• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linearized Difference Networks as Approximate Kernel Methods

Wind, Johan Sokrates
Master thesis
Thumbnail
View/Open
no.ntnu:inspera:40026298:45776823.pdf (926.1Kb)
URI
http://hdl.handle.net/11250/2624603
Date
2019
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1434]
Abstract
I denne artikkelen studerer vi nevrale nettverk som tilnærminger til en relatert kjerne-metode (kernel method). Vi analyserer forutsigelsene gjort av et enkelt nevralt nettverk med et skjult lag. To kilder til varians i forutsigelsene blir identifisert og eliminert gjennom introduksjonen av Lineære Differeanse-Nettverk. Det vises at for en uendelig ensemble av uendelig vide nevrale nettverk, vil forutsigelsene bli nøyaktig de samme som for en kjerne-metode. Vi verifiserer empirisk at endelige Lineære Differanse-Nettverk faktisk gir forutsigelser mer lignende denne ideelle kjerne-metoden enn et normalt nevralt nettverk.
 
In this paper we study neural networks as approximations to a related kernel method. We analyze the predictions made by a vanilla neural network with one hidden layer. Two sources of variance in the predictions are identified and eliminated by introducing Linearized Difference Networks. It is shown that in the case of an infinite ensemble of infinitely wide neural networks (IEIN limit), the predictions will be exactly the same as those produced by a kernel method. We verify empirically that finite Linearized Difference Networks indeed produce predictions closer to this ideal kernel method than a vanilla neural network.
 
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit