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Sammendrag

I denne artikkelen studerer vi nevrale nettverk som tilnærminger til en relatert

kjerne-metode (kernel method). Vi analyserer forutsigelsene gjort av et enkelt nev-

ralt nettverk med et skjult lag. To kilder til varians i forutsigelsene blir identifisert

og eliminert gjennom introduksjonen av Lineære Differeanse-Nettverk. Det vises at

for en uendelig ensemble av uendelig vide nevrale nettverk, vil forutsigelsene bli

nøyaktig de samme som for en kjerne-metode. Vi verifiserer empirisk at endelige

Lineære Differanse-Nettverk faktisk gir forutsigelser mer lignende denne ideelle

kjerne-metoden enn et normalt nevralt nettverk.
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Abstract

In this paper we study neural networks as approximations to a related kernel method.

We analyze the predictions made by a vanilla neural network with one hidden layer.

Two sources of variance in the predictions are identified and eliminated by intro-

ducing Linearized Difference Networks. It is shown that in the case of an infinite

ensemble of infinitely wide neural networks (IEIN limit), the predictions will be

exactly the same as those produced by a kernel method. We verify empirically that

finite Linearized Difference Networks indeed produce predictions closer to this

ideal kernel method than a vanilla neural network.

1 Introduction

Neural networks achieve impressive results in many domains such as speech recognition and computer

vision. However, a complete understanding to why these methods work, is missing. There is a large

discrepancy between practical use and the theory supporting it. For example, theory says that training

even a neural network with a single neuron is NP-hard [11], while in practice neural networks are

trained consistently and successfully with simple first-order methods.

Another challenge in understanding neural networks, is that they train highly flexible models with

many times more parameters than training samples. Empirical results show that large, wide networks

perform better than smaller ones. [10] shows that practical neural networks can perfectly fit random

data. This makes neural networks a poor fit for many theoretical bounds and theory traditionally

applied in machine learning.

Recent works (reviewed in the next section) focus on over-parameterized neural networks, and show

that these networks are often easier to analyze than smaller ones. They also show that in the limit of

infinite width, neural networks are often tractable to analyze analytically. In this paper we will analyze

neural networks as approximations to an Infinitely large Ensemble of Infinitely wide Networks (IEIN

limit). More precisely, we compare neural networks to the mean output (or equivalently expected

output) of an infinite collection of infinitely wide, independently randomly initialized neural networks.

Throughout the paper, we assume that the IEIN limit produces desirable predictions, and therefore

benchmark neural network predictions against the IEIN limit’s predictions. We believe the IEIN limit

is a desirable goal, since empirically, wider networks typically perform better, and by using an infinite

ensemble, we remove all randomness (with respect to initialization) from the predictions.

2 Related work

[3] shows that sufficiently overparameterized neural networks with one hidden layer are guaranteed

to converge to zero training error in the regression setting. Their setup is the same as the one we are

working with, and their chosen neural network is our vanilla network. The required overparameteriza-

tion is huge (> 1030 parameters for MNIST [6]) compared to realistic implementations. They show
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that the training dynamics depend on a Gram matrix H which approaches a constant matrix H∞ in

the limit of infinite number of hidden neurons, H∞ is only a function of the training data (not the

initialization). They prove that H∞ is strictly positive definite under weak assumptions, which they

show is sufficient for guaranteed exponential convergence to zero training error. [2] extends the work

of [3] to deep neural networks in the case of smooth activation functions with bounded derivatives.

They also improve the required amount of overparameterization, but it is still very far from practical

sizes (> 1020 parameters for MNIST).

[8] is studying a neural network with a single hidden layer. Their setup is identical to ours, except

they rescale the network output according to the scale of the training targets. The required overpa-

rameterization is improved significantly compared to previous works. They need only about O(n2)

parameters to guarantee exponential convergence to zero training error, when the input data is drawn

uniformly at random from the unit ball. Additionally, they give some insight into bounding the least

eigenvalue of H∞, and introduce many useful analytical tools to analyze neural network training.

