1(x) W1Λ−1

1 B̄+C̄T Λ−1
2 W2(x)

W2(x)Λ−1
2 C̄+ B̄T Λ−1

1 W1(x) 2W2(x)

]

− c2diag(W1,W2)� 0. (36)

for sufficiently large Λ1 and Λ2 and some c2 > 0.
The boundary terms, quadratic in (α̃(1, t), β̃ (1, t) and
(α̃(0, t), β̃ (0, t), are rewritten using the definitions (24)
and boundary conditions (28) as a term quadratic in
(E+

1 α̃(1, t),E−1 α̃(0, t)), β̃ (1, t), β̃ (0, t)) with coefficient matrix

G =

[
G11 G12
G21 G22

]
(37)
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G11 =diag(2E+
1 W1(1)Λ1(E+

1 )T ,−2E−1 W1(0)Λ1(E−1 )T ) (38)

G12 =GT
12 = diag(E+

1 (W1(1)B̄+C̄TW2(1)),

−E−1 (W1(0)B̄+C̄TW2(0))) (39)
G22 =diag(2W2(1)Λ2,−2W2(0)Λ2). (40)

By (25) and commutativity of W1 and Λ1, G11 � 0. By
Assumption 3 , commutativity of W2 and Λ2 and since W2(x) is
selected such that (27) holds with W2(x) = Q̄ for all x ∈ [0,1],
G22 � 0. And again, there exist some Λ1 and Λ2 such that
G� 0. Non-positivity of the two quadratic terms along with
property (23) then yield

V̇0 ≤−c2V0 +
∫ 1

0
β̃ TW2(x)φ̄((α, β̂ ),x)θ̃dx. (41)

Summarizing for the non-adaptive case θ̃ = 0 where V̇0 ≤
−c2V0, we obtain the following intermediate result.

Proposition 1. Consider the error dynamics (21) with bound-
ary conditions satisfying Assumption 3 and (28), let θ̃ = 0, and
suppose that there exist Λ1,W1(x) ∈ Rm×m and Λ2,W2(x) ∈
R(n−m)×(m−n) such that:

1) The error dynamics (21) with boundary conditions is
well posed.

2) Λ1 and Λ2 are diagonal with distinct entries and
sufficiently large to satisfy (36).

3) W1(x) and W2(x) are diagonal positive definite and satisfy
(33) for all x ∈ [0,1].

4) Inequality (23) and Assumption 3 hold for all x ∈ [0,1]
with Q̄(x) =W2(x).

Then, the origin of (21) is exponentially stable in the L2-norm,
implying that

||ỹ||, ||z̃|| → 0 (42)

exponentially fast.

Remark 3. If the source terms f and g are functions of the
unknown state z and satisfy the sector condition

[
y1− y2
z1− z2

]T

Q
[

f ((yi,zi),x)|i=2
i=1

g((yi,zi),x)|i=2
i=1 + φ((yi,zi),x)θ |i=2

i=1

]
≤ 0 (43)

we claim that a result, similar to Proposition 1 can be shown
for the non-adaptive case. However, the stability proof would
be tedious, i.e. involving a non-diagonal Lyapunov function, so
to simplify the presentation we omit this extension. In addition,
the extension is non-trivial in the adaptive case studied in the
next section.

III. ADAPTIVE STATE AND PARAMETER ESTIMATION

For the following analysis, we restrict boundary conditions
to be in the form considered in Example 1, that is

Assumption 4.

E+
2 β̃ (0, t) = E−2 β̃ (1, t) = 0. (44)

A. Adaptive law

To make the state estimator robust to parametric uncertainties,
we need a scheme to update the parameter estimate θ̂ . We
augment the Lyapunov function candidate with terms quadratic
in the parameter estimation error and select the adaptive law
using a passivity argument: Let

V =V0 +
1
2

θ̃ T Γ−1θ̃ (45)

where Γ is the adaptation gain.

Lemma 2. Consider the error dynamics (21) with boundary
conditions satisfying Assumption 3 and (28), and the adaptive
law

˙̂θ = Γ
∫ 1

0
φ̄ T ((α, β̂ ),x)W2(x)β̃dx (46)

for any initial estimate θ̂(0) = θ̂0 and diagonal Γ > 0, and
suppose the conditions of Proposition 1 hold. Then,

θ̂ ∈L∞ (47a)
||ỹ||, ||z̃|| ∈L2∩L∞. (47b)

Moreover, if ||(y,z)|| is bounded, then

˙̂θ ∈L2∩L∞ (48a)
||ỹ||, ||z̃|| → 0. (48b)

Proof. Differentiating (45) with respect to time yields

V̇ =V̇0− ˙̂θ T Γ−1θ̃ . (49)

Selecting the adaptive law according to (46) cancels the last
term in (41) and renders the Lyapunov function negative
semidefinite with upper bound

V̇ ≤− cV0 (50)

so that ||α̃||, ||β̃ ||, θ̃ ∈ L∞ follows. Furthermore, from V >
0,V̇ ≤ 0 we have that lim

t→∞
V (t) =V (∞) exists and therefore

c
∫ ∞

0
V0(t)dt ≤V (0)−V (∞) (51)

which implies ||α̃||, ||β̃ || ∈ L2. From (46), we
have that | ˙̂θ | ≤ ||Γ||||W2||||β̃ ||||φ̄(α, β̂ , ·)|| ≤
||Γ||||W2||||β̃ ||||R2P||||φ((y, ẑ), ·)||. So, if in addition
||(y,z)|| ∈ L∞, ||ẑ|| ≤ ||z|| + ||z̃|| is bounded which in
turn implies boundedness of ||φ̄ || by Assumption 2 and (48a)
follows. Lastly, from (49) and (50) we get

V̇0 ≤−cV0 +
˙̂θ T Γ−1θ̃ (52)

which shows that V̇0(t) is upper bounded by some constant. By
Lemma 6 (see appendix) V0→ 0 and in turn ||α̃||, ||β̃ || → 0 or
equivalently (48b).

It is clear that the adaptive law cannot be implemented in
the form (46), since β̃ is not available. To solve that problem,
we borrow an idea from [22], [23] and design an alternative
way of computing (46) that relies only on measured quantities.
For each column vector φ̄i in φ̄ , parameter θ̂i in θ̂ and diagonal
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element γi in Γ, i= 1, ...,q, the adaptive law (46) can be written
in the form

˙̃θi =− ˙̂θi =− γi〈W2φ̄i((α, β̂ ), ·), β̃ 〉 (53)

where the first term in the inner product can be separated, by
applying (24), as

W2(x)φ̄i((α, β̂ ),x) = ΠT
2 Π2W2(x)φ̄i((α, β̂ ),x)

= ΠT
2

[
E+

2 W2(x)φ̄i((α, β̂ ),x)
E−2 W2(x)φ̄i((α, β̂ ),x)

]
. (54)

To ease the notation, for u ∈ L2([0,1],Rn) let

Φi[u](x) := ΠT
2

[
−∫ 1

x E+
2 W2(ξ )φ̄i(u,ξ )dξ∫ x

0 E−2 W2(ξ )φ̄i(u,ξ )dξ

]
(55)

so that by differentiating (55) evaluated at u = (α, β̂ ), (53) can
be written as

˙̃θi =−γi〈(Φi[(α, β̂ )])′, β̃ 〉. (56)

Observing that

β̃ T (0)Φi[(α, β̂ )](0)

=

[
0

E−2 β̃ (0, t)

]T [−∫ 1
0 E+

2 W2(ξ )φ̄i((α, β̂ ),ξ )dξ
0

]

=0 (57)

and similarly β̃ T (1)Φi[(α, β̂ )](1) = 0, (56) can be integrated
by parts to yield

˙̃θi = γi〈Φi[(α, β̂ )], β̃x〉. (58)

The above steps show that the original representation of
the adaptive law (46), dependent on β̃ , is equivalent to the
representation (58), dependent on β̃x. The strategy is now
to utilize the structure of the estimation error system (21a),
where α is measured, and design a set of filters to find yet an
equivalent representation of the adaptive law only dependent
on known and measured signals.

Let the signal σi : R+→ R be defined by

σi := θi +Ξi[(α, β̂ )] (59)

where Ξi is an operator to be specified. Based on (59), we set

θ̂i = σ̂i−Ξi[(α, β̂ )] (60)

and where σ̂i : R+ → R is a dynamic filter to be specified.
We seek the operator Ξ and update law for σ̂i, such that the
dynamics of θ̂i defined by (60) is identical to (46), so that
properties (47)–(48) follow.

B. Filter and operator design

Lemma 3. Suppose there exist some functionals ηα
i :

L2([0,1],Rn)→Rm and η β̂
i : L2([0,1],Rn)→Rn−m satisfying

(P1BP−1
2 )T ηα

i [(α, β̂ )] =− γiΦi[(α, β̂ )] (61a)

(P2LBP−1
2 )T η β̂

i [(α, β̂ )] =γiΦi[(α, β̂ )] (61b)

for all x∈ [0,1], exists and let the operator Ξi : L2([0,1],Rn)→
R be defined by

Da
(a,b)Ξi[h1] = 〈ηa

i [(a,b)],h1〉 (62a)

Db
(a,b)Ξi[h2] = 〈ηb

i [(a,b)],h2〉 (62b)

where a,h1 ∈ L2([0,1],Rm) and b,h2 ∈ L2([0,1],Rn−m). Then,
θ̂i calculated using (60) where σ̂i is defined by

˙̂σi =Dα
(α,β̂ )Ξi[−(Λ1+K̄1)αx + f̄ (α, ·)]

+D β̂
(α,β̂ )

Ξi[−P2DP−1
2 β̂x +Σ] (63a)

Σ(x) =ḡ(α,x)+ φ̄((α, β̂ ),x)θ̂−C̄α̂x− K̄2αx (63b)

σ̂i(0) =θ̂i,0 +Ξ[(αic, β̂ic] (63c)

and β̂ is generated from (20), satisfies (46).

Proof. Differentiating (59) with respect to time by introducing
the Fréchet derivatives of Ξi gives

σ̇i =
d
dt

Ξi[(α, β̂ )] = Dα
(α,β̂ )Ξi[αt ]+D β̂

(α,β̂ )
Ξi[β̂t ]. (64)

Inserting the dynamics (15a) and (20b) and using (63b), we
get

σ̇i =
d
dt

Ξi[(α, β̂ )] = Dα
(α,β̂ )Ξi[−(Λ1+K̄1)αx− B̄βx + f̄ (α, ·)]

+D β̂
(α,β̂ )

Ξi[−Λ2β̂x +Σ]. (65)

From (59) and (60), we see that the error σ̃i = σi− σ̂i satisfies
θ̃i = σ̃i, so that differentiating with respect to time and inserting
the dynamics (63a) and (65), and using linearity of Fréchet
derivatives, we get

˙̃θi =Dα
(α,β̂ )Ξi[−(Λ1+K̄1)αx− B̄βx + f̄ (α, ·)]
−Dα

(α,β̂ )Ξi[−(Λ1+K̄1)αx + f̄ (α, ·)]

+D β̂
(α,β̂ )

Ξi[−Λ2β̂x +Σ]−D β̂
(α,β̂ )

Ξi[−P2DP−1
2 β̂x +Σ]

=Dα
(α,β̂ )Ξi[−P1BP−1

2 βx]

+D β̂
(α,β̂ )

Ξi[−P2LBP−1
2 β̂x] (66)

where we have used that B̄=P1BP−1
2 and Λ2 =P2(D+LB)P−1

2 .
Using (62), we have

˙̃θi =〈ηα
i [(α, β̂ )],−P1BP−1

2 βx〉
+ 〈η β̂

i [(α, β̂ )],−P2LBP−1
2 β̂x〉 (67)

=−〈(P1BP−1
2 )T ηα

i [(α, β̂ )],βx〉
−〈(P2LBP−1

2 )T η β̂
i [(α, β̂ )], β̂x〉 (68)

Therefore, by (61) we get

˙̃θi =γi〈Φi[(α, β̂ )],βx〉− γi〈Φi[(α, β̂ )], β̂x〉
=γi〈Φi[(α, β̂ )], β̃x〉 (69)

which is (58).

Remark 4. Let

ηα
i [(α, β̂ )] =−(P2LP−1

1 )T η β̂
i [(α, β̂ )]. (70)
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The condition (61) is satisfied if

(P2LBP−1
2 )T η β̂

i [(α, β̂ )] = γiΦi[(α, β̂ )] (71)

which, by the Rouché-Capelli theorem, has a solution
η β̂

i [(α, β̂ )] if and only if the rank of (LB) is equal to rank of the
augmented matrix

[
(P2LBP−1

2 )T Φi[(α, β̂ )]
]
. So if Φi[(α, β̂ )]

is full rank, 2m≥ n is a necessary condition.

C. Evaluating the operator Ξ
Let (a0,b0) and (a1,b1) be arbitrary functions in

L2([0,1];Rn). We seek a method to calculate the incremental
value Ξi[(a1,b1)]−Ξi[(a0,b0)]. To that end, let Sa : [0,1]→
L2([0,1];Rm) and Sb : [0,1]→ L2([0,1];Rn−m) be given by

Sa(γ) =a0 + γ(a1−a0) (72a)
Sb(γ) =b0 + γ(b1−b0). (72b)

Differentiating Ξi at S(γ) := (Sa(γ),Sb(γ)) with respect to γ
and using (62) yield

d
dγ

Ξi[S(γ)]

=D
Sa(γ)
(Sa(γ),Sb(γ))

Ξi[S′a(γ)]+D
Sb(γ)
(Sa(γ),Sb(γ))

Ξi[S′b(γ)]

=〈ηa
i [S(γ)],S

′
a(γ)〉+ 〈ηb

i [S(γ)],S
′
b(γ)〉

=〈ηa
i [S(γ)],a1−a0〉+ 〈ηb

i [S(γ)],b1−b0〉. (73)

Integrating from γ = 0 to γ = 1 gives

Ξi[S(1)] = Ξi[S(0)]

+
∫ 1

0

(
〈ηa

i [S(γ)],a1−a0〉+ 〈ηb
i [S(γ)],b1−b0〉

)
dγ. (74)

Finally, since S(1) = (a1,b1) and S(0) = (a0,b0), we obtain

Ξi[(a1,b1)] = Ξi[(a0,b0)]

+
∫ 1

0

〈
ηa

i

[(
a0 + γ(a1−a0)
b0 + γ(b1−b0)

)]
,a1−a0

〉
dγ

+
∫ 1

0

〈
ηb

i

[(
a0 + γ(a1−a0)
b0 + γ(b1−b0)

)]
,b1−b0

〉
dγ. (75)

The condition (62) in Lemma 3 specifies the operator Ξ
uniquely only up to a constant. Therefore, we may select Ξ
such that Ξ[(α(·,0), β̂ (·,0))] = 0. Choosing (a1(x),b1(x))) =
(α(x, t), β̂ (x, t)) and (a0(x),b0(x)) = (α(x,0), β̂ (x,0)) yield an
expression for the operator evaluated at the current state.

Lemma 4. Suppose the conditions of Lemma 3 hold. Then,
the operator Ξi can be evaluated at (α(·, t), β̂ (·, t)) by

Ξi[(α(·, t), β̂ (·, t))]

=
∫ 1

0

〈
ηα

i

[(
α(·,0)+ γ(α(·, t)−α(·,0))
β̂ (·,0)+ γ(β̂ (·, t)− β̂ (·,0))

)]
,

α(·, t)−α(·,0)〉dγ

+
∫ 1

0

〈
η β̂

i

[(
α(·,0)+ γ(α(·, t)−α(·,0))
β̂ (·,0)+ γ(β̂ (·, t)− β̂ (·,0))

)]
,

β̂ (·, t)− β̂ (·,0)
〉

dγ. (76)

The design procedure is summarized in Table I and Figure 1.

TABLE I: Overview of adaptive observer design.

System yt +Ayx +Bzx = f (y,x)

zt +Cyx +Dzx =g(y,x)+φ(y,z)θ

Observer

α̂t +Λ1α̂x + B̄β̂x = f̄ (α,x)− K̄1αx

β̂t +C̄α̂x +Λ2β̂x =ḡ(α,x)+ φ̄((α, β̂ ),x)θ̂ − K̄2αx

(ŷ, ẑ) =P−1(α̂, β̂ )

Adaptive
law

(α, β̂ ) =P(y, ẑ)

θ̂i =σ̂i−Ξi[(α, β̂ )]
˙̂σi =

〈
ηα

i [(α, β̂ )],−(Λ1+K̄1)αx + f̄ (α, ·)
〉

+
〈

η β̂
i [(α, β̂ )],−P2DP−1

2 β̂x +Σ
〉

Σ(x) =ḡ(α,x)+ φ̄((α, β̂ ),x)θ̂−C̄α̂x− K̄2αx

σ̂i(0) =θ̂0 +Ξ[(αic, β̂ic]

Operator
evaluation

Ξi[(α(·, t), β̂ (·, t))]

=
∫ 1

0

〈
ηα

i

[(
α(·,0)+ γ(α(·, t)−α(·,0))
β̂ (·,0)+ γ(β̂ (·, t)− β̂ (·,0))

)]
,

α(·, t)−α(·,0)〉dγ

+
∫ 1

0

〈
η β̂

i

[(
α(·,0)+ γ(α(·, t)−α(·,0))
β̂ (·,0)+ γ(β̂ (·, t)− β̂ (·,0))

)]
,

β̂ (·, t)− β̂ (·,0)
〉

dγ.

where (ηα
i ,η β̂

i ) solves

(P1BP−1
2 )T ηα

i [(α, β̂ )] =−γiΦi[(α, β̂ )]

(P2LBP−1
2 )T η β̂

i [(α, β̂ )] = γiΦi[(α, β̂ )]

Observer (20)
α̂t +Λ1α̂x + B̄β̂x = f̄ (α)− K̄1αx
β̂t +C̄α̂x +Λ2β̂x = ḡ(α)+ φ̄((α, β̂ ))θ̂ − K̄2αx

Adaptive law (60)
θ̂i = σ̂i−Ξi[(α, β̂ )]

Operator Ξi[(α, β̂ )]
solving (62)

Filter (63a)
˙̂σi = . . .

System (6)
yt +Ayx +Bzx = f (y,x)
zt +Cyx +Dzx = g(y,x)+φ((y,z),x)θ

P−1

yz

ẑ

ŷ

θ̂(t)

P

(α,β )

(α, β̂ )

σ̂(t)

Fig. 1: Structure of the observer design.

Computing (76) at every time step in a computer implemen-
tation may be computationally expensive. However, for some
special classes of source terms φi, the computation simplifies.

Lemma 5. If n−m = 1 and φi is in the form

φi((γa,γb),x) = ρi(γ)φi((a,b),x) (77)

for some function ρi : [0,1]→ R, then the operator Ξi can be
evaluated at (α(·, t),β (·, t)) by

Ξi[(α(·, t),β (·, t))] =ci + ki〈ηa
i [(α(·, t),β (·, t))],α(·, t))〉

+ ki〈ηb
i [(α(·, t),β (·, t))],β (·, t))〉 (78)
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where

ki =
∫ 1

0
ρi(γ)dγ (79a)

ci =− ki

〈
ηa

i

[
(α(·,0), β̂ (·,0))

]
,α(·,0)

〉

− ki

〈
ηb

i

[
(α(·,0), β̂ (·,0))

]
, β̂ (·,0)

〉
. (79b)

Proof. From (75), letting (a1(x),b1(x)) = (α(x, t), β̂ (x, t)) and
(a0(x),b0(x)) = (0,0), we have

Ξi[(α(·, t), β̂ (·, t)] = Ξi[(0,0)]

+
∫ 1

0

〈
ηa

i

[(
γα(·, t)
γβ̂ (·, t)

)]
,α(·, t)

〉
dγ

+
∫ 1

0

〈
ηb

i

[(
γα(·, t)
γβ̂ (·, t)

)]
, β̂ (·, t)

〉
dγ (80)

and from letting (a1(x),b1(x)) = (α(0, t), β̂ (0, t)) and
(a0(x),b0(x)) = (0,0), we have

Ξi[(α(·,0), β̂ (·,0)] = Ξi[(0,0)]

+
∫ 1

0

〈
ηa

i

[(
γα(·,0)
γβ̂ (·,0)

)]
,α(·,0)

〉
dγ

+
∫ 1

0

〈
ηb

i

[(
γα(·,0)
γβ̂ (·,0)

)]
, β̂ (·,0)

〉
dγ = 0. (81)

Thus, combining (80) and (81), and recalling that we may
select Ξ such that Ξ[α(·,0, β̂ (·,0)] = 0, we get

Ξi[(α(·, t), β̂ (·, t)] =

+
∫ 1

0

〈
ηa

i

[(
γα(·, t)
γβ̂ (·, t)

)]
,α(·, t)

〉
dγ

+
∫ 1

0

〈
ηb

i

[(
γα(·, t)
γβ̂ (·, t)

)]
, β̂ (·, t)

〉
dγ

−
∫ 1

0

〈
ηa

i

[(
γα(·,0)
γβ̂ (·,0)

)]
,α(·,0)

〉
dγ

−
∫ 1

0

〈
ηb

i

[(
γα(·,0)
γβ̂ (·,0)

)]
, β̂ (·,0)

〉
dγ. (82)

From (77) and definition (55) it follows that Φi[(γa,γb)] =
ρ(γ)Φi[(a,b)], and the solution to (61), if it exists, is of
the form ηa

i [(γa,γb)] = ρ(γ)ηa
i [(a,b)] and ηb

i [(γa,γb)] =
ρ(γ)ηb

i [(a,b)], so that

Ξi[(α(·, t), β̂ (·, t)] =
∫ 1

0
ρi(γ)dγ

×
(〈

ηa
i

[
(α(·, t), β̂ (·, t))

]
,α(·, t)

〉

+
〈

ηb
i

[
(α(·, t), β̂ (·, t))

]
, β̂ (·, t)

〉

−
〈

ηa
i

[
(α(·,0), β̂ (·,0))

]
,α(·,0)

〉

−
〈

ηb
i

[
(α(·,0), β̂ (·,0))

]
, β̂ (·,0)

〉)
. (83)

Lemma 2–5 now provide the following adaptive state and
parameter estimation result.

Proposition 2. Consider the error dynamics (21) with bound-
ary conditions satisfying Assumption 3 and (28) and the

parameter update law (60) with σ̂ satisfying (63). If the
conditions of Lemma 2 and 3 are satisfied, and the operator
Ξ is computed either by the scheme in Lemma 4 or Lemma 5,
then the state estimation error (ỹ, z̃) and parameter estimate θ̂
satisfy properties (47) and (48).

IV. SIMULATION EXAMPLE

Consider system (6) with

A =−D =

[
0 2
2 −1

]
(84a)

C =B =

[
0 −4
−4 0

]
(84b)

f (y,x) =y1
[
−x 1

]T (84c)

g(y,x) =
[
tan−1(y2) 0

]T (84d)

φ(y,z,x) =
[
−z1x2 − tan−1(z1)
−z2|z2|x −x2

]
(84e)

θ =
[
5 2

]T
, (84f)

which can be shown to satisfy Assumption 1 and 2, the
boundary conditions
[

1.3 2.0 −0.7 −0.6
2.1 4.0 0.8 1.4

][
y(0, t)
z(0, t)

]
=

[
1+ sin(t)

0

]
(85a)

[
2.0 −2.0 −1.0 0.6
0 4.0 0 1.4

][
y(1, t)
z(1, t)

]
=

[
1.0
−0.3

]
, (85b)

and suitable initial conditions found by numerically solving
the system of ODEs

Ayx(·,0)+Bzx(·,0) = f (y(·,0),x) (86a)
Cyx(·,0)+Dzx(·,0) =g(y(·,0),x)

+φ((y(·,0),z(·,0)),x)θ (86b)

with (85) for x ∈ [0,1] (which ensures that all compatibility
conditions are satisfied). This Cauchy problem can be shown to
be well-posed. Specifically, using the coordinate transformation
(14) with

L =
1
4

[
−2 −1
2 −2

]
(87)

transforms the system into (15) with

Λ1 =diag(2,−2) (88a)
Λ2 =diag(1,−1) (88b)

B̄ =

[
0 −4
−4 0

]
(88c)

C̄ =
1
2

[
0 −9
−9 2

]
(88d)

f̄ (α,x) =α1

[
−x
1

]
(88e)

ḡ(α,x) =
[

tan−1(α2)−α1(
1
4 − 1

2 x)
α1(

1
4 +

1
2 x)

]
(88f)

φ̄1(α,β ,x) =
[

−( 1
2 α1 +

1
4 α2 +β1)x2

1
4 (α1−α2−2β2)|−α1 +α2 +2β2|x

]
(88g)

φ̄2(α,β ,x) =
[
− tan−1( 1

2 α1 +
1
4 α2 +β1)

−x2

]
(88h)
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(a) y1(x, t).

(b) y2(x, t).

Fig. 2: Measured system state y.

and boundary conditions
[

1.3 2.0 −0.7 −0.6
1.3 5.3 1.3 2.7

][
α(0, t)
β (0, t)

]
=

[
1+ sin(t)

0

]
(88ia)

[
1.3 −4.0 −0.7 0.5
0 4.0 0 1.4

][
α(1, t)
β (1, t)

]
=

[
1.0
−0.3

]
. (88ib)

which can be solved explicitly for (α1(0, t),α2(1, t)) and
(β1(0, t),β2(1, t)). The observer is designed with bound-
ary conditions (α̂1(0, t), α̂2(1, t)) = (α1(0, t),α2(1, t)) and
(β̂1(0, t), β̂2(1, t)) = (β1(0, t),β2(1, t)) so that Assumption 4
is satisfied and we use the injection gains K1 = − 1

2 Λ1 and
K2 = 0. Since φ is in the form discussed in Remark 1 and P2
is the identity matrix, any diagonal W (x) will satisfy (33). The
choice W (x) = diag(2−x,2−x) also satisfies (36). The system
and observer scheme with Γ = diag(5,5) and θ̂(0) = 0 are
are implemented in MATLAB and simulated for 1.5 seconds
using the method of line with a Runge-Kutta solver using 200
spatial discretization points. The system states are shown in
Figures 2 and 3. Figures 4–6 shows that the state estimation
error converges to zero in accordance with Proposition 2. In
addition, the parameter estimate θ̂ converge to the true value
θ as can be seen in Figures 7 and 8.

V. CONCLUDING REMARKS

A state and parameter estimation scheme for heterodirec-
tional semi-linear hyperbolic systems has been presented. The
observer and adaptive law guarantee convergence of the state
estimation error to zero. The non-adaptive version of the design
is general and requires only a simple observability condition

(a) z1(x, t).

(b) z2(x, t).

Fig. 3: Unmeasured system states z.

(a) ỹ1(x, t).

(b) ỹ2(x, t).

Fig. 4: State estimation error ỹ.
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(a) ṽ1(x, t).

(b) ṽ2(x, t).

Fig. 5: State estimation error z̃.

Fig. 6: State estimation error ||(ỹ(·, t)|| (red) and ||z̃(·, t))||
(blue).

Fig. 7: Parameter estimate θ1(t)

Fig. 8: Parameter estimate θ2(t)

on the coefficient matrices, in addition to the monotonicity
condition on the non-linearity in the unmeasured part of the
state. In the presence of uncertainties, the design requires a
special rank condition on the coefficient matrices. In view of
the property that state estimates converge to their true values
regardless of parameter convergence, removal of this constraint
is probably hard.

APPENDIX

Lemma 6 (Lemma 3.1 from [19]). Let g be a real valued
function defined for t ≥ 0. Suppose:

1) g(t)≥ 0 for all t ∈ [0,∞),
2) g(t) is differentiable on [0,∞) and there exists a constant

M such that ġ(t)≤M, for all t ≥ 0,
3) g ∈L1.

Then

lim
t→∞

g(t) = 0. (1)
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[6] Murat Arcak and Petar Kokotović. Nonlinear observers: a circle criterion
design and robustness analysis. Automatica, 37(12):1923–1930, dec
2001.

[7] Georges Bastin and Jean-Michel Coron. Stability and boundary
stabilization of 1-D hyperbolic systems, volume 88. Springer, 2016.

[8] Pauline Bernard and Miroslav Krstic. Adaptive output-feedback stabi-
lization of non-local hyperbolic PDEs. Automatica, 50(10):2692–2699,
October 2014.
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Abstract: We design an adaptive observer for semi-linear 2 × 2 hyperbolic PDEs with parametric
uncertainties in both state equations. The proposed method is an extension of a previous result where
parametric uncertainties were only allowed in one of the system equation. We utilize partial state
measurements of one of the distributed states to estimate the remaining unknown distributed state. The
method can be applied to flow rate estimation in fluid flow systems where the pressure is measured.
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1. INTRODUCTION

1.1 Problem formulation

We consider semi-linear 2× 2 hyperbolic systems on the form
yt(x, t) + azx(x, t) =φT1 (y(x, t), x)θ1 (1a)

zt(x, t) + byx(x, t) =φT2 (z(x, t), x)θ2. (1b)
where a, b ∈ R and φ1 : R × [0, 1]→ Rp, φ2 : R × [0, 1]→ Rq

are known and θ1 ∈ Rp, θ2 ∈ Rq are unknown constants with
p, q ∈ N. The distributed state y : [0, 1]× R+ → R is assumed
measured for all x ∈ [0, 1] while z : [0, 1]×R+ → R is assumed
unknown for x ∈ (0, 1), but we assume that both z(0, t) and
z(1, t) are measured. In addition, we assume the following.
Assumption 1. System (3) with appropriate boundary and initial
conditions has a unique bounded solution (y(·, t), z(·, t) ∈
L2([0, 1]) for all t ≥ 0.
Assumption 2. ||y|| ∈ L∞ ⇒ ||φ1(y, ·)|| ∈ L∞, ||z|| ∈ L∞ ⇒
||φ2(z, ·)|| ∈ L∞, and φ2 satisfies the sector condition

(φT2 (z1, x)− φT2 (z2, x))θ2(z1 − z2) ≤ 0. (2)
for any z1, z2 ∈ L2([0, 1])

The goal is to estimate the unknown state z(x) as well as the
unknown parameters θ1, θ2.

The method presented in this paper can be extended to general
hyperbolic systems with (y(x), z(x)) ∈ Rn+m for m,n ∈ N
and any coefficient matrix having distinct real eigenvalues.
However to simplify the presentation we let m = n = 1 and
only require ab > 0, which implies that (1) is strictly hyperbolic.

1.2 Motivation and previous work

The system (1) can be used to model single-phase fluid flow
systems (among others, see Bastin and Coron (2016)) and is
? Economic support from The Research Council of Norway and Equinor ASA
through project no. 255348/E30 Sensors and models for improved kick/loss
detection in drilling (Semi-kidd) is gratefully acknowledged.

derived by considering the mass and momentum balances in an
open fluid system. In the following we will therefore refer to
(1a) as the mass balance and (1b) as the momentum balance. An
example is oil & gas drilling where a drilling fluid called mud is
circulated down the hollow drill-string, through the drilling bit
down-hole and up in the annulus surrounding the drill-string all
the way to the top of the well. The fluid is used to carry cuttings
to the top and provide pressure control in the well. Inadequate
pressure control might lead to uncontrolled flows of fluid to or
from the surrounding oil or gas reservoir. A reservoir pressure
exceeding the well pressure leading to a flow of oil or gas into
the well, called a kick, might have severe consequences if the
reservoir fluids reach the surface. The opposite situation where
the well pressure exceeds the reservoir pressure by a sufficiently
high margin and the drilling fluid flows into the reservoir, which
is called a loss, is also undesirable as the integrity of the reservoir
might weaken, and the pressure drop caused by a loss might lead
to a subsequent kick.

Due to the long length of the well which can be up to 10 km, and
even though the sound of speed for a typical drilling fluid can
be as high as 1000 m s−1, the distributed effects caused by the
compressibility of the fluid is sometimes significant and should
not be neglected (Berg et al., 2019; Landet et al., 2013). In this
paper, we utilize the information in the fast traveling pressure
waves to estimate unknown states and parameters in a general
PDE model. We assume that part of the sate vector is known
and design an adaptive observer to estimate the remaining state.
The method developed in this paper is an extension of Holta
and Aamo (2019) where we only consider uncertainties in the
momentum balance of a 2 × 2 semi-linear hyperbolic system,
and not in the mass balance. The method in Holta and Aamo
(2019) is an extension to PDEs of the method developed for non-
linear ODEs in Stamnes et al. (2008, 2009) where stability of the
observer design is proved by assuming that the non-linearities
satisfy a sector condition similar to the condition proposed in
Arcak and Kokotovic (1999). Utilizing this special structure
avoids the use of canonical transformations (see Marino and
Tomei (1992)) which requires that the system is persistently
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excited (PE) (Marino and Tomei, 1995). For non-linearities that
satisfy Lipschitz conditions, another approach is to use high-
gain to dominate the non-linearities. See e.g. Besanon et al.
(2004) for ODEs and the recent result in Kitsos et al. (2018) for
hyperbolic PDEs.

In the drilling system, a kick or loss is by definition an
unexpected event caused by inadequate knowledge about system
states and properties. In particular, the reservoir pressure and
the flow rate at any single point in the well is often unknown.
However, using so-called wired-pipe technology where the
pressure inside the well is measured, and under a certain
excitation criterion, both flow rate and the properties of the
reservoir can be estimated . A local inflow of fluid from the
reservoir into the well will likely result in an increase in the local
frictional pressure drop, and a local loss of fluids from the well
into the reservoir will likely lead to a decrease in friction. So by
adapting the observer by estimating local frictional coefficients
we can both detect and locate kicks or losses. However, a local
increase in frictional momentum loss might also be caused by a
pack-off of cuttings, or a wash-out between the drill-string and
the annulus. To classify an event as a kick or loss we also need
to model in- or out-flow of mass from and to the reservoir and
acknowledge that parameters governing the mass balance are
dependent on the reservoir properties and therefore uncertain.
As the method in Holta and Aamo (2019) assumes that all
parameters in the mass balance are perfectly known, the method
can not be applied to distinguish between a in- or out-flow and
other incidents. However, in this paper we show that if additional
flow rate measurements at the top-side boundary are available, a
simple parametric model can be used to estimate uncertainties in
the mass balance, thus significantly increasing the applicability
of the method first proposed in Holta and Aamo (2019).
Remark 1. Strictly speaking, the system described above with
local inflows might require a model where the uncertain parame-
ters are spatially varying. That is,

yt(x) + azx(x) =ϕ1(y(x), x)ϑ1(x) (3a)
zt(x) + byx(x) =ϕ2(z(x), x)ϑ2(x) (3b)

for some uncertain functions ϑ1, ϑ2 : [0, 1] → R. However, in
most practical applications ϑ1, ϑ2 will be piece-wise constant
(for example due to a geological fault) and we can define

φi1(y(x), x) = χi(x)ϕ(y(x), x) (4)
where φi1 is an element in φ1 and χi(x) = 1 in some subset of
[0, 1] and zero otherwise,

θi = χiθ(xi) (5)
for any xi such that χi(xi) = 1, and similarly for φ2. However,
from a mathematical point-of-view the method can straight
forwardly be extended to handle spatially varying uncertainties
θ2(x). That being said, due to implementational concerns
regarding robustness and to keep the presentation comparable to
Holta and Aamo (2019) we keep the formulation in (1).

1.3 Notation

We avoid arguments in time and write e.g. y(x) for a variable
y : [0, 1]× R+ → R, where R+ denotes the set of non-negative
real numbers. For f : R+ → R, we use the spaces

f ∈ Lp ↔
(∫ ∞

0

|f(t)|pdt
) 1

p

<∞ (6)

for p ≥ 1 with the particular case f ∈ L∞ ↔ supt≥0 |f(t)| <
∞. A function u : [0, 1]→ R is said to be in L2([0, 1]) if

||u|| :=
√∫ 1

0

u2(x)dx <∞. (7)

The partial derivative of a function is denoted with a subscript,
for example ut(x, t) = ∂

∂tu(x, t). For a function of one variable,
the derivative is denoted using a prime, that is f ′(x) = d

dxf(x).
The dot notation is reserved for the derivative of functions of
time only; ḟ(t) = d

dtf(t).

An operator Ξ : L2(0, 1) → R is called Fréchet differentiable
at u ∈ L2([0, 1]) if there exists a bounded linear operator
DuΞ : L2([0, 1])→ R such that

lim
h→0

|Ξ[u+ h]− Ξ[u]−DuΞ[h]|
||h|| = 0 (8)

for h ∈ L2([0, 1]). If such a bounded linear operator exists, it is
unique and we call DuΞ the Fréchet derivative of Ξ at u.

2. OBSERVER DESIGN

Let ζ(x) = ly(x) + z(x) for some l such that λ := la > 0. We
have
ζt(x) + λζx(x) =(l2a− b)yx(x)

+ lφT1 (y(x), x)θ1 + φT2 (z(x), x)θ2 (9)
ζ(0) =ly(0) + z(0) (10)

To estimate the unknown state ζ, consider the observer

ζ̂t(x) + λζ̂x(x) =(l2a− b)yx(x)

+ lφT1 (y(x), x)θ̂1 + φT2 (ẑ(x), x)θ̂2 (11a)

ζ̂(0) =ζ(0) (11b)

where ẑ(x) = ζ̂(x) − ly(x) and θ̂1, θ̂2 are estimates of θ1, θ2.
The error dynamics ζ̃(x) = ζ(x)− ζ̂(x) then satisfies

ζ̃t(x) + λζ̃x(x) =lφT1 (y(x), x)θ̃1 + φT2 (ẑ(x), x)θ̃2

+ φ̃T2 (z(x), ẑ(x), x)θ2 (12a)

ζ̃(0) = 0 (12b)

where φ̃2(z(x), ẑ(x), x) := φ(z(x), x) − φ(ẑ(x), x) and θ̃i =

θi − θ̂i, i = 1, 2.

The adaptive law generating θ̂1 is derived in Section 2.1. Stability
of the error system (12), which is the main result (Proposition 2),
is proved in Section 2.2 under the assumption of an ideal
adaptive law for θ̂2 which at first glance can not be implemented.
Finally, an implementable adaptive law for θ̂2 is designed in
Section 2.3 and shown to asymptotically converge to the ideal
adaptive law.

2.1 Estimating the uncertainty in the mass balance

We utilize both the distributed state measurements y(x), x ∈
[0, 1] and boundary measurements z(0), z(1) and design a
swapping-based parameter estimation scheme.

Let the operators Ψ, Ω and ∆ be defined as

Ψ[y] :=

∫ 1

0

y(x)dx (13a)

Ω[y] :=

∫ 1

0

φ1(y(x), x)dx (13b)

∆[z] :=− a(z(1)− z(0)) (13c)
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We have

Ψ̇[y] =
d

dt

∫ 1

0

y(x)dx =

∫ 1

0

yt(x)dx

− a
∫ 1

0

zx(x)dx+

∫ 1

0

φT1 (y(x), x)dxθ1

=∆[z] + ΩT [y]θ1. (14)
Consider the filters

ν̇ =− ςν + Ω[y] (15a)
ρ̇ =− ς(ρ−Ψ[y]) + ∆[z] (15b)

for some ς > 0 and let
Ψ̄ := ρ+ νT θ1. (16)

Then the error e := Ψ[y]− Ψ̄ satisfies

ė =∆[z] + ΩT [y]θ1

− (−ς(ρ−Ψ[y]) + ∆[z]− ςνT θ1 + ΩT [y]θ1) (17)
=− ςe (18)

showing that e ∈ L2 and Ψ̄→ Ψ[y] exponentially fast.
Lemma 1. For some Γ1 = ΓT1 � 0, let

˙̂
θ1 = Γ1ε1ν (19)

where ε1 := Ψ[y]− ρ− νθ̂1. Then,

(1) ε1, θ̂1,
˙̂
θ1 ∈ L∞.

(2) ε1,
˙̂
θ1 ∈ L2 .

(3) ΩT [y]θ̃1 ∈ L2 ∩ L∞.

If in addition Ω[y] satisfies the PE condition

α0I �
1

T

∫ t+T

t

Ω[y]Ω[y]T dτ � α1I, (20)

for some α0, α1, T > 0, then θ̃1 → 0 exponentially fast.

Proof. Since φ1 and therefore ν is bounded by assumption,
Property (1) and (2) follow from Ioannou and Sun (2012, Th.
4.3.2). For Property (3), we have ε1 = νθ̃1 + e, so that

ε̇1 =ν̇θ̃1 − ν ˙̂
θ1 + ė

=− cε1 + Ω[y]θ̃1 − ε1γ1ννT − ςe
=− ε1(c+ γ1νν

T ) + Ω[y]θ̃1 − ςe, (21)
so that

(Ω[y]θ̃1)2 ≤2ε̇21 + 2ε21(c+ γ1νν
T )2

≤2
d

dt
(ε1ε̇1)− 2ε1

d2ε1
dt2

+ 4ε21(c+ γ1νν
T )2

+ 4ς2e2 (22)
Therefore,∫ t

0

(Ω[y]θ̃1)2dτ ≤2

∫ t

0

d

dτ
(ε1ε̇1)dτ + 2ε̄1

∫ t

0

d2ε1
dτ2

dτ

+ 2(c+ γ1ν̄
2)2
∫ t

0

ε21dτ + 4ς2
∫ t

0

e2dτ

≤4ε̄1(ε̇1(t)− ε̇1(0)) + 2(c+ γ1ν̄
2)2
∫ t

0

ε21dτ

+4ς2
∫ t

0

e2dτ (23)

where ε̄1 = supt≥0 |ε1| and ν̄ = supt≥0 ||ν|| (the latter exists
by assumption). Letting t → ∞ on both sides of the above
inequality and using the fact that ε1, e ∈ L2 ∩L∞ and ε̇1 ∈ L∞

shows that the left hand side is bounded which concludes the
proof of Property (3). If Ω[y] is PE, it trivially follows that ν is
PE (Ioannou and Sun, 2012, Lemma 4.8.3 (ii)) and exponential
convergence of θ̂1 to θ1 follows again from Ioannou and Sun
(2012, Th. 4.3.2). �

2.2 Main result and stability proof

To study the stability of (12) consider the Lyapunov function
candidate

V0 =
1

2

∫ 1

0

W (x)ζ̃2(x)dx (24)

for some W (x) > 0 satisfying W ′(x) ≤ −cW (x) for some
c > 0. Differentiating (24) with respect to time and inserting the
dynamics (12a) yield

V̇0 =− λ
∫ 1

0

W (x)ζ̃(x)ζ̃x(x)dx

+

∫ 1

0

W (x)ζ̃(x)lφT1 (y(x), x)θ̃1dx (25)

+

∫ 1

0

W (x)ζ̃(x)φT2 (ẑ(x), x)θ̃2dx

+

∫ 1

0

W (x)ζ̃(x)φ̃T2 (z(x), ẑ(x), x)θ2dx. (26)

Using integration by parts, splitting the second term using
Young’s inequality and applying the sector condition in As-
sumption 2 to the last term, keeping in mind that ζ̃(x) = z̃(x),
yield

V̇0 ≤− (cλ− 1)V0 +
1

2

∫ 1

0

W (x)(lφT1 (y(x), x)θ̃1)2dx (27)

+

∫ 1

0

W (x)ζ̃(x)φT2 (ẑ(x), x)θ̃2dx. (28)

To deal with the parametric uncertainties we augment the
function (24) as follows.

V = V0 + a1V1 + V2. (29)
where

Vi =
1

2
θ̃Ti Γ−1i θ̃i (30)

for i = 1, 2, a1 > 0 and Γ2 = ΓT2 � 0. Differentiating with
respect to time and inserting (19) and (27) yield

V̇ ≤− (cλ− 1)V0 + θ̃T2 Γ−12

(
˙̂
θ∗2 − ˙̂

θ2

)
− θ̃T1 H1θ̃1 (31)

where
H1 :=a1(ννT )

− l2

2

∫ 1

0

W (x)φ1(y(x), x)φT1 (y(x), x)dx (32)

and
˙̂
θ∗2 := Γ2

∫ 1

0

W (x)φ2(ẑ(x), x)ζ̃(x)dx. (33)

We conclude the above discussion by stating the main result.
Proposition 2. Consider the state estimation error system (12)
with θ̂1 generated by the adaptive law in Lemma 1 and θ̂2
satisfying

˙̂
θ2 =

˙̂
θ∗2 (34)

with any initial estimates

θ̂2(0) = θ̂
∗
2(0). (35)
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Then, the state estimation error ||ζ̃|| is bounded. Moreover, if
PE condition (20) is satisfied, then

||ζ̃|| → 0. (36)

Proof. Selecting c such that c0 := cλ − 1 > 0 and inserting
(34) into (31) yield

V̇ ≤− c0V0 − θ̃T1 H1θ̃1. (37)
For any c2 > 0 and all

V0 ≥ c−10 (c2 − θ̃T1 H1θ̃1) (38)
we have V ≤ −c2V0. By (Khalil, 1996, Th 4.18), V and
consequently ||ζ̃||, θ̂1, θ̂2 are bounded. Furthermore, if the PE
condition (20) holds, then it can be shown that (Ioannou and
Sun, 2012, Sec. 4.8.3)

∫ t+T

t

θ̃T1 (ννT )θ̃1dτ ≥ h1V1 ≥ 0 (39)

for the same T > 0 specifying (20) and some h1 > 0. Since φ1
is bounded by assumption, we can lower bound the second term
in (32) which together with (39) for sufficiently large a1 > 0
give the lower bound

∫ t+T

t

θ̃T1 H1θ̃1dτ ≥
∫ t+T

t

(a1h1 − h2)V1dτ > 0. (40)

for some h2 > 0. Selecting a1 > h2h
−1
1 in (29) yields

V̇ ≤ −c0V0 (41)
so that

c0

∫ ∞

0

V0dτ ≤ V (0)− V (∞) (42)

which since the right hand side is bounded and V0 ≥ 0, implies
V0, ||ζ̃||2 ∈ L1. By (Liu and Krstic, 2001, Lemma 3.1) it then
follows that V0 → 0 and consequently (36). �

2.3 Estimating the uncertainty in the momentum balance

The ideal adaptive law θ̂∗2 defined by (33) is not implementable
as ζ̃ is a-priori unknown. Instead, we heuristically seek an
adaptive law resembling the non-implementable law in the sense

˙̂
θ2 → ˙̂

θ∗2 (43)
as t→∞. Simplifying the notation by defining

Φ[ẑ](x) := −
∫ 1

x

W (ξ)φ2(ẑ(ξ), ξ)dξ, (44)

we have
˙̂
θ∗2 = Γ2

∫ 1

0

Φ′[ẑ](x)ζ̃(x)dx. (45)

Utilizing that Φ[ẑ](1) = ζ̃(0) = 0 and using integration by
parts, we equivalently have

˙̃
θ∗2 = Γ2

∫ 1

0

Φ[ẑ](x)ζ̃x(x)dx. (46)

Proposition 3. Consider the signal σ̂ : R→Rq defined by

˙̂σ =

∫ 1

0

η[ẑ](x)
(
−byx + φT2 (ẑ(x), x)θ̂2

)
dx (47a)

σ̂(0) =θ̂∗2(0) (47b)
where

η[ẑ] = λ−1Γ2Φ[ẑ], (48)

the operator Ξ : L2([0, 1])→ Rq satisfying

DẑΞ[h] =

∫ 1

0

η[ẑ](x)h(x)dx (49a)

Ξ[ẑ(·, 0)] =0, (49b)
and let

θ̂2 = σ̂ − Ξ[ẑ]. (50)
If the PE condition (20) in Lemma 1 is satisfied and ||η[ẑ]|| ∈
L∞, then

˙̂
θ2 → ˙̂

θ∗2 (51)
exponentially fast.

Proof. Consider the auxiliary signal σ : R+ → Rq defined as
σ := θ2 + Ξ[ẑ]. (52)

It is evident that σ − σ̂ =: σ̃ = θ̃2 and therefore ˙̃σ =
˙̃
θ2. We

thus need to show that ˙̃σ → ˙̃
θ∗2 . Differentiating (52) with respect

to time yields

σ̇ =
d

dt
Ξ[ẑ] = DẑΞ[ẑt]. (53)

Inserting (49) gives

σ̇ =

∫ 1

0

η[ẑ](x)ẑt(x)dx

=

∫ 1

0

η[ẑ](x)
(
ζ̂t(x) + λzx(x)− lφT1 (y(x), x)θ1

)
dx.

(54)
Subtracting (47a) from (54) yields

˙̃
θ2 = ˙̃σ =

∫ 1

0

η[ẑ](x)
(
λz̃x(x)− lφT1 (y(x), x)θ̃1

)
dx (55)

which in view of (46) and (48) and the fact that ζ̃(x) = z̃(x), is
equivalent to

˙̃σ =
˙̃
θ∗2 −

∫ 1

0

η[ẑ](x)
(
lφT1 (y(x), x)θ̃1

)
dx. (56)

If and ||η[ẑ]|| ∈ L∞ and the PE condition (20) is satisfied,
||η[ẑ]||||lφT1 (y, ·)θ̃1|| → 0 and we obtain the desired result (51).
From (47b) and (49b) we have that (35) is satisfied. �

To implement the adaptive law (50) at any single time t1, we
need to evaluate Ξ at ẑ(·, t1). We proceed by computing the
incremental value Ξ[ẑ(·, t1)]− Ξ[ẑ(·, t0)] for any t1 > t0 > 0.
Let S(γ) = ẑ(·, t0) + γ [ẑ(·, t1)− ẑ(·, t0)]. Evaluating Ξ at
S(γ) and differentiating with respect to γ yield

d

dγ
Ξ[S(γ)] =DS(γ)Ξ[S′(γ)]

=DS(γ)Ξ[ẑ(·, t1)− ẑ(·, t0)]

=

∫ 1

0

η[S(γ)](x) (ẑ(x, t1)− ẑ(x, t0)) dx (57)

Integrating both sides from γ = 0 to γ = 1 and using
S(1) = ẑ(·, t1) and S(0) = ẑ(·, t0) yield

Ξ[ẑ(·, t1)] =

∫ 1

0

∫ 1

0

η[S(γ)](x) (ẑ(x, t1)− ẑ(x, t0)) dxdγ

+ Ξ[ẑ(·, t0)] (58)
Remark 2. Using the adaptive law suggested in Proposition 3,
the condition (34) in Proposition 2 is only satisfied asymptoti-
cally. Consequently, we have not formally established the bound-
edness and convergence properties of ||ζ̃|| and θ̃2. However,
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(a) State y(x, t). (b) State z(x, t).