[1] introduces a dual view on neural networks. This includes the dual activation and dual kernel.

They use their dual view to give design principles, support empirical results and new ideas. In this

paper, we make use of dual activation functions to calculate and analyze matrices such as H∞.

[4] investigates the connection between neural networks and kernel methods. They show that during

initialization, neural networks of any depth are equivalent to Gaussian processes in the limit of infinite

width. They also show that in the limit of infinite width, the training dynamics are governed by

a kernel they name the Neural Tangent Kernel. Finally, they investigate empirically how finitely

overparameterized networks compare to the infinite width limit. They find that the behavior of finitely

wide neural networks is close to the theoretical limit of infinite width.

[7] shows that in the limit of infinitely wide neural networks, the networks behave exactly as if they

were linearized around their initialization. They also find excellent empirical agreement between

finitely overparameterized networks and their linearization.

2.1 Contribution

• We analyze the predictions made by a fully trained, infinitely wide, shallow neural network.

During this analysis, we identify a zero-mean noise term in the predictions, which can be

removed to achieve deterministic predictions equal to the IEIN limit. We propose a simple

alteration, applicable to many neural networks, which removes this noise term, and call the

resulting models difference networks. This change is also applicable to finitely sized neural

networks.

• We further employ recent research, which shows that in the infinite limit, neural networks

make the same predictions as if they were linearized around their initialization. This

motivates us to introduce linearized difference networks, also for finitely sized networks,

which we show empirically produce predictions closer to the IEIN limit than the networks

they were linearized from. These networks have desirable theoretical properties, and share
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the same computational complexity as the network they were based upon (up to constant

factors).

• We supplement recent works on identifying the IEIN limit as a kernel method, by providing

explicit formulas and plots of the dual activation functions, and their derivatives, of many

common activation functions. These let us explicitly compute the IEIN limit predictions for

our shallow network model, which we use as reference in the empirical experiments.

• We use the connection with kernel methods to calculate specific numerical values for

λmin(H∞) (the least eigenvalue of H∞) and ‖X‖2, for CIFAR10 [5] and MNIST [6]

datasets, comparing some simple alternatives for dataset preprocessing. These quantities

are essential to several recent analytical bounds on the training dynamics [3][2][8]. The

quantities are dependent on neural network architecture, here we pick a simple neural

network with one hidden layer and ReLU activations. However, to the author’s knowledge,

this is the first time any numerical values for these quantities have been presented for real

world datasets.

3 Neural network model

We consider a neural network with one hidden layer in the regression setting, practically identical to

the networks considered in [3] and [8]. We call this network the vanilla network, in contrast to the

Linearized Difference Network introduced in the following sections.

The network parameters are W ∈ Rm×d, the weights of the first layer, and a ∈ Rm, the output

weights. Here m is the number of hidden neurons, n is the number of training samples and d is the

input dimension.

The neural network output u can be computed as follows.

u(x) = σ(xWT )a (1)

Here σ is the activation function of the neural network.

W and a are initialized element-wise independently as follows:

Wij ∼ N(0, 1) (2)

ai ∼
1√
m

unif[{−1, 1}] (3)

The initialization of a ensures that we have zero-mean expected output at initialization, and the

scaling factor 1√
m

ensures that the network behaves similarly when changing the number of hidden

neurons m. Specifically, it will allow us to define H∞ in later sections. We note that initializing

ai ∼ N(0, 1
m ) would have the same effects, but we choose to follow [3] and [8].

We train the network on a training dataset with inputs X ∈ Rn×d and targets y ∈ Rn. We denote

the i’th training sample Xi and assume that the features are normalized so ‖Xi‖ = 1 for all training

samples.
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The loss function used is the square loss:

L =
1

2
‖y − u(X)‖2 (4)

We train the first layer of the network (W ) using gradient flow, which can be interpreted as gradient

descent with infinitesimal step length. W (0) denotes the weights at initialization, and W (t) may be

computed by the following.

dW

dt
= − ∂L

∂W

T

(5)

A note on notation: in this paper, we abuse notation by implicitly applying functions element-wise

when applied to vectors and matrices. For example σ(X)ij = σ(Xij).

4 Motivation

4.1 Limiting dynamics of predictions

We may study the dynamics of the predictions u(t) during training:

du

dt
=
∂u

∂θ

dθ

dt
= −∂u

∂θ

∂L

∂θ

T

= (6)

∂u

∂θ

∂u

∂θ

T

(y − u) = H(t)(y − u) (7)

Here we defined H(t) := ∂u
∂θ

∂u
∂θ

T
. θ is a vector containing all the parameters we are optimizing. In

our case, we train only W , so θ contains all the elements of W .

[3] note that in the limit of infinite number of hidden neurons (i.e m→∞), H → H∞, where H∞

is independent of t and initialization. It is only dependent on the input training data X . When training

only the first layer (W ), we obtain the following equality.

H∞ij = Xi ·Xj Ew∼N(0,I)(σ
′(Xi · w)σ′(Xj · w)) (8)

In the case of normalized input (i.e ‖Xi‖ = 1), H∞ij is a function of only the dot product Xi ·Xj .

Then, H∞ij = fσ(Xi ·Xj) for some function fσ . We also note that if we define k(x, y) := fσ(x · y),

we get the kernel induced by the neural network training dynamics. We can calculate the function

fσ(x), and hence H∞, efficiently using tools from section 9. Properties and plots of fσ are also

deferred to that section.

4.2 Limiting predictions

We look at the prediction uz(t) our infinitely wide neural network would make for a new feature

vector z ∈ Rd. First we look at the training dynamics of uz(t).
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duz
dt

=
∂uz
∂θ

dθ

dt
=
∂uz
∂θ

∂u

∂θ

T (
y − u(t)

)
= Hz(t)

(
y − u(t)

)
(9)

Here we defined Hz(t) := ∂uz
∂θ

∂u
∂θ

T
.

In the limiting case of infinite width Hz(t)→ H∞z = fσ(Xz)T . In the limiting case, we also have

the exact dynamics of the predictions on the training data

du

dt
= H∞(y − u(t)) =⇒ (10)

d(y − u)

dt
= −H∞(y − u(t)) =⇒ (11)

y − u(t) = exp(−H∞t)(y − u(0)) (12)

Now we are ready to calculate the predictions of the fully trained network.

uz(∞) = uz(0) +

∫ ∞
0

Hz(t)(y − u(t)) dt = (13)

uz(0) +

∫ ∞
0

H∞z exp(−H∞t)(y − u(0)) dt = (14)

uz(0) +H∞z (H∞)−1(y − u(0)) (15)

We finally arrive at the following important equation for the predictions of the fully trained network:

uz(∞) = H∞z (H∞)−1y + uz(0)−H∞z (H∞)−1u(0) (16)

4.2.1 Connection to kernel method

The first term in the predictions, H∞z (H∞)−1y, is what a kernel method with kernel k(x, y) =

fσ(x · y) would predict. To see this, we may rewrite the predictions in a notation more common to

kernel methods.

uz =

n∑
i=1

k(Xi, z)αi (17)

If we optimize the weights α ∈ Rn for zero error on the training data X , we require

n∑
i=1

k(Xi, Xj)αi = yj , for all j ∈ {1..n} (18)

Replacing k(Xi, z) = (H∞z )i and k(Xi, Xj) = H∞ij gives:

uz = H∞z α (19)

H∞α = y (20)
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From this we conclude:

uz = H∞z (H∞)−1y (21)

4.2.2 Remaining terms

We now want to know how the remaining term, uz(0)−H∞z (H∞)−1u(0), contribute to the predic-

tions. First we look at the expected initial output of the network on any fixed input feature x ∈ Rd,

ux(0).

E(ux(0)) = Ew∼N(0,I),a∼unif[{−1,1}]
(
σ(w · x)a

)
= (22)

Ew∼N(0,I)

(
σ(w · x)

)
Ea∼unif[{−1,1}](a) = 0 (23)

Here we utilized the fact that a and w are initialized independently, and that a has expectation zero.