Fig. 1. Case 1. System states.

the two intermediate results in Proposition 2 and 3 suggests an
adaptive observer for system (1) that can be tested in simulations
or with experimental data. In the next section, the observer is
tested in two case simulations.

3. SIMULATION

We simulate two cases. Case 1 where the PE condition (20) is
satisfied and Case 2 where it is not. The system (1), observer
(11), adaptive law (19), filter (47) and operator (58) are simulated
in MATLAB for 15 seconds. The PDEs are discretized using 100
spatial discretization points and solved using the method of lines
by first transforming the hyperbolic system (1) to a Riemann
invariant form. In both cases, the system parameters where

a =b = 4 (59a)

φT1 (y(x), x) =

{[
−5y(x) 0

]
, x < 0[

0 −5y(x)
]
, x ≥ 0

(59b)

φT2 (z(x), x) =

{[
−z(x) 0

]
, x < 0[

0 −z(x)
]
, x ≥ 0

θ1 = [2 4] (59c)

θ2 = [5 7] . (59d)
Observe that the chosen φ2 satisfies Assumption 2. For case 1,
we used the boundary conditions

z(0, t) = sin(
t

2
) (60a)

y(1, t) = sin(2t) (60b)
while for case 2, we used

z(0, t) =0 (61a)
y(1, t) = sin(2t). (61b)

Compatible initial conditions were selected as
y(x, 0) =y(1, 0) + 2(1− x) (62a)
z(x, 0) =2x+ z(0, 0). (62b)

Finally, the design parameters are
L =0.8 (63a)

θ̂1(0) =θ̂2(0) = 0 (63b)

Γ1 =Γ2 =

[
20 0
0 20

]
(63c)

W (x) =2− x. (63d)

For case 1, with states shown in Figure 1, the PE condition (20) is
satisfied and θ̃1 → 0 as can be seen in Figure 4. The conditions

of Proposition 3 is satisfied and for ˙̂
θ2 =

˙̂
θ∗2 it follows from

Proposition 2 that ||ζ̃|| → 0 which can be seen in Figures 2
and 3. The parameter estimates θ̂2 also converge to their true
value as can be seen in Figure 5.

For case 2, with states shown in Figure 6, the PE condition
(20) is not satisfied and θ̂1 converge to a constant θ̄1 6= θ1 as

Fig. 2. Case 1. State estimation error z̃(x, t).

Fig. 3. Case 1. State estimation error ||z̃||.

(a) θ̂1,1 vs. θ1,1. (b) θ̂1,2 vs. θ1,2.

Fig. 4. Case 1. Parameter estimates θ̂1 (red dotted) vs. true
parameters θ1 (solid black).

(a) θ̂2,1 vs. θ2,1. (b) θ̂2,2 vs. θ2,2.

Fig. 5. Case 1. Parameter estimates θ̂2 (red dotted) vs. true
parameters θ2 (solid black).

(a) State y(x, t). (b) State z(x, t).

Fig. 6. Case 2. System states.

can be seen in Figure 9. Still, as shown in Figures 7 and 8 the
estimation error ||ζ̃|| is bounded and converge to a set close
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Fig. 7. Case 2. State estimation error z̃(x, t).

Fig. 8. Case 2. State estimation error ||z̃||.

(a) θ̂1,1 vs. θ1,1. (b) θ̂1,2 vs. θ1,2.

Fig. 9. Case 2. Parameter estimates θ̂1 (red dotted) vs. true
parameters θ1 (solid black).

(a) θ̂2,1 vs. θ2,1. (b) θ̂2,2 vs. θ2,2.

Fig. 10. Case 2. Parameter estimates θ̂2 (red dotted) vs. true
parameters θ2 (solid black).

to zero, as guaranteed by Proposition 2. Figure 10 shows that
parameter convergence is not achieved or at least is very slow.

4. CONCLUDING REMARKS

We have designed an adaptive observer estimating the distributed
state of a semi-linear 2× 2 hyperbolic system and uncertainties
appearing in both state equations by relying on partial distributed
state measurement and boundary measurements. The scheme
can be used to estimate the flow rate in a single-phase fluid
flow system where the in-/out-flow of mass and momentum
gain/loss are parametrically uncertain by relying on distributed
pressure measurements. With no mass in- or out-flux, any
uncertain local gain or loss of momentum can be estimated

using pressure measurements only. With mass in or out-flux,
we use boundary measurements of the flow rate in addition to
the pressure measurements to estimate net gain or loss of mass.
Remark that for any single point in time, only the aggregate
net in-/out-flow can be estimated. Situations with flow-loops,
that is inflow in one region and an outflow of equal size in
another region, is not detectable using boundary measurements
only. However, if the local inflow varies in a certain way and
is sufficiently distinct compared to other regions, it is possible
to also estimate local in- or out-flow phenomena, and not only
the aggregate net flow. These conditions are all covered by the
persistence of excitation criterion guaranteeing convergence of
the parametric uncertainties in the mass balance.
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3.6 Comments, flaws, limitations and further work

3.6 Comments, flaws, limitations and further work
The motivation for extending the observer design from [58] to general hetero-
directional systems in [60], was to handle multi-phase systems such as those mod-
eled by the drift-flux model. The same limitation as discussed in Section 2.4 regard-
ing linearization of the flux density matrix applies here. In addition, as discussed
in the paper, the adaptive part requires some further assumptions on the type of
boundary condition and number of measured states relative to the unmeasured
states. In sum, these assumptions are too restrictive to allow applications based
on the drift-flux model. Some further work is thus needed for the design to handle
faults in multi-phase flow.

It is stressed in [64] that the extension from [58] is justified heuristically. Al-
though we think a formal proof is possible to construct, we did not manage to
complete the analysis. Some further work is here needed.

In [63], the fault models are presented without any further justification. Al-
though most of the models are general and/or commonly used, we do make some
novel modeling assumptions. The validity of these models should be investigated
further and a comment discussing the novelty of these assumptions will be included
in the final submitted manuscript.
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CHAPTER 4
Closed loop kick & loss attenuation

4.1 Introduction
The significance of all closed loop kick and loss estimation and attenuation schemes
presented in this chapter is that, provided the kick or loss is attenuated, the reser-
voir pore pressure is simultaneously estimated. That is, using closed loop output
regulation, the PE condition is always satisfied and the pore pressure estimates
converge to the true value.

In the first paper [57], the state and parameter estimation scheme from [67]
is coupled with a closed loop controller for kick & loss estimation. The method
is improved in [68] which presents an alternative, simpler solution to the same
problem. The first paper is therefore omitted.

In the second paper [68], a closed loop controller is used for loss attenuation
in single-phase systems. Down-hole pressure measurements are assumed available
using wired drill pipe. The design is compared to a previous result [65] where only
top-side flow and pressure measurements are assumed to be available.

In the third paper [62], the state and parameter estimation scheme from [61] is
coupled with a closed loop controller for set-point regulation.
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4.2 Paper [57]: Boundary set-point regulation of
a linear 2× 2 hyperbolic PDE with uncertain
bilinear boundary condition (omitted)

Holta, H. and Aamo, O. M. (2018). Boundary set-point regulation of a linear 2× 2
hyperbolic PDE with uncertain bilinear boundary condition. In Proceedings of the
2018 IEEE Conference on Decision and Control (CDC), pages 2156–2163. IEEE

This paper is omitted, as the material in this paper is covered by Paper [68].
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Adaptive Set-Point Regulation of Linear 2×2 Hyperbolic Systems
with Application to the Kick and Loss Problem in Drilling ?

Haavard Holta a, Henrik Anfinsen a, Ole Morten Aamo a

aDepartment of Engineering Cybernetics. Norwegian University of Science and Technology, Trondheim N-7491, Norway

Abstract

We study the kick and loss detection and attenuation problem in managed pressure drilling by modeling the well as a distributed parameter
system. Two cases are considered, distinguished by whether down-hole pressure measurements are available or not. The main contribution
of the paper is a theoretical result on adaptive stabilization and set-point regulation by boundary control for a general 2×2 linear hyperbolic
system in the case of measurements taken at both boundaries, with stability proven in the L2-sense. The design is applied to the drilling
system and shown to solve the kick and loss problem with sensing at both boundaries. An earlier result on adaptive set-point regulation for
2×2 hyperbolic systems is also applied to the drilling system and shown to solve a kick and loss problem with sensing restricted to the
actuated boundary only. The two designs are compared in a simulation of a loss incident, showing a significant reduction in convergence
time and total accumulated loss for the design with sensing allowed at both boundaries.

Key words: Distributed-parameter systems, adaptive control, parameter estimation, managed pressure drilling, kick and loss detection

1 Introduction

1.1 Motivation

A drilling system consists of a drill string with a drill bit
at the bottom-hole end and a casing around the drill string
called annulus. A drilling fluid called mud is circulated down
the drill string, through the drill-bit and up the annulus to
the surface where cuttings are removed and the mud recir-
culated down the drill string again (see Figure 1). The pur-
pose of the mud is not only to transport the cuttings out of
the system, but to provide pressure control throughout the
well. If the pressure is too low, the well might collapse, and
a too high bottom-hole pressure might lead to fracturing of
the formation. Traditionally, pressure is controlled by vary-
ing the mud density, viscosity or circulation rate. In man-
aged pressure drilling (MPD), with applied back pressure
(ABP) in particular, the pressure in the annulus is controlled
by using a back pressure valve top-side to limit the flow and
a back-pressure pump in the case without circulation. The
difficulty in MPD comes from the fact that actuation is lo-

? Corresponding author: H. Holta. Economic support from The
Research Council of Norway and Equinor ASA through project no.
255348/E30 Sensors and models for improved kick/loss detection
in drilling (Semi-kidd) is gratefully acknowledged.

Email addresses: haavard.holta@ntnu.no (Haavard
Holta), henrik.anfinsen@ntnu.no (Henrik Anfinsen),
aamo@ntnu.no (Ole Morten Aamo).

drill string

reservoir

drill bit

casing

riser

open-hole section

annulus

Fig. 1. Schematic of the drilling system.

cated top-side, while the pressure of interest is bottom-hole
usually several kilometers away. Sensing is only available
at the boundaries and often only top-side.
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Time spent correcting down-hole errors caused by inad-
equate pressure control accounts for a significant part of
the total non-productive time during drilling [24]. To avoid
such errors, it is essential to maintain a down-hole pres-
sure within margins dictated by the surrounding reservoir
pressure. When the bottom-hole pressure exceeds the for-
mation pressure drilling mud will flow into the formation,
called a loss, potentially damaging the well-bore (if exceed-
ing the fracturing pressure). A higher formation pressure
than down-hole pressure will result in formation fluids flow-
ing into the well, called a gain or kick. If not handled, a kick
leads to formation fluids flowing up the annulus, which in
severe circumstances, might lead to uncontrolled blowouts
on the surface. Often, a kick is preceded by a loss since the
loss causes down-hole pressure to drop. Thus, quick han-
dling of the loss is critical for avoiding a kick incident, which
is more serious in terms of safety. Since the reservoir pres-
sure is usually unknown, the challenge is now to stabilize
the well pressure, estimate the reservoir pressure and at the
same time use this estimate together with well pressure and
flow estimates to regulate the bottom-hole pressure.

To model the annular pressure and flow in a well using man-
aged pressure drilling, a modification of the model presented
in [22] is used. This model is based on a single mass balance
law and a momentum balance linearized around a constant
mud density. The model is the result of a trade-off between
providing the necessary level of simplicity needed for esti-
mation and control design while at the same time capturing
the dominating dynamics in a single-phase system with lam-
inar pipe flow. To model the reservoir relation, the bottom-
hole boundary condition is replaced by a simple productivity
index inflow model where the flow between the reservoir and
the well-bore is proportional to the bottom-hole and reser-
voir pressure difference. This gives the following model:

pt(z, t) =−
β
A

qz(z, t) (1a)

qt(z, t) =−
A
ρ

pz(z, t)−
F
ρ

q(z, t)−Agcosψ(z) (1b)

q(0, t) = J (pr− p(0, t))+qbit (1c)
p(l, t) = pl(t) (1d)

where z ∈ [0, l] and t ≥ 0 are independent variables of space
and time respectively, l is the well depth, p(z, t) is pressure,
q(z, t) is volumetric flow, β is the bulk modulus of the mud,
ρ is the density of the mud, A is the cross sectional area of
the annulus, F is the friction factor, g is the acceleration of
gravity, ψ(z) is the angle between the positive flow direction
and gravity at position z, J > 0 is called the productivity in-
dex and is assumed unknown, pr is the unknown reservoir
pressure, and qbit is the known flow through the drill bit. It
is assumed that pr satisfies 0 < pr ≤ p̄r where p̄r is some
known upper bound for the reservoir pressure. Moreover, it
is assumed that the choke controller has significantly faster
dynamics than the rest of the system so that the actuation
dynamics can be ignored and the top-side pressure pl re-
garded as a control input. The design goal is to keep the

down-hole pressure equal to the unknown reservoir pressure,
that is p(0, t) = pr such that flow between the reservoir and
well-bore is zero. This implies that the flow through the an-
nulus is equal to the drill bit flow. Based on the design goal,
the control objective

lim
t→∞

∫ t+T

t
|pr− p(0, t)|dτ = 0 (2)

where T > 0 is an arbitrary constant, is selected. To estimate
the distributed pressure and flow state and achieve the con-
trol objective (2), we assume that the following boundary
measurements are available:

• Top-side return flow q(l, t) =: ql(t) .
• Bottom-hole pressure p(0, t) =: p0(t).

In particular, recent advances in wired-drillpipe technology
now provides down-hole pressure in real time, replacing the
older less reliable, low bandwidth mud-pulse-based pressure
measurements.

1.2 Problem statement

The coefficient matrix of (1a) and (1b) (formed by combin-
ing the states into vector form and collecting the coefficients
of the spatial derivatives into a single matrix) has two dis-
tinct, real eigenvalues (±

√
β/ρ), which shows that (1) is

of type hyperbolic. For all linear hyperbolic systems, there
exists a coordinate transformation transforming the system
to characteristic form where the coefficient matrix is diag-
onalized (see e.g. [9]). To ease the control design process
and analysis, but also to make the design slightly more gen-
eral and thereby possibly applicable to other applications,
we will in the following study systems in the form

ut(x, t)+λux(x, t) = c1(x)v(x, t) (3a)
vt(x, t)−µvx(x, t) = c2(x)u(x, t) (3b)

u(0, t) = rv(0, t)+ k(θ − y0(t)) (3c)
v(1, t) = σy1(t)+U(t) (3d)

defined for x ∈ [0,1], t ≥ 0, where u,v are the system states,
λ ,µ > 0, c1(x),c2(x) ∈C([0,1]) are the source terms, r is a
constant and y0 is a measured signal related to the states by

y0(t) = u(0, t)−b0v(0, t) (4)

with b0 6= r. In addition, we have the boundary measurement

y1(t) = u(1, t). (5)

The only unknown parameters are k ∈ [
¯
k, k̄] ⊂ (0,∞) and

θ ∈R where
¯
k and k̄ are known lower and upper bounds on

k required for technical reasons in the controller design. In
order to select the bounds, we must assume that r+ b0k is

2
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nonzero with known sign. The control objective (2) can be
stated in the new coordinate system as

lim
t→∞

∫ t+T

t
|θ − y0(τ)|dτ = 0 (6)

for some arbitrary T > 0.

Remark 1 Related to system (1), λ and −µ represent the
eigenvalues of the coefficient matrix which is unchanged by
the coordinate transformation, the source terms c1,c2 ac-
count for the frictional loss terms, the unknown parameters
J and pr can be recovered from k and θ , y0 is related to the
down-hole pressure measurement while y1 is related to the
top-side flow measurement, and the parameters r and b0 are
trivially equal to −1 and 1, respectively. The details regard-
ing the diagonalizing change of coordinates from (1) to (3)
can be found in Lemma 5 in Section 3.

It is assumed that the initial conditions u(x,0) = u0(x),
v(x,0) = v0(x) satisfy u0, v0 ∈B([0,1]), where

B([0,1]) = { f (x) : sup
x∈[0,1]

f (x)< ∞}, (7)

in which case it can be shown [30] that (3) has a unique
solution that stays in B([0,1]) for all t ≥ 0 for the form of
U(t) used in this paper. The objective is to design a con-
trol input U(t) so that system (3) is adaptively stabilized in
the L2-sense and such that the objective (6) is achieved. The
structure of this problem, with distributed states, and sens-
ing and actuation only at boundaries, fits perfectly into the
control framework of infinite-dimensional backstepping for
PDEs. In addition, the unknown parameter part of the prob-
lem can be handled by combining the backstepping method
with an adaptive parameter update law..