Since uz(0)−H∞z (H∞)−1u(0) is a weighted sum (with weights independent of initialization) of

zero-mean variables, it has expectation zero. This indicates that this is an unwanted noise term, as

it would not be existent in mean predictions of an infinite ensemble of independently initialized

networks (IEIN limit).

We now want to study the amplitude, to see if this error is negligible (e.g goes to zero for infinitely

large networks) or not.

Var(u(0)) = E(u(0)u(0)T ) = Ew∼N(0,I),a∼unif[{−1,1}](σ(XwT )a2σ(XwT )T ) = (24)

Ew∼N(0,I)(σ(XwT )σ(XwT )T ) = gσ(XXT ) (25)

Here we defined the element-wise function

gσ(x · y) := Ew∼N(0,I)(σ(x · w)σ(y · w)), for all x, y s.t ‖x‖ = ‖y‖ = 1 (26)

This function shares many similarities with fσ . We can calculate it efficiently using tools from section

9, there are also plots and analytical expressions for gσ in that section. gσ typically has magnitude

around 1, and is therefore not generally negligible.

As will become apparent in the following section, uz(0)−H∞z (H∞)−1u(0) comes from undoing the

non-zero neural network output at initialization. Since the output at initialization u(0) is independent

of the magnitude of the targets y, the term will mostly be seen when the targets have small magnitude,

while for large magnitudes u(0) will be negligible compared to y. This will also be seen in the

numerical experiments in section 8.
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5 Difference networks

We may simply remove the noise term, uz(0)−H∞z (H∞)−1u(0), discussed in the previous section,

completely. One way to do this is to subtract the network output at initialization from the output

of the trained network. Formally, we define the a vanilla neural network with parameters θ as a

function uθ(x) from an input feature vector x to a prediction. We denote the vanilla network at

initialization uθ(0). In our case, θ denotes W and a. We introduce the difference network, described

by the following equation.

∆u = uθ − uθ(0) (27)

Note that ∆uθ(0)(x) = 0 for any input feature vector x, i.e at initialization the difference network

has zero output for all inputs.

We may train the first layer (W ) of the difference network by gradient flow, the same way as the

vanilla network.

dW

dt
= − ∂L

∂W

T

(28)

The loss of the difference network becomes:

L =
1

2
‖y −∆u(X)‖2 =

1

2

∥∥y + uθ(0)(X) − uθ(X)
∥∥2

(29)

We note that the loss is exactly the same as training a vanilla neural network with shifted targets

y′ = y + uθ(0)(X). This allows us to reuse the results derived in the previous sections. Specifically,

in the infinite width limit, equations (9) and (12) become

∆u(z)

dt
=
du(z)

dt
= H∞z (y′ − uθ(t)(X)) (30)

y′ − uθ(t)(X) = exp(−H∞t)(y′ − uθ(0)(X)) = exp(−H∞t)y (31)

Together, these give us the dynamics of the predictions.

∆u(z)

dt
= H∞z exp(−H∞t)y (32)

Integrating from initialization, we can calculate the predictions of the trained difference network:

∆uz(∞) = ∆uz(0) +

∫ ∞
0

H∞z exp(−H∞t)y dt = H∞z (H∞)−1y (33)
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The predictions of the infinitely wide difference network are hence exactly the predictions of the

IEIN limit, with no variance.

6 Finite width

In practice we are not working with infinitely wide neural networks. It is therefore of interest to look

at how close realistically sized neural networks are to the infinite limit.

6.1 H vs H∞ at initialization

Previous papers[3][2][8] have focused on bounding the minimum eigenvalue of H(t), which is

necessary for guaranteeing exponential convergence of the training error. We instead look at the

matrix (H∞)−
1
2H(H∞)−

1
2 , and prove that it is close to identity. This implies that H is close to

H∞, which means the predictions of the finitely sized neural network become close to the ones of

the IEIN limit.

We will apply the matrix Chernoff bound [9]. λmin(A) and λmax(A) denote the minimum and

maximum eigenvalues of the symmetric matrix A, respectively.