1.3 Previous work

The method of infinite-dimensional backstepping for PDEs
was first introduced for parabolic PDEs in [23,27,28], where
the gain kernel was expressed as a solution to a well-posed
PDE. The first result using backstepping applied on hyper-
bolic PDEs was for first order systems in [19]. The method
was later extended to second order hyperbolic systems in
[26], and to two coupled first order hyperbolic systems in
[32]. The results in the latter were used in [1] for disturbance
attenuation in managed pressure drilling which has similar-
ities to the problem considered in this paper. Disturbance
attenuation and trajectory tracking problems based on the
internal model principle were further studied in [12,20,21].
Adaptive control of parabolic PDEs is extensively studied
in [29]. In recent years, results on adaptive state estimation
and closed loop stabilization for hyperbolic PDEs have also
emerged. Adaptive observers for n+ 1 hyperbolic systems
using sensing collocated with the uncertain boundary param-
eters can be found in [7] using swapping filters, and in [10]
using a Lyapunov approach. The extension to stabilization,

without additive boundary parameter, and sensing at the non-
actuated boundary restricted to the form y0(t) = v(0, t), is
given in [6]. For systems with non-zero additive terms in the
un-actuated boundary, the steady-state profile is non-zero.
For such systems, we study boundary set-point regulation,
where the goal is to control the un-actuated boundary to a
desired set-point, which is unknown a priori. Adaptive set-
point regulation for 2× 2 systems with an affine boundary
condition is considered in [16] and for a bilinear boundary
condition in [15] using a swapping based design. A closed
loop controller achieving boundary set-point regulation can
be designed by defining a reference model and proving sta-
bility in terms of a quantity describing the tracking error. A
model reference adaptive control problem for 2×2 system
with a multiplicative boundary condition is studied in [5].

Previous results on kick attenuation in MPD have mainly
focused on using lumped drilling models. A lumped ODE
model is applied to a gas kick detection and mitigation prob-
lem in [33] by using a method for switched control of the
bottom-hole pressure. Another lumped model for estimation
and control of in-/outflux is presented in [13]. Kick handling
methods for a first-order approximation to the PDE system
is presented in [2] using LMI (Linear Matrix Inequality)
based controller design. In/out-flux detection using an in-
finite dimensional observer is presented in [14]. Kick han-
dling using a distributed PDE model incorporating a model
of the reservoir inflow relation, has to the best of the authors’
knowledge not previously been addressed.

1.4 Contributions and paper structure

The contributions in this paper are twofold. First, a theo-
retical result on adaptive boundary set-point regulation of
system (3) achieving (6) and L2 boundedness of all signals
in the closed loop system is derived in Section 2. This is
achieved by using some of the ideas on model reference
control from [5], but with the additional complexity of hav-
ing, since the parameter θ is unknown, an unknown set-
point (6). Second, both the design from Section 2 and the
theoretical results on set-point regulation using only topside
sensing from [16] are applied to the kick & loss problem in
managed pressure drilling, solving the non-collocated and
collocated sensing and control problem, respectively. Feasi-
bility of applying the designs to the MPD model are stated
in Corollaries 1 and 2 in Section 3. Finally, the two designs
are compared in a simulation study in Section 4, demon-
strating the benefit of having down-hole pressure available.
The new design (the theoretical design in Section 2 with
non-collocated sensing) is a significant improvement over
the design for system (3) offered in [15]. The state- and pa-
rameter estimation scheme avoids swapping filters, thereby
significantly reducing the dynamic order of the controller,
the stability analysis is less involved, and performance when
applied to the MPD problem is improved.
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1.5 Notation

For a signal z : [0,1]× [0,∞)→R, let ||z||=
√∫ 1

0 z2(x, t)dx
denote the L2-norm. For a time-varying, signal f (t), we use
the vector spaces

f ∈Lp↔
(∫ ∞

0
| f (t)|pdt

) 1
p

< ∞ (8)

for p ≥ 1 with the special case f ∈ L∞ ↔ sup
t≥0
| f (t)| < ∞.

The projection operator Proj is defined as

Proja,b(τ,ω) =





0, if ω = a and τ ≤ 0
0, if ω = b and τ ≥ 0
τ, otherwise

(9)

2 Control design with non-collocated sensing

2.1 State and parameter estimation

From (4), we see that we can describe the non-actuated
boundary in the alternative form

u(0, t) = b0v(0, t)+ y0(t). (10)

Since this form eliminates all unknown parameters from the
system, designing an observer estimating the states (u,v)
becomes almost trivial. A state observer converging to the
true states in finite time is presented in Section 2.1.1. Once
the system states are known, we can use boundary condition
(3c) to design adaptive laws estimating the unknown param-
eters. In Section 2.1.2, adaptive laws based on the gradient
method for a bilinear parametric model are presented.

2.1.1 Finite-time convergent state observer

Let û, v̂ be the estimates of u,v respectively, and denote
the estimation error ũ = u− û and ṽ = u− v̂. Choosing the
observer

ût(x, t)+λ ûx(x, t) = c1(x)v̂(x, t)+P1(x)ũ(1, t) (11a)
v̂t(x, t)−µ v̂x(x, t) = c2(x)û(x, t)+P2(x)ũ(1, t) (11b)

û(0, t) = b0v̂(0, t)+ y0(t) (11c)
v̂(1, t) = σy1(t)+U(t), (11d)

with initial conditions satisfying û(·,0), v̂(·,0) ∈B([0,1]),
gives the error dynamics

ũt(x, t)+λ ũx(x, t) = c1(x)ṽ(x, t)−P1(x)ũ(1, t) (12a)
ṽt(x, t)−µ ṽx(x, t) = c2(x)ũ(x, t)−P2(x)ũ(1, t) (12b)

ũ(0, t) = b0ṽ(0, t) (12c)
ṽ(1, t) = 0. (12d)

Selecting the injection term P1,P2 as P1(x) = λPuu(x,1),
P2(x) = λPvu(x,1), where (Puu,Pvu) is the unique solution
to a 2×2 hyperbolic system given in [32, Eq. (67)-(74)], and
using the invertible backstepping transformation [32, Eq.
(60)-(61)], it is possible to show that (12) is equivalent to a
system of cascaded transport equations with a zero boundary
condition so that (ũ, ṽ) will be identically zero for all

t ≥ tF := λ−1 +µ−1 (13)

since the backstepping transformation is invertible.

2.1.2 Parameter estimation

With (u,v) known for all t ≥ tF , we can use boundary con-
dition (3c) to define a known signal e as

u(0, t)− rv(0, t) = k(θ − y0(t)) =: e(t) (14)

with the corresponding estimate

ê(t) := k̂(t)(θ̂(t)− y0(t)). (15)

The gradient method for bilinear parametric models in [17,
Theorem 4.52] can be used to minimize a cost function based
on the square error ẽ2(t)= (e(t)− ê(t))2 and thereby forming
adaptive laws for the parameter estimates θ̂ , k̂. Parameter
projection is employed to force the estimate of k to satisfy
the known conditions on k.

Lemma 1 Consider the adaptive laws

˙̂θ(t) =γ1
ẽ(t)

1+ y2
0(t)

(16a)

˙̂k(t) =Proj
¯
k,k̄

(
γ2
[
θ̂(t)− y0(t)

] ẽ(t)
1+ y2

0(t)
, k̂(t)

)
(16b)

for t ≥ tF and ˙̂θ = ˙̂k = 0 for t < tF , where γ1,γ2 > 0 is the
adaptation gain and where we assume

¯
k ≤ k̂(0) ≤ k̄. The

adaptive laws (16) have the following properties:

(1) θ̂ , k̂, ∈L∞.
(2)

¯
k ≤ k̂(t)≤ k̄ for all t ≥ 0

(3) ẽ√
1+y2

0
∈L2∩L∞

(4) ˙̂θ , ˙̂k, ∈L∞∩L2.
(5) If y0 is bounded for almost all t ≥ 0 and θ̂ − y0 ∈

L2, then θ̂ converges to θ and k̂ converges to some
constant.

The proof is given in Appendix A.1.
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2.2 Closed loop adaptive controller design

In the following stability analysis, it is more convenient to
write boundary condition (3c) in linear form

u(0, t) =rv(0, t)+ k̂(t)(θ̂(t)− y0(t))+ ẽ(t)

=q̂(t)v(0, t)+ d̂(t)+ κ̂(t)ẽ(t) (17)

such that

q̂(t) :=
r+b0k̂(t)
1+ k̂(t)

, d̂(t) :=
k̂(t)θ̂(t)
1+ k̂(t)

, κ̂(t) :=
1

1+ k̂(t)
. (18)

To derive a closed loop control law, we use the infinite di-
mensional backstepping method to stabilize the system by
decoupling the state dynamics (3). Since the objective is
boundary set-point regulation to an unknown set-point, we
design a time varying reference signal and a corresponding
reference model we would like our system to track, such
that the overall control objective is achieved. To give some
intuition behind our selection of control law, we apply a cer-
tainty equivalence principle in Section 2.2.1 and propose a
control law in Theorem 1. To set the stage for the formal
stability proof, which is given in Section 2.3, and to give
some further intuition, we use the reference model to de-
rive a final target system that describes the system tracking
error. Instrumental to the design are the backstepping oper-
ators K1,K2,K10,K20 : B([0,1])×B([0,1])→B([0,1])
given by

K1[a,b](x, t) = a(x)−K10[a,b](x, t)

= a(x)−
∫ x

0
Kuu(x,ξ , t)a(ξ )+Kuv(x,ξ , t)b(ξ )dξ (19a)

K2[a,b](x, t) = b(x)−K20[a,b](x, t)

= b(x)−
∫ x

0
Kvu(x,ξ , t)a(ξ )+Kvv(x,ξ , t)b(ξ )dξ (19b)

where a, b ∈B([0,1]) , (Kuu,Kuv,Kvu,Kvv) is the solution
to the time-varying system of equations

Kuu
x (x,ξ , t)λ +Kuu

ξ (x,ξ , t)λ =−Kuv(x,ξ , t)c2(x) (20a)

Kuv
x (x,ξ , t)λ −Kuv

ξ (x,ξ , t)µ =−Kuu(x,ξ , t)c1(x) (20b)

Kvu
x (x,ξ , t)µ−Kvu

ξ (x,ξ , t)λ =Kvv(x,ξ , t)c2(x) (20c)

Kvv
x (x,ξ , t)µ +Kvv

ξ (x,ξ , t)µ =Kvu(x,ξ , t)c1(x) (20d)

Kuv(x,x, t)λ +Kuv(x,x, t)µ =c1(x) (20e)
Kvu(x,x, t)λ +Kvu(x,x, t)µ =− c2(x) (20f)

Kuu(x,0, t)λ q̂(t) =Kuv(x,0, t)µ (20g)
Kvu(x,0, t)λ q̂(t) =Kvv(x,0, t)µ (20h)

defined over {(x,ξ , t) |0 ≤ ξ ≤ x ≤ 1, t ≥ tF}. From [11],
system (20) has a unique, bounded and continuous solution
(Kuu,Kuv,Kvu,Kvv) for any bounded, nonzero q̂. Moreover,

the mapping (a,b)→ (ā, b̄) given by

ā(x) =K1[a,b](x)
b̄(x) =K2[a,b](x)

(21)

is invertible with unique inverse transformation kernels. In
addition, if ˙̂q ∈L2∩L∞ then (see [6])

||Kuu
t ||, ||Kuv

t ||, ||Kvu
t ||, ||Kvv

t || ∈L2∩L∞. (22)

2.2.1 Main result

Let

Ψ1(x, t) :=−λKuu(x,0, t) (23a)
Ψ2(x, t) :=−λKuv(x,0, t). (23b)

Furthermore, due to projection of k̂ in (16b), q̂(t) given in
(18) is bounded. That is

|q̂(t)| ≤ q̄ := max
∣∣∣∣
r+b0¯

k
1+

¯
k
,

r+b0k̄
1+ k̄

∣∣∣∣ (24)

for all t ≥ 0.

Theorem 1 Let σ̄ be a known constant such that |σ̃ q̄| <
1, σ̃ =: σ − σ̄ . Consider system (3) and the adaptive law
(16). The control law

U(t) =K20[û, v̂](1, t)− σ̃K10[û, v̂](1, t)

+
1− σ̃r
r−b0

θ̂(t)−σ̄y1(t)

− d̂(t)
∫ 1

0
(σ̃λ−1Ψ1(ξ , t)+µ−1Ψ2(ξ , t))dξ (25)

guarantees (6). Moreover, all signals in the closed loop sys-
tem are bounded in the L2-sense, the parameter estimate θ̂
converges to its true value θ and the parameter estimate k̂
converges to some constant.

A schematic of the design showing how the system plant,
observer, control law and adaptive law are interconnected is
given in Figure 2. Before proving Theorem 1, some intuition
behind the selected control law (25) might be clarifying.

Remark 2 If the parameters (k,θ) are known,we have

q :=
r+b0k
1+ k

, d :=
kθ

1+ k
(26)

known, ẽ = 0 from (18) and time-invariant kernels (20)
and (23) (since q = q̂ is constant). It is possible to show that

5

4.3 Paper [68]: Adaptive set-point regulation of linear 2× 2 hyperbolic
systems with application to the kick problem in MPD

113



y1Adaptive law (16)
˙̂θ = ...
˙̂k = ...

System (3)
ut(x, t) = ...
vt(x, t) = ...

Control law (25)
U(t) = ... y0

U

(û, v̂)
Observer (11)
ût(x, t) = ...
v̂t(x, t) = ...

k̂

θ̂

ẽ Est. error (14) and (15)
ẽ = ...

Fig. 2. Structure of the control design.

system (3) is, through the invertible, time-invariant backstep-
ping transformation ω̄(x, t) = K1[u,v](x, t) and ζ̄ (x, t) =
K2[u,v](x, t) for t ≥ tF and, by selecting

U(t) =K20[u,v](1, t)− σ̃K10[u,v](1, t)
+ζ ∗−σ̄y1(t), (27)

equivalent to the system of conservation laws

ω̄t +λω̄x =Ψ1(x)d (28a)

ζ̄t −µζ̄x =Ψ2(x)d (28b)

ω̄(0, t) =qζ̄ (0, t)+d (28c)

ζ̄ (1, t) =σ̃ ω̄(1, t)+ζ ∗. (28d)

System (28) is stable for |qσ̃ |< 1 (see [9, Section 2.1]) and
the steady state solution ω̄(0, ·) = rζ̄ (0, ·) is obtained if ζ ∗
solves

ω̄(0, ·) =rζ̄ (0, ·) (29a)

ω̄(0, ·) =qζ̄ (0, ·)+d (29b)

ζ̄ (0, ·) =d
∫ 1

0
(σ̃λ−1Ψ1(ξ )+µ−1Ψ2(ξ ))dξ

+ σ̃ ω̄(0, ·)+ζ ∗. (29c)

That is, we select

ζ ∗ =
d(1− σ̃r)

r−q
−d

∫ 1

0
(σ̃λ−1Ψ1(ξ )+µ−1Ψ2(ξ ))dξ

=
θ(1− σ̃r)

r−b0
−d

∫ 1

0
(σ̃λ−1Ψ1(ξ )+µ−1Ψ2(ξ ))dξ

(30)

which resembles (25), but with the estimates (û, v̂, θ̂) re-
placed by the true values (u,v,θ). That is, the form of (25)
is motivated by viewing it as a certainty equivalence design
based on (27) and (30). If in addition σ̄ = σ , the system of
conservation laws is reduced to a cascaded set of transport
equations and we have finite time convergence.

Remark 3 It is shown in [8] that complete cancellation of
the top-side reflection σ by the control law (i.e. σ̄ =σ ) might
lead to poor robustness margins in the event of actuator de-
lays. Specifically, it is shown in [8] that systems with distal

reflection θ1 (reflection at un-actuated boundary) and prox-
imal reflection σ (reflection at the actuated boundary) can
not be delay-robustly stabilized if |σθ1| > 1 and a control
law with complete cancellation is unstable if |σθ1|> 1

2 for
any non-zero delay. Instead, a control law giving up finite
time convergence by preserving a small amount of proximal
reflection is proposed and shown to delay-robustly stabilize
the system for an arbitrary positive delay and any |σθ1|< 1.
Here, the parameter σ̄ , in the control law, can be viewed
as a design parameter enabling a trade-off between perfor-
mance and robustness with respect to delays.