Theorem (Matrix Chernoff). Consider a finite sequence {Xk} of independent, random, self-adjoint

matrices with dimension n. Assume that each random matrix satisfies

Xk � 0 and λmax(Xk) ≤ R almost surely.

Define

µmin := λmin
(∑

k

EXk

)
and µmax := λmax

(∑
k

EXk

)
.

Then

P
{
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

}
≤ n ·

[ e−δ

(1− δ)1−δ

]µmin/R
P
{
λmax

(∑
k

Xk

)
≥ (1 + δ)µmax

}
≤ n ·

[ eδ

(1 + δ)1+δ

]µmax/R

We split H(0) into m independent positive semi-definite matrices. Here diag(x) is the square matrix

with the vector x along its diagonal.

Hk =
1

m
diag

[
σ′
(
XWk(0)

)]
XXT diag

[
σ′
(
XWk(0)

)]
(34)

H(0) =
∑
k

Hk (35)

We assume that |σ′(x)| ≤ B, so σ(x) is Lipschitz continuous with constant B. This is the case for

most common activation functions, for example all activation function discussed in section 9. Most
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remaining activation functions, like σ(x) = 1
2x

2, have bounded derivative in a small section around

x = 0 (say x ∈ [−10, 10]). We may treat these as Lipschitz by noting that with high probability, only

a small section (say 10 standard deviations) around x = 0 of the function will ever be encountered

due to initialization by the normal distribution.

When |σ′(x)| ≤ B, we have

‖Hk‖ ≤
1

m
B2 ‖X‖2 (36)∥∥∥(H∞)−

1
2Hk(H∞)−

1
2

∥∥∥ ≤ B2 ‖X‖2

mλmin(H∞)
(37)

Because E(Hk) = 1
mH

∞, we also have µmin = µmax = 1.

Applying the Matrix Chernoff bound now gives:

P
{
λmin

(
(H∞)−

1
2H(0)(H∞)−

1
2

)
≤ 1− δ

}
≤ n ·

[ e−δ

(1− δ)1−δ

]m/κ
(38)

P
{
λmax

(
(H∞)−

1
2H(0)(H∞)−

1
2

)
≥ 1 + δ

}
≤ n ·

[ eδ

(1 + δ)1+δ

]m/κ
(39)

κ =
B2 ‖X‖2

λmin(H∞)
(40)

Note that bounding this matrix also bounds the minimum eigenvalue of H(0), giving an equally

powerful bound to the one obtained in [8].

λmin
(

(H∞)−
1
2H(0)(H∞)−

1
2

)
≥ 1− δ (41)

=⇒ λminH(0) ≥ (1− δ)λmin(H∞) (42)

This means if we have m ≥ c log(n) B2‖X‖2
λmin(H∞) for some sufficiently large constant c, we will with

high probability have a well-conditioned optimization problem at initialization. I.e at initialization,

‖y − u(0)‖ is shrinking at an exponential rate. The same condition on m also tells us when the

predictions of the neural network will be close to the predictions of the IEIN limit.

Note that when λmin(H∞), B and log(n) are roughly constants, and ‖X‖2 scales as n
d , this gives

the requirement md ≥ c′n. I.e that the number of parameters exceeds the number of training samples

by a (large) constant. This is the common assumption for overparameterized neural networks, as it

often holds true for neural networks in practice [10].

7 Linearization

In the previous section we bounded H to H∞ at initialization. However, H may change during the

optimization process, as it is dependent on W , which is optimized. Previous works [8][3][2] have

tried to bound the change in H by exploiting properties of σ and bounding the distance traveled by

W (t) from initialization. We may however eliminate the problem of the changing H by linearizing

the neural network around its initialization.
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[7] showed empirically that wide neural networks of any depth behave similarly to their linearization.

They also show that infinitely wide networks behave exactly as their linearization. This can be

understood intuitively by the fact that since there are an infinite number of weights, each weight

will change infinitesimally. Hence the activation function will only be evaluated very close to its

initialization, and in this neighborhood the function behaves like its linearization (assuming it is

differentiable in the linearization point).