2.3 Stability analysis

Using the backstepping transformation

ω(x, t) =K1[u,v](x, t) (31a)
ζ (x, t) =K2[u,v](x, t), (31b)

we get (see [6] for details) the target system

ωt(x, t) =−λωx(x, t)+Ψ1(x, t)(d̂(t)+ κ̂(t)ẽ(t))

−
∫ x

0
Kuu

t (x,ξ , t)K −1
1 [ω,ζ ](ξ , t)dξ

−
∫ x

0
Kuv

t (x,ξ , t)K −1
2 [ω,ζ ](ξ , t)dξ (32a)

ζt(x, t) =µζx(x, t)+Ψ2(x, t)(d̂(t)+ κ̂(t)ẽ(t))

−
∫ x

0
Kvu

t (x,ξ , t)K −1
1 [ω,ζ ](ξ , t)dξ

−
∫ x

0
Kvv

t (x,ξ , t)K −1
2 [ω,ζ ](ξ , t)dξ (32b)

ω(0, t) =q̂(t)ζ (0, t)+ d̂(t)+ κ̂(t)ẽ(t) (32c)
ζ (1, t) =σω(1, t)+U(t)

+σK10[u,v](1, t)−K20[u,v](1, t). (32d)

Inspired by [5], we define a reference model the target sys-
tem should track as

ϕt(x, t)+λϕx(x, t) =Ψ1(x, t)d̂(t) (33a)

φt(x, t)−µφx(x, t) =Ψ2(x, t)d̂(t) (33b)

ϕ(0, t) =q̂(t)φ(0, t)+ d̂(t) (33c)
φ(1, t) =ζ ∗(t)+ σ̃ϕ(1, t) (33d)

with ϕ(·,0), φ(·,0) ∈B([0,1]).

Lemma 2 Consider the reference model (33) with parame-
ter estimates (q̂, d̂) provided by the adaptive laws (16) and
relations (18). If the tracking signal ζ ∗ is selected as

ζ ∗(t) =
1− σ̃r
r− q̂(t)

d̂(t)

− σ̃λ−1
∫ 1

0
Ψ1(ξ , t)d̂(t)dξ

−µ−1
∫ 1

0
Ψ2(ξ , t)d̂(t)dξ (34)
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and provided |σ̃ q̄|< 1, then

(ϕ(0, ·,)− rφ(0, ·)) ∈L2∩L∞ (35)

and
||ϕ||, ||φ || ∈L∞. (36)

The proof is given in Appendix A.2.

It now remains to show that the tracking error converges.
Defining ν =ω−ϕ and η = ζ−φ and subtracting (33) from
(32) and selecting U(t) according to (25) gives the tracking
error dynamics

νt(x, t) =−λνx(x, t)+Ψ1(x, t)κ̂(t)ẽ(t)

−
∫ x

0
Kuu

t (x,ξ , t)K −1
1 [ν +ϕ,η +φ ](ξ , t)dξ

−
∫ x

0
Kuv

t (x,ξ , t)K −1
2 [ν +ϕ,η +φ ](ξ , t)dξ (37a)

ηt(x, t) =µηx(x, t)+Ψ2(x, t)κ̂(t)ẽ(t)

−
∫ x

0
Kvu

t (x,ξ , t)K −1
1 [ν +ϕ,η +φ ](ξ , t)dξ

−
∫ x

0
Kvv

t (x,ξ , t)K −1
2 [ν +ϕ,η +φ ](ξ , t)dξ (37b)

ν(0, t) =q̂(t)η(0, t)+ κ̂(t)ẽ (37c)
η(1, t) =σ̃ν(1, t). (37d)

Our strategy is now to prove stability of the tracking error
system (37) (in the L2-sense), relate this stability result to
our original system (3) and show that the objective (6) is
achieved. This relationship is studied in Lemma 3 below.
Boundedness and convergence to zero in the L2-sense of the
tracking error system (37) is shown in Lemma 4. Finally,
these elements are used to prove Theorem 1.

To study the relationship between the tracking error (15)
and tracking error dynamics (37), we introduce the auxiliary
filter

ϖt(x, t)−µϖx(x, t) =0 (38a)
ϖ(1, t) =ν(0, t)− rη(0, t) =: ϖ1(t) (38b)

with ϖ(·,0) ∈B([0,1]).

Lemma 3 Assume the properties of Lemma 2 hold. If in
addition ||ϖ || ∈L2, then

e ∈L2. (39)

If ||ϖ || ∈L∞, then e and y0 are bounded a.e.

The proof is given in Appendix A.3.

Lemma 4 Consider the tracking error system (37) and the
filter (38). If

|σ̃ q̄|< 1 (40)

then we have

||ν ||, ||η ||, ||ϖ || ∈L2∩L∞ (41)

and
||ν ||, ||η ||, ||ϖ || → 0. (42)

The proof is given in Appendix A.4.

We are now ready to prove the main result stated in Theo-
rem 1.

PROOF. [Proof of Theorem 1] By Lemma 4, we have
||ϖ || ∈L2. It then follows from Lemma 3 that e ∈L2 or
equivalently (θ − y0) ∈L2 which trivially implies (6). Fur-
thermore, since ||ϖ || ∈L∞ from Lemma 4, we have that ϖ
and y0 are bounded for almost all t ≥ 0. We have

ê(t)≤|ϕ(0, t)− rφ(0, t)|+ |ν(0, t)− rη(0, t)|

+
ẽ(t)

1+ y0(t)
(1+ y0(t)), (43)

which by Property 3 in Lemma 1, Lemma 2 and Lemma 3
implies ê ∈L2. Property 5 in Lemma 1 then gives θ̂ → θ
and k̂→ k∞ for some constant k∞. Lastly for boundedness,
combining the results of Lemma 2 and 4 shows boundedness
of ||ω|| ≤ ||ν ||+ ||ϕ|| and ||ζ ||= ||η ||+ ||φ || and from the
invertibility of the transformations ω(x, t) = K1[û, v̂](x, t)
and ζ (x, t) = K2[û, v̂](x, t), we have ||u||, ||v|| ∈L∞.

3 Application to the kick & loss problem in MPD

As discussed in the introduction, the motivation for studying
the control scheme presented in Section 2 and summarized
in Theorem 1 is an application to the kick & loss attenu-
ation problem in MPD where the bottom-hole pressure is
measured by utilizing wired-drill-pipe technology. In addi-
tion to simplifying state estimation, the bottom-hole mea-
surement facilitates using the bilinear form in (3c) and the
bilinear adaptive law which results in strong parameter con-
vergence properties. This section and the next will illustrate
the advantage in control performance of utilizing bottom-
hole pressure measurements for automatic kick & loss han-
dling. So, in addition to an application of the control scheme
in Section 2 (Case 1), we present here the alternative con-
trol scheme from [16] only utilizing topside measurements
(Case 2).

Case 1 The non-collocated case assumes that both the top-
side flow q(l, t) = ql(t) and the down-hole pressure p(0, t)
are measured. Lemma 5 (see below) ensures that system (1)
with the specified measurements and control objective (2)
is equivalent to system (3) with measurements (4) and (5)
and control objective (6), and provides in explicit form the
coordinate transformation.
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Case 2 The collocated sensing and control case assumes
only top side flow q(l, t)= ql(t) is measured. Since the down-
hole pressure measurement is unavailable in this case, it is
more convenient to write the boundary condition in affine
form, giving the system equations

ut(x, t)+λux(x, t) = c1(x)v(x, t) (44a)
vt(x, t)−µvx(x, t) = c2(x)u(x, t) (44b)

u(0, t) = θ1v(0, t)+θ2 (44c)
v(1, t) = σy1(t)+U(t) (44d)

where u,v,λ ,µ,c1,c2 are defined as in the non-collocated
case, θ1 and θ2 are the unknown boundary parameters and
u(·,0), v(·,0)∈B([0,1]). The only measurement is u(1, t) =
y1(t) and the control objective (2) can be stated in the new
coordinate system as

lim
t→∞

∫ t+T

t
|u(0, t)− rv(0, t)|dτ = 0 (45)

for some arbitrary T > 0 where r 6= θ1. As for Case 1,
Lemma 5 provides equivalence between systems (1) and (44)
for Case 2.

Lemma 5 The coordinate transformation

u(x, t) =
1
2

(
A√
βρ

(
p(xl, t)+ρg

∫ xl

0
cosψ(s)ds

+
F
A

qbit lx
)
+q(xl, t)−qbit

)
exp(

lF

2
√

βρ
x) (46a)

v(x, t) =
1
2

(
− A√

βρ

(
p(xl, t)+ρg

∫ xl

0
cosψ(s)ds

+
F
A

qbit lx
)
+q(xl, t)−qbit

)
exp(− lF

2
√

βρ
x) (46b)

where
x =

z
l

(47)

maps system (1) into the forms (3) and (44) with

λ = µ =

√
β
ρ

1
l

(48a)

c1(x) = c2(−x) =− F
2ρ

exp(
lF√
βρ

x) (48b)

θ1 =

(
J
√

βρ
A −1

)

(
J
√

βρ
A +1

) , θ2 =
J(

J
√

βρ
A +1

) pr (48c)

k = J

√
βρ
A

, θ =
A√
βρ

pr (48d)

σ = exp(− lF√
βρ

). (48e)

and

U(t) =− A√
βρ

(
p(l, t)+ρg

∫ l

0
cosψ(s)ds+

F
A

qbit l
)

×exp(− lF

2
√

βρ
) (49a)

y1(t) =
1
2

(
A√
βρ

(
p(l, t)+ρg

∫ l

0
cosψ(s)ds

+
F
A

qbit l
)
+q(l, t)−qbit

)
exp(− lF

2
√

βρ
) (49b)

y0(t) =
A√
βρ

p0(t). (49c)

The measurement y0 is related to (u,v) by

y0(t) = u(0, t)− v(0, t) (50)

implying b0 = 1. Moreover, the control objective (2) is trans-
formed to (6) or (45) with r =−1.

PROOF. The constant terms are removed and the origin
shifted by defining

p̄(z, t) = p(z, t)+ρg
∫ z

0
cosψ(s)ds+

F
A

qbitz (51a)

q̄(z, t) = q(z, t)−qbit . (51b)

Next, introducing the diagonalizing change of variables

ū(z, t) =
1
2

(
q̄(z, t)+

A√
βρ

p̄(z, t)

)
(52a)

v̄(z, t) =
1
2

(
q̄(z, t)− A√

βρ
p̄(z, t)

)
, (52b)

the following relations can be found:

ū(z, t)+ v̄(z, t) =
1
2

(
q̄(z, t)+

A√
βρ

p̄(z, t)

)

+
1
2

(
q̄(z, t)− A√

βρ
p̄(z, t)

)

=q̄(z, t) (53)

and
√

βρ
A

(ū(z, t)− v̄(z, t)) =

√
βρ

2A

(
q̄(z, t)+

A√
βρ

p̄(z, t)

)

−
√

βρ
2A

(
q̄(z, t)− A√

βρ
p̄(z, t)

)

=p̄(z, t). (54)
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Evaluating (51b) at z = 0 gives

q̄(0, t) = q(0, t)−qbit

= J (pr− p(0, t))+qbit −qbit

=−J p̄(0, t)+ Jpr, (55)

inserting the relations (53) and (54) yield

ū(0, t)+ v̄(0, t) = q̄(0, t)
=−J p̄(0, t)+ Jpr

=−J

√
βρ
A

(ū(0, t)− v̄(0, t))+ Jpr

(56)

and by reorganizing the terms and using definitions (48c),
one obtains (44c). Evaluating (46a) and (46b) at x = 0 and
adding them together yield

u(0, t)+ v(0, t) =q(0, t)−qbit = J (pr− p(0, t))

=J

√
βρ
A

(
A√
βρ

pr−
A√
βρ

p(0, t)

)
(57)

and the boundary condition (3c) is obtained with θ and k
given in (48d). Subtracting (46a) evaluated at x = 0 from
(46b) evaluated at x = 0 gives

u(0, t)− v(0, t) =
A√
βρ

p(0, t) (58)

and the measurement (4) is obtained with y0 given by (49c)
and b0 = 1. From (57), it can be seen that p(0, t) = pr corre-
sponds to u(0, t)+ v(0, t) = 0 and the objective (2) is trans-
formed to (6) or (45) with r =−1. The rest of the proof is
similar to the proof of [1, Lemma 10] and therefore omitted.

From (48c) and the fact that J > 0, it can be seen that θ1
satisfies

−1 < θ1 < 1 (59)
which together with r = −1 means that the constraint r /∈
[
¯
θ1, θ̄1] in [16] is satisfied. Inequality (59) can also be used

as lower and upper bounds for θ1. Lower and upper bounds
for θ2 can be found by using that 0 < pr < p̄r as

¯
θ2 = 0 and

θ̄2 = p̄r respectively. From (48d) and J > 0, we have that
sign(k) is known and positive. The bounds [

¯
k, k̄] will depend

on the specific well considered. Furthermore, it can be seen
that the selected b0 and r satisfy the constraint r 6= b0.

Corollary 1 (Non-collocated sensing and control) Consider
the system (1). Let Ĵ and p̂r be the estimates of the unknown
system parameters J and pr generated using the adaptive
law in Lemma 1 and definition (48d). If the system param-
eters and r are selected according to Lemma 5, the control
law

pl(t) =

√
βρ
A

U(t)σ−
1
2 −ρg

∫ l

0
cosψ(s)ds− F

A
qbit l (60)

with U(t) given by (25), guarantees (2) and that all signals in
the closed loop system are bounded. Moreover, the estimate
p̂r converges to its true value pr in the sense

p̂r(t)→ pr. (61)

PROOF. For the first part, it suffices to show that the ac-
tuation pl(t) is related to U(t) through (60), since it is es-
tablished in Lemma 5 that the system (1) takes the form
(3). Solving (49a) for p(xl, t) gives trivially the control law
(60). By Theorem 1, the control objective (2) is achieved for
some T > 0 and all signals in the closed loop are bounded.
Convergence in p̂r follows directly from the definition (48d)
and convergence in θ̂ to θ from Theorem 1.

Corollary 2 (Collocated sensing and control) Consider
the system (1). Let (p̂, q̂) be estimates of the states (p,q)
generated from the observer in [16] and transformation
(46), and let Ĵ and p̂r be estimates of the unknown sys-
tem parameters J and pr generated using the adaptive law
in [16] and definition (48c). If the system parameters and r
are selected according to Lemma 5, the control law

pl(t) =

√
βρ
A

U(t)σ−
1
2 −ρg

∫ l

0
cosψ(s)ds− F

A
qbit l (62)

with U(t) given by the control law in [16], guarantees (2)
and all signals in the closed loop system are bounded. More-
over, the estimate p̂r converges to its true value pr in the
sense ∫ t+T

t
|p̂r(τ)− pr|dτ → 0. (63)

PROOF. For the first part, it suffices to show that the ac-
tuation pl(t) is related to U(t) through (62), since it is es-
tablished in Lemma 5 that system (1) takes the form (3)
with boundary condition (44c). Solving (49a) for p(xl, t) and
evaluating the resulting equation at x = 1 give trivially the
control law (62). By the control law in [16, Theorem 2], the
control objective (2) is achieved for some T > 0 and all sig-
nals in the closed loop are bounded, furthermore it follows
that ∫ t+T

t
|p̂(0,τ)− p(0,τ)|dτ → 0 (64)

and since the control objective (2) is satisfied, we obtain
(63).

Remark 4 Comparing the designs presented in Corollar-
ies 1 and 2, we see that when a down-hole pressure mea-
surement is available, it is possible to estimate both the pres-
sure and flow distribution in the well in finite time. The col-
located design with only top-side flow measurement on the
other hand, achieves only asymptotically converging pres-
sure and flow estimates. Furthermore, with non-collocated
control and sensing we are able to prove convergence in the
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reservoir pressure in the strong sense (61). The greatest ad-
vantage of using the non-collocated design, however, is the
total convergence time of the overall control objective (2).
This will be apparent in the next section.

Remark 5 In reality, the top-side pressure and flow are re-
lated through a choke equation (see eg. [25]). As mentioned
in the introduction, we avoid this dynamic by assuming that
the top-side pressure is directly controllable. As mentioned
in Remark 3, complete cancellation of top-side reflection
might lead to instabilities in the event of time delays intro-
duced by the choke actuation system.

For a typical set of drilling parameters and productivity
indices J in the range [1,385] bbl/psi/day, as reported by
[4], it can be shown that |σθ1| < 1

2 is usually satisfied.
Nonetheless, very large and very small J might fall outside
this region. In those cases, using σ̄ 6= σ satisfying |σ− σ̄ |<
1 might yield sufficient delay-robustness. A rigorous analysis
of the control design in these rare cases is however outside
the scope of this paper. In the simulation in the next section,
the parameters fall within the region where |σθ1| < 1

2 and
we set σ̄ = σ .

4 Simulation

Although both methods can be applied to both a kick han-
dling problem and a loss handling handling problem. The
original model (1) is based on a single-phase assumption.
Even though liquid kicks (oil and water) will introduce new
phases of matter into the system in addition to the mud phase
(and rock cuttings), the model (1) is still a reasonable ap-
proximation as all liquid phases can effectively be lumped
into a single liquid phase [3]. Gas kick on the other hand
can not accurately be modeled by (1). Of the two, gas kicks
is by far the most challenging. For this reason, we will in
the following study a loss scenario where the only circulat-
ing matter is the drilling mud (in addition to rock cuttings)
and the single-phase assumption is satisfied.