By linearization we mean taking the first order Taylor expansion of the neural network around its

initialization, with respect to the parameters:

u1
θ = uθ(0) +

∂uθ
∂θ

∣∣∣
θ=θ(0)

(θ − θ(0)) (43)

It is hard to prove whether the non-linearity in the optimization process will bring H(t) closer or

further away from H∞ than its initialization H(0). However, we argue informally that it will most

likely move H(t) away from H∞. Put shortly, the dynamics of H(t) at initialization are highly

dependent on the random initialization of a. This gives the impression that it moves in a random

direction depending on the initialization, and this makes it unlikely for H(t) to move towards H∞.

Also, empirical experiments indicate that the linearized model gives predictions closer to the IEIN

limit than its corresponding non-linear vanilla network.

Another appealing aspect of linearization is that it is easier to find optimization algorithms with good

convergence and guarantees for linear models compared to non-linear models.

7.1 Linearized difference networks

The linearized difference network can be written as

∆u1
θ = u1

θ − uθ(0) =
∂uθ
∂θ

∣∣∣
θ=θ(0)

(θ − θ(0)) =
∂uθ
∂θ

∣∣∣
θ=θ(0)

∆θ (44)

Here we defined ∆θ = θ − θ(0).

A simple, approximate method for linearizing a difference network is by scaling down the targets

y during training and then scaling up predictions during testing. An informal proof sketch of the

validity of this approach is given in the following. Let ε be a small constant denoting the scaling of

the targets. Here we let θ denote only the parameters we are optimizing (i.e W in our case). The loss

and dynamics are as follows:

L =
1

2
‖εy −∆u‖2 (45)

dθ

dt
= −∂L

∂θ

T

= −∂∆u

∂θ

T

(εy −∆u) = −ε∂∆u

∂θ

T

(y − 1

ε
∆u) (46)

d 1
ε∆u

dt
=

1

ε

∂∆u

∂θ

dθ

dt
=
∂∆u

∂θ

∂∆u

∂θ

T

(y − 1

ε
∆u) (47)
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Note that since dθ
dt is proportional to ε, when ε → 0, the perturbation of θ from its initialization

becomes infinitesimal. This in turn gives

d 1
ε∆u

dt
=
∂∆u

∂θ

∂∆u

∂θ

T

(y − 1

ε
∆u) ≈ ∂∆u

∂θ

∣∣∣
θ=θ(0)

∂∆u

∂θ

T ∣∣∣
θ=θ(0)

(y − 1

ε
∆u) (48)

We recognize (48) as the dynamics of the linearized model, with 1
ε∆u ≈ ∆u1

θ. This method, although

simple, is numerically unstable, i.e it might suffer from rounding errors if scaling down y too much.

For a better implementation we should parameterize the network by the difference from initialization,

as done in (44). This gives a more involved implementation that gives the exact linearization and no

numerical problems.

A third possible implementation, which may be implemented efficiently by automatic differentiation

software is as follows. We define the model uθ(0)+δ∆θ, where δ is a scalar parameter which automatic

differentiation is used on. This gives us the simple formula

∆u1
θ =

duθ(0)+δ∆θ

dδ

∣∣∣
δ=0

(49)

The advantage of this method is that it may be used to produce predictions efficiently for neural

network architectures with multiple outputs, useful for different loss functions than the sum squared

loss. However, using this expression for training (i.e differentiating again on ∆θ) requires control

over the automatic differentiation which may be hard to get in some deep learning frameworks.

7.2 Interpretation as data-independent transform

We note that ∆u1
θ = ∂uθ

∂θ

∣∣∣
θ=θ(0)

∆θ may be viewed as a linear combination of transformed input

features. The surprising fact is that the transform, ∂uθ∂θ
∣∣∣
θ=θ(0)

, is independent of the training data!

This means that the linearized difference network may be seen as a way to randomly generate a

data-independent transformation of the input features to a high-dimensional space, and then running

a linear algorithm like linear regression or logistic regression on these transformed features. The

optimization algorithm is usually