Both the control scheme for non-collocated sensing and con-
trol (the non-collocated method) developed in this paper and
the scheme for collocated sensing and control (the collo-
cated method) presented in [16] are implemented in MAT-
LAB and applied to the loss problem in MPD. For the non-
collocated method, the implemented system consists of the
adaptive law of Lemma 1, and the control law (25). For the
collocated method, the observer, adaptive law and control
law from Theorem 1 and 2 in [16] are implemented. The

system parameters are chosen as

β =7317×105 Pa (65a)

ρ =1250kgm−3 (65b)
l =2500m (65c)

A =0.024m2 (65d)

F =50kgm−3 (65e)

g =9.81ms−2 (65f)

qbit =0.1m3 s−1 (65g)

J =1.068×10−8 m3 s−1 Pa−1 (65h)
ψ(z) =0 ∀z ∈ [0, l]. (65i)

The reservoir pressure is initially set to pr(0) = 450bar and
kept constant until a step to pr(t ≥ t0) = 400bar occurs at
t0 = 10s. The system is at steady state at t = 0 with the initial
bottom-hole pressure set equal to the reservoir pressure and
the bottom-hole flow equal to the drill bit flow. This is the
typical scenario of drilling ahead into an unforeseen low-
pressure pocket in the reservoir, causing a loss of circulation
fluid into the formation. The adaptation gains are selected
as γ1 = γ2 = 5. From (48d) we find that k ≈ 0.4 and we use
the projection bounds [

¯
k, k̄] = [k0,1− k0] with k0 = 0.01.

Figures 3 and 4 compare the bottom-hole pressure and flow
when using the two methods. The methods are also com-
pared to a simple control method (the simple method) where
the top-side flow is kept equal to the drill bit flow q(l, t) =
qbit . The figures show that all three methods are able to
attenuate the mud loss. The bottom-hole pressure is stabi-
lized at the reservoir pressure and the net loss out of the
well converge to zero. It is seen that both the collocated
and non-collocated method are significantly faster than the
simple method. Figure 10 shows that the collocated method
offers a ∼ 40% reduction in accumulated out-flow over the
simple method, and the non-collocated an additional ∼ 45%
reduction over the collocated method. As can be seen in
Figures 5 and 6, this is due to the much faster, finite time
convergent observer in the non-collocated design. Figure 9
compares the control input, in terms of controlled top-side
pressure. It is clear that the non-collocated controller reacts
much quicker than the two other methods. Furthermore, we
observe in Figures 7 and 8 that in both designs, the reservoir
pressure estimate converges to the true reservoir pressure
and the productivity index to some constant.

The non-collocated method also has some implementational
advantages over the collocated method: The backstepping
kernels used in the collocated observer are time-varying and
must therefore be solved on-line. In contrast, the injection
terms used in (11) are static and can be solved off-line, yield-
ing a much more computationally efficient observer. Both
methods, however, require time-varying controller kernels
which must be solved on-line.
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Fig. 3. Bottom-hole pressure.

Fig. 4. Bottom-hole flow.

Fig. 5. Bottom-hole pressure estimation error.

Fig. 6. Bottom-hole flow estimation error.

Fig. 7. Reservoir pressure estimate.

Fig. 8. Productivity index estimate.

Fig. 9. Control input signal.

Fig. 10. Accumulated net outflow.
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5 Concluding Remarks

We have studied set-point regulation of a 2× 2 hyperbolic
system with unknown boundary parameters appearing in a
special bilinear form. Measurements at both boundaries al-
lowed us to design a finite-time convergent state observer,
which in turn was used to design adaptive laws based on
a bilinear parametric model. Properties regarding parame-
ter convergence were utilized to design a control law that
achieves boundary set-point regulation. The theory was ap-
plied to the kick & loss attenuation problem in MPD and
compared to an earlier result on stabilization of the same type
of system utilizing only top-side sensing. Significant perfor-
mance improvements was demonstrated for the method uti-
lizing bottom-hole pressure measurements, both in terms of
total convergence time and computational complexity, and
most importantly in terms of total loss size.
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A Proof of Lemma 1 to 4

A.1 Proof of Lemma 1

PROOF. Let

V0(t) = k
1

2γ1
θ̃ 2(t)+

1
2γ2

k̃2(t) (A.1)

for t ≥ tF where θ̃ = θ − θ̂ and k̃ = k− k̂. Differentiating
with respect to time and inserting (16) yield

V̇0(t) =− k
1
γ1

θ̃(t) ˙̂θ(t)− 1
γ2

k̃(t) ˙̂k(t)

=− kθ̃(t)
ẽ(t)

1+ y2
0(t)
− k̃(t)

[
θ̂(t)− y0(t)

] ẽ(t)
1+ y2

0(t)

=− ẽ(t)
1+ y2

0(t)

(
kθ̃(t)+ k̃(t)

[
θ̂(t)− y0(t)

])

=− ẽ(t)
1+ y2

0(t)

(
k [θ − y0(t)]− k̂(t)

[
θ̂(t)− y0(t)

])

=− ẽ2(t)
1+ y2

0(t)
≤ 0 (A.2)

implying V0 ∈ L∞ and Property 1. Property 2 is trivially
guaranteed when using projection. Integrating V̇0 from t = 0
to t = ∞ yields

∫ ∞

0

ẽ2(τ)
1+ y2

0(τ)
dτ =V0(0)−V0(∞). (A.3)

Since V0 is a non-increasing function of time and bounded
below, V0(∞) is finite, and Property 3 follows. From the
adaptive law (16a) we immediately see that ˙̂θ ∈L2. For the
k̂ update law for t ≥ tF , we have

˙̂k(t)≤ γ2

∣∣∣∣∣∣
θ̂(t)+ y0(t)√

1+ y2
0(t)

∣∣∣∣∣∣

∣∣∣∣∣∣
ẽ(t)√

1+ y2
0(t)

∣∣∣∣∣∣
(A.4)

which shows that also ˙̂k ∈L2. Inserting (15) into the adap-
tive law (16a) yields

˙̃θ(t) =− f (t)
(
kθ̃(t)+ k̃(t)

(
θ̂(t)− y0(t)

))
(A.5)

where f (t) = γ1/(1+ y2
0(t)) > 0 for all t > tF . Forming

V0(t) = 1
2 θ̃ 2(t), time differentiating and applying Young’s

inequality to the cross term, we get

V̇0(t) =− f (t)kθ̃ 2(t)− θ̃(t) f (t)k̃(t)
(
θ̂(t)− y0(t)

)

≤− k
2

f (t)θ̃ 2(t)+
1
2k

f (t)k̃2(t)
(
θ̂(t)− y0(t)

)2
.

(A.6)

Since by assumption for Property 5, y0 is bounded for almost
all t ≥ 0, it follows that ess inft≥0 f (t)> 0, which along with
Property 1 and boundedness of f (t), provide the existence
of constants b and c > 0 such that

V̇0(t)≤− cθ̃ 2(t)+g(t)θ̃ 2(t)+b
(
θ̂ − y0(t)

)2
, (A.7)

where g(t) = 0 almost everywhere and therefore g(t) ∈L1.
Since (θ̂ − y0)

2 ∈ L1, it follows from [18, Lemma D.6]
(Lemma 6 in Appendix B) that V0 ∈ L1 ∩L∞ which to-
gether with [31, Lemma 2.7] (Lemma 7 in Appendix B)
imply V0, θ̃ → 0. Convergence in k̂ to some constant can be
shown by integrating (16b) from t = 0 to T = ∞ and apply-
ing Cauchy-Schwarz’ inequality

∫ T

0

∣∣∣ ˙̂k(τ)
∣∣∣dτ ≤γ2

√∫ T

0

∣∣θ̂(τ)− y0(τ)
∣∣2 dτ

×
√∫ T

0

∣∣∣∣
ẽ(τ)

1+ y2
0(τ)

∣∣∣∣
2

dτ < ∞ (A.8)

which, by Property 4 and (θ̂−y0)
2 ∈L1, shows that ˙̂k∈L1.

Then for any ε > 0 there exists a T such that

∫ ∞

T

∣∣∣ ˙̂k(τ)
∣∣∣dτ < ε. (A.9)

Therefore,

∣∣k̂(t)− k̂(T )
∣∣≤
∣∣∣∣
∫ t

T

˙̂k(τ)dτ
∣∣∣∣≤

∫ ∞

T

∣∣∣ ˙̂k(τ)
∣∣∣dτ < ε. (A.10)

which shows that k̂(t) has a limit as t → ∞ and the second
part of the proof of Property 5 is complete.

A.2 Proof of Lemma 2

PROOF. We will in the following use the bounds

sup
x∈[0,1]

| ∂
∂ t

Ψi(x, t)| ≤h3µ| ˙̂k(t)|. (A.11)

In proving the existence of a solution to the kernel equa-
tions (20) in [11], upper bounds on the form |Ki j(x,ξ )| ≤
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h1µ + h2µ|q̂(t)|,{i j} ∈ {uu,uv,vu,vv} are derived. Using
the definitions (18) and (23) and differentiating with respect
to time yield the upper bound (A.11) for some h1,h2,h3 > 0.
Solving the reference model (33) along the characteristics
for t ≥ tF yields

ϕ(x, t) =λ−1
∫ x

0
Ψ1(ξ , t +λ−1(ξ − x))d̂(t +λ−1(ξ − x))dξ

+ϕ(0, t−λ−1x) (A.12a)

φ(x, t) =µ−1
∫ 1

x
Ψ2(ξ , t−µ−1(ξ − x))d̂(t−µ−1(ξ − x))dξ

+φ(1, t−µ−1(1− x)). (A.12b)

To simplify the notation let

ϑ(t) =
d̂(t)

r− q̂(t)
. (A.13)

Evaluating (A.12) at x = 0 and using boundary conditions
(33c) and (33d) together with (34) yield

ϕ(0, t) = q̂(t)φ(0, t)+ d̂(t) (A.14)

and

φ(0, t) = µ−1
∫ 1

0
Ψ2(ξ , t−µ−1ξ )d̂(t−µ−1ξ )dξ

+ σ̃λ−1
∫ 1

0
Ψ1(ξ , t− tF +λ−1ξ )d̂(t− tF +λ−1ξ )dξ

+ σ̃ϕ(0, t− tF)+ϑ(t−µ−1)(1− σ̃r)

− σ̃λ−1
∫ 1

0
Ψ1(ξ , t−µ−1)d̂(t−µ−1)dξ

−µ−1
∫ 1

0
Ψ2(ξ , t−µ−1)d̂(t−µ−1)dξ

=µ−1
∫ 1

0

∫ t−µ−1ξ

t−µ−1

∂
∂ t

Ψ2(ξ ,τ)d̂(τ)dτdξ

+ σ̃λ−1
∫ 1

0

∫ t−tF+λ−1ξ

t−µ−1

∂
∂ t

Ψ1(ξ ,τ)d̂(τ)dτdξ

+ σ̃
(
q̂(t− tF)φ(0, t− tF)+ d̂(t− tF)

)

+ϑ(t−µ−1)(1− σ̃r). (A.15)

Subtracting ϑ(t) from both sides and grouping similar terms
give the following recursion

φ(0, t)−ϑ(t)

=µ−1
∫ 1

0

∫ t−µ−1ξ

t−µ−1

d
dτ

Ψ2(ξ ,τ)d̂(τ)dτdξ

+ σ̃λ−1
∫ 1

0

∫ t−tF+λ−1ξ

t−µ−1

d
dτ

Ψ1(ξ ,τ)d̂(τ)dτdξ

+ σ̃
(
q̂(t− tF)φ(0, t− tF)+ d̂(t− tF)

)

+ϑ(t−µ−1)−ϑ(t)− σ̃rϑ(t−µ−1)

=µ−1
∫ 1

0

∫ t−µ−1ξ

t−µ−1

d
dτ

Ψ2(ξ ,τ)d̂(τ)dτdξ

+ σ̃λ−1
∫ 1

0

∫ t−tF+λ−1ξ

t−µ−1

d
dτ

Ψ1(ξ ,τ)d̂(τ)dτdξ

+ σ̃ q̂(t− tF)(φ(0, t− tF)−ϑ(t− tF))

+ϑ(t−µ−1)−ϑ(t)

+ σ̃rϑ(t− tF)− σ̃rϑ(t−µ−1)

=σ̃ q̂(t− tF)(φ(0, t− tF)−ϑ(t− tF))

+µ−1
∫ 1

0

∫ t−µ−1ξ

t−µ−1

∂
∂ t

Ψ2(ξ ,τ)d̂(τ)dτdξ

+ σ̃λ−1
∫ 1

0

∫ t−tF+λ−1ξ

t−µ−1

∂
∂ t

Ψ1(ξ ,τ)d̂(τ)dτdξ

−
∫ t

t−µ−1

dϑ(τ)
dτ

dτ− σ̃r
∫ t−µ−1

t−tF

dϑ(τ)
dτ

dτ,

(A.16)

which, since |σ̃ q̂(t)| ≤ |σ̃ maxt≥tF q̂(t)| < 1, is stable. By

Lemma 1, dϑ(t)
dt =

˙̂θ
r−b0

and ˙̂k are both bounded and square
integrable, implying

(φ(0, ·)−ϑ) ∈L2∩L∞ (A.17)

which from (A.14) is seen to be equivalent to

(ϕ(0, ·)− rφ(0, ·)) ∈L2∩L∞. (A.18)

Boundedness in the L2-norm can be shown using a similar
argument.

A.3 Proof of Lemma 3

PROOF.

If ||ϖ || ∈L2 holds, that is

lim
T→∞

∫ T

0

∫ 1

0
ϖ2(x, t)dxdt < ∞, (A.19)
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we have after inserting the explicit solution of (38) for t >
µ−1

lim
T→∞

∫ T

µ−1

∫ 1

0
ϖ2(0, t−µ−1(1− x))dxdt < ∞. (A.20)

Substituting τ = t− µ−1(1− x) and changing the order of
integration yields

lim
T→∞

[∫ µ−1

0

∫ τ+µ−1

µ−1
+
∫ T−µ−1

µ−1

∫ τ+µ−1

τ
+
∫ T

T−µ−1

∫ T

τ

]

×µϖ2(0,τ)dtdτ < ∞.
(A.21)

All the inner integrals evaluate to µ−1 or less, and we have

lim
T→∞

∫ T

0
ϖ2(0,τ)dτ < ∞. (A.22)

That is, (ν(0, ·)− rη(0, ·)) ∈L2. Since

|e(t)|=|u(0, t)− rv(0, t)|= |ω(0, t)− rζ (0, t)|
≤|ϖ1(t)|+ |ϕ(0, t)− rφ(0, t)| (A.23)

and from Lemma 2 that ϕ(0, t)−rφ(0, t)∈L2∩L∞, e∈L2
follows. ||ϖ || ∈L∞ implies that ϖ1(t) is bounded a.e, and
in turn that e is bounded a.e, which from the definition (14)
also implies boundedness of y0 a.e.

A.4 Proof of Lemma 4

PROOF. Let

ε2(t) :=
ẽ2(t)

1+ ||ϖ ||2 =
ẽ2(t)

1+ y2
0(t)

1+ y2
0(t)

1+ ||ϖ ||2 . (A.24)

From the definition (14), upper bound |e(t)| ≤ |ϖ1(t)|+
|ϕ(0, t)− rφ(0, t)|, and the fact that |ϕ(0, t)− rφ(0, t)| is
bounded from Lemma 2, and that ϖ1||ϖ ||−1 is bounded a.e.,

it follows that the fraction 1+y2
0

1+||ϖ ||2 is bounded a.e. and since
ê2

1+y2
0
∈L1 from Property 3 in Lemma 1, ε ∈L2 follows.

Let

V1(t) =λ−1
∫ 1

0
e−δλ−1xν2(x, t)dx (A.25a)

V2(t) =µ−1
∫ 1

0
eδ µ−1xη2(x, t)dx (A.25b)

V3(t) =µ−1
∫ 1

0
eδ µ−1xϖ2(x, t)dx, (A.25c)

where (ν ,η) is given by (37) and ϖ by (38). Differentiating
(A.25a), inserting the dynamics (37a), integrating by parts,

using boundary condition (37) and substituting in (A.24)
give

V̇1(t) =−2
∫ 1

0
e−δλ−1xν(x, t)νx(x, t)dx,

−2λ−1
∫ 1

0
e−δλ−1xν(x, t)Ψ1(x, t)κ̂(t)ẽ(t)dx,

−2λ−1
∫ 1

0
e−δλ−1xν(x, t)

∫ x

0
Kuu

t (x,ξ , t)

×K −1
1 [ν +ϕ,η +φ ](ξ , t)dξ dx

−2λ−1
∫ 1

0
e−δλ−1xν(x, t)

∫ x

0
Kuv

t (x,ξ , t)

×K −1
2 [ν +ϕ,η +φ ](ξ , t)dξ dx

≤− e−δλ−1
ν2(1, t)+(1+ ς−1)q̄2η2(0, t)−δV1(t)

+λ−1||Ψ1||2κ̄2ẽ2(t)+V1

+2e−δλ−1
h||Kuu

t ||2(V1(t)+V2(t)+ ||ϕ||2 + ||φ ||2)
+2e−δλ−1

h||Kuv
t ||2(V1(t)+V2(t)+ ||ϕ||2 + ||φ ||2)

+(1+ ς)κ̄2ε2(t)+(1+ ς)κ̄2ε2(t)µV3(t). (A.26)

for some ς > 0 and where we have defined κ̄ :=
supt≥0 κ̂(t) = (1+

¯
k)−1 and used supt≥tF q̂2(t)≤ q̄2, ς > 0

and ||K −1
i [ν +ϕ,η +φ ]|| ≤ h(||ω||+ ||η ||+ ||ϕ||2+ ||φ ||2)

for some h > 0. Differentiating (A.25b) and inserting the
dynamics (37b), we get similarly

V̇2(t) =2
∫ 1

0
eδ µ−1xη(x, t)ηx(x, t)dx,

−2µ−1
∫ 1

0
eδ µ−1xη(x, t)Ψ2(x, t)κ̂(t)ẽ(t)dx,

−2
∫ 1

0
eδ µ−1xη(x, t)

∫ x

0
Kvu

t (x,ξ , t)

×K −1
1 [ν +ϕ,η +φ ](ξ , t)dξ dx

−2
∫ 1

0
eδ µ−1xη(x, t)

∫ x

0
Kvv

t (x,ξ , t)

×K −1
2 [ν +ϕ,η +φ ](ξ , t)dξ dx

≤eδ µ−1
σ̃2ν2(1, t)−η2(0)−δV2(t)

+2eδ µ−1
h||Kvu

t ||2(V1(t)+V2(t)+ ||ϕ||2 + ||φ ||2)
+2eδ µ−1

h||Kvv
t ||2(V1(t)+V2(t)+ ||ϕ||2 + ||φ ||2)

+µ−1eδ µ−1 ||Ψ2||2κ̄2ẽ2(t)+V2(t). (A.27)

Lastly, differentiating (A.25c), inserting the dynamics (38),
and upper bounding ϖ(0, t) by defining q̄r := supt≥0 2(q̂(t)−
r)2 = 2(r−b0)

2κ̄ , we get

V̇3(t) =2
∫ 1

0
eδ µ−1xϖ(x, t)ϖx(x, t)dx

=eδ µ−1
ϖ2

1 (t)−ϖ2(0, t)−δV3(t)

≤eδ µ−1
(q̄rη2(0, t)+2κ̄2ε2(t)+2κ̄2ε2(t)µV3(t))

−δV3(t). (A.28)
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Now forming the Lyapunov function candidate

V4(t) = a1V1(t)+a2V2(t)+a3V3(t), (A.29)

and defining the integrable functions

l1(t) :=(2+ ς +λ−1||Ψ1||2 +µ−1eδ µ−1 ||Ψ2||2)κ̄2ε2(t)

+2e−δλ−1
h(||ϕ||2 + ||φ ||2)

× (||Kuu
t ||2 + ||Kuv

t ||2 + ||Kvu
t ||2 + ||Kvv

t ||2)
(A.30a)

l2(t) :=(µ(2+ ς)+ ||Ψ1||2 + eδ µ−1 ||Ψ2||2)κ̄2ε2(t)

2e−δλ−1
h

× (||Kuu
t ||2 + ||Kuv

t ||2 + ||Kvu
t ||2 + ||Kvv

t ||2)
(A.30b)

and using a3 = a1q̄−1
r e−δ µ−1ς−1 gives the upper bound

V4(t)≤− (δ −1)V4 + l1(t)+ l2(t)V4(t)

− (a1e−δλ−1 −a2eδ µ−1
σ̃2)ν2(1, t)

− (a2−a1(1+2ς−1)q̄2)η2(0, t). (A.31)

Following [9, Theorem 2.4], if |σ̃ q̄|< 1, we can select δ > 1
and ς > 0 such that

(eδ (µ−1+λ−1))σ̃2(1+2ς−1)q̄2 < 1 (A.32)

and a1,a2 such that

eδ (µ−1+λ−1)σ̃2 <
a1

a2
<

1
(1+2ς−1)q̄2 (A.33)

obtaining V̇4(t)≤−V4(t)+ l1(t)+ l2(t)V4(t). It follows from
[18, Lemma B.6] that V4 ∈L1∩L∞, and hence (41). Further-
more, from [31, Lemma 2.17] we have that V8→ 0, which
implies (42).

B Additional stability and convergence lemmas

Lemma 6 (Lemma B.6 from [18]) Let v(t), l1(t), l2(t) be
real-valued functions defined for t ≥ 0. Suppose

0≤v(t), l1(t), l2(t), ∀t ≥ 0 (B.1a)
l1, l2 ∈L1 (B.1b)
v̇(t)≤− cv(t)+ l1(t)v(t)+ l2(t) (B.1c)

for some positive constant c. Then v ∈L1∩L∞.

Lemma 7 (Lemma 2.17 from [31]) Consider a signal g
satisfying

ġ(t) =−ag(t)+bh(t) (B.2)

for a signal h ∈L1 and some constants a,b > 0. Then

g ∈L∞ (B.3)

and
lim
t→∞

g(t) = 0. (B.4)
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4.4 Paper [62]: Adaptive set-point regulation of
linear n + 1 hyperbolic systems with uncer-
tain affine boundary condition using collo-
cated sensing and control

Holta, H. and Aamo, O. M. (2020b). Adaptive set-point regulation of linear n+1 hy-
perbolic systems with uncertain affine boundary condition using collocated sensing
and control. Under review, Systems & Control Letters, submitted January 2020
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4.5 Comments, flaws, limitations and further work
All boundary control schemes seeking finite time convergence in systems with nat-
ural boundary reflections, involve counteracting the unwanted boundary reflection.
This counteracting or cancellation of boundary terms has some robustness issues
related to actuator and sensor delay. This problem was first studied in [13]. The
reviewers of paper [68] (Section 4.3) made us aware of this potential problem and
we modified the paper accordingly. This potential problem is however common to
all boundary feedback control systems seeking attenuation in finite time and is an
important topic for further research.

The same limitation as discussed in Section 2.4 regarding linearization of the
flux density matrix applies to [62].
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CHAPTER 5
Gas kick detection & estimation

5.1 Introduction
The first paper [59] presents an early-lumping design for gas detection and estima-
tion. This is the only early-lumping design in this thesis. An important model-
reduction assumption is made, namely the approximation of the 3× 3 quasi-linear
drift-flux model by a simple transport equation plus a coupled 2 × 2 quasi-linear
system. The validity of this model reduction is investigated further in [69].
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5.2 Paper [59]: A least squares scheme utilizing
fast propagating shock waves for early kick
estimation in drilling

Holta, H. and Aamo, O. M. (2019b). A least-squares scheme utilizing fast prop-
agating shock waves for early kick estimation in drilling. In Proceedings of the
2019 IEEE Conference on Control Technology and Applications (CCTA), pages
1081–1086
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5.3 Paper [69]: Observer design for a two-time-
scale quasi-linear system

Holta, H., Anfinsen, H., and Aamo, O. M. (2020b). Observer design for a two-time-
scale quasi-linear system. Unpublished
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5.4 Comments, flaws, limitations and further work
In the first paper [59], the initial state value is assumed known, and only the un-
known boundary parameters JG, JL and pr are estimated. In the second paper
[69], the boundary parameters are assumed known, and only the unknown states
u and v are estimated. While the assumptions in [59] might be justified in a kick
scenario where the pre-kick drilling conditions can be estimated trivially off-line,
the known-parameter-assumption in [69] is untenable. A kick, by definition, is an
unexpected event caused by insufficient information about the reservoir – well-bore
interface. An important area for further work is therefore to extend the method
in [69] to include parameter adaptation. Moreover, in [69], the slowly propagating
state χ is assumed known. In a drilling application with limited down-hole mea-
surements, an observer estimating the state χ must be included. This inclusion,
however, introduces some problems related to observability which seems to be a
fundamental problem in all kick estimation scenarios with similar limited measure-
ments. Lastly, the recently published backstepping controller for non-autonomous
systems presented in [34] might be extended to observer design and thus present
a better, more robust solution, to the same problem. The method presented in
[106] might also be promising in that regard. Due to all these circumstances, the
authors have decided not to publish the second paper [69]. Nonetheless, the paper
substantiates the utility of the methods presented in Chapter 3 and it is therefore
included in this thesis as an unpublished paper.
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CHAPTER 6
Concluding remarks

Estimating the states and parameters in a drilling system is associated with the
kick & loss estimation problem. The kick & loss detection problem is a statistical
problem which involves the identification of a single explanatory model from a large
set of possible models (one for every conceivable drilling incident). No detection
scheme should be deployed on a stand-alone basis and caution must be taken when
assessing the reliability of the estimates.

There is a reason distributed models, so far, has not been used for real-time kick
and loss estimation. Firstly, the estimation schemes all depend on accurate top-
side flow and pressure measurements. Especially the return flow measurements
are troubled by high levels of noise, significant bias, drifting, and low sampling
rate. Secondly, few theoretical observer and control results have been available for
hyperbolic PDE systems. The control toolbox for ODEs, on the other hand, is
rich. Of course, early lumping is always an alternative, but the loss of fundamental
properties and increased dimensionality makes early lumping designs ill-suited for
on-line implementation. My work has focused on overcoming the second limitation.
Still, much work and investments in measurement technology is needed to overcome
the first limitations. So, at the moment I doubt the designs presented in this thesis
will work using todays measurement equipment. In addition, other important
qualities such as robustness to modeling errors, delays and measurement noise
have only been studied to a limited degree. Nevertheless, some of the results
presented in this thesis might serve as building blocks to yet better estimation and
control schemes that can be used in the future if sufficiently accurate measurement
technologies are implemented in the drilling industry.
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APPENDIX A
Drilling coordinate transformations

The following result is shown for the annulus system i = a. A similar result

holds for the drill-pipe system i = d. For simplicity the subscript i is omitted.

Lemma A.1. For the annulus system i = a, the coordinate transformation

u(x, t) =1
2

(
A(x)√
βρ

(
p(xl, t) + ρg

∫ x

0
(cosψ(s) + f(x)

A(x)qbit)ds
)

+ q(xl, t)− qbit
)

× exp
(
−1

2

∫ x

0
l

√
ρ

β
(−f(sl) + A′(sl)

A(sl)

√
β

ρ
)ds
)

(A.1a)

v(x, t) =1
2

(
−A(x)√

βρ

(
p(xl, t) + ρg

∫ x

0
(cosψ(s) + f(x)

A(x)qbit)ds
)

+ q(xl, t)− qbit
)

× exp
(
−1

2

∫ x

0
l

√
ρ

β
(−f(sl)− A′(sl)

A(sl)

√
β

ρ
)ds
)

(A.1b)

maps system (1.16) with source terms (1.19) into the form (1.10) with

λ = µ :=

√
β

ρ

1
l

(A.2a)

c1(x) := 1
2(−f(xl)− A′(xl)

A(xl)

√
β

ρ
)

× exp
(
−
∫ x

0
l

√
ρ

β
(−f(sl) + A′(sl)

A(sl)

√
β

ρ
)ds
)

(A.2b)

c2(x) = 1
2(−f(xl) + A′(xl)

A(xl)

√
β

ρ
)

× exp
(
−
∫ x

0
l

√
ρ

β
(−f(sl)− A′(sl)

A(sl)

√
β

ρ
)ds
)
. (A.2c)
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A. DRILLING COORDINATE TRANSFORMATIONS

The boundary condition (1.50) is mapped into the form (1.55) with

Q0 = −(1 + k) :=

(
J

√
βρ

A(0) − 1
)

(
J

√
βρ

A(0) + 1
) , d = kθ := J(

J

√
βρ

A(0) + 1
)pr. (A.3)

Or, if p(0, t) is measured, into the form (1.56) with

k0 := J

√
βρ

A(0) , θ0 := A(0)√
βρ
pr (A.4)

and
y0(t) := A(0)√

βρ
p0(t) = u(0, t)− v(0, t). (A.5)

The top-side boundary condition (1.20c), is mapped into the form (1.14b),

v(1, t) = R1y1(t) + U(t), (A.6)

where the boundary control law U(t) and measurement y1(t) are defined as

U(t) :=
(
−A(l)√

βρ

(
p(l, t) + ρg

∫ l

0
(cosψ(s) + f(x)

A(x)qbit)ds
))

× exp
(
−1

2

∫ l

0
l

√
ρ

β
(−f(sl) + A′(sl)

A(sl)

√
β

ρ
)ds
)

(A.7a)

y1(t) :=u(1, t) (A.7b)

and

R1 := exp
(
−
∫ l

0
l

√
ρ

β
(−f(sl) + A′(sl)

A(sl)

√
β

ρ
)ds
)
. (A.8)

Moreover, the control objective (1.57) is equivalent to (1.58) and (1.59).

Proof. To improve the condition number of the solution, constant terms are re-
moved and the origin shifted by defining

p̄(x, t) = p(x, t) + ρg

∫ x

0
(cosψ(s) + f(x)

A(x)qbit)ds (A.9a)

q̄(x, t) = q(x, t)− qbit. (A.9b)

The solution in terms of the new coordinates (p̄(x, t), q̄(x, t)) satisfy

p̄t =− β

A(x) q̄x (A.10a)

q̄t =− A(x)
ρ

p̄x − f(x)q̄. (A.10b)
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The similarity transformation[
ū

v̄

]
:= 1

2

 A(x)√
βρ

1

−A(x)√
βρ

1

[p̄
q̄

]
(A.11)

maps (A.10) into the characteristic form

ūt +

√
β

ρ
ūx =1

2(S1(xl) + S2(xl))ū+ 1
2(S1(xl)− S2(xl))v̄ (A.12a)

v̄t +

√
β

ρ
v̄x =1

2(S1(xl) + S2(xl))ū+ 1
2(S1(xl)− S2(xl))v̄. (A.12b)

where

S1(x) = −f(x), S2(x) = A′(x)
A(x)

√
β

ρ
. (A.13)

Finally, the diagonal elements can be removed and the domain scaled by applying
the transformation

u(x, t) = ū(xl, t) exp
(
−1

2

∫ x

0
l

√
ρ

β
(S1(sl) + S2(sl))ds

)
(A.14a)

v(x, t) = v̄(xl, t) exp
(

1
2

∫ x

0
l

√
ρ

β
(S1(sl)− S2(sl))ds

)
, (A.14b)

mapping (A.12) into

ut + 1
l

√
β

ρ
ux =1

2(S1(xl)− S2(xl))
(
−1

2

∫ x

0
l

√
ρ

β
(S1(sl) + S2(sl))ds

)
v (A.15a)

vt + 1
l

√
β

ρ
vx =1

2(S1(xl) + S2(xl))
(
−1

2

∫ x

0
l

√
ρ

β
(S1(sl)− S2(sl))ds

)
u (A.15b)

which is in the form (1.10) with transport velocities and source terms (A.2).
For the bottom-hole boundary condition, evaluating (A.9) and (A.11) at x = 0

and inserting (1.50) gives

u(0, t) + v(0, t) =q(0, t)− qbit = J (pres − p(0, t))

=J
√
βρ

A(0)

(
A(0)√
βρ
pres −

A(0)√
βρ
p(0, t)

) (A.16)

and the boundary condition (1.56) is obtained with θ0 and k0 given in (A.4). Now
if, y0(t) = u(0, t) − v(0, t) is not measured, starting from (1.56), the boundary
condition

u(0, t) + v(0, t) = k0(θ0 − (u(0, t)− v(0, t))) (A.17)
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A. DRILLING COORDINATE TRANSFORMATIONS

can be solved for u(0, t) as

u(0, t) = −2 k0

1 + k0
(−1

2θ0 − v(0, t)). (A.18)

Let
k = −2 k0

1 + k0
, θ = −1

2θ0 (A.19)

which by inserting (A.4) into (A.19) is equal to (A.3).
For the top-side boundary condition, inserting (A.7) into (A.1) with x = 1 gives

v(1, t) =1
2(U(t) + (q(xl)− qbit)R

1
2
1 ) (A.20)

=1
2(U(t) + (u(1, t)R

1
2
1 + v(1, t)R−

1
2

1 )R
1
2
1 ) (A.21)

=1
2(U(t) + u(1, t)R1 + v(1, t)) (A.22)

and (A.6) follows.
The equivalence between the control objectives (1.57), (1.58) and (1.59) can be

seen from (A.16) and (1.55).
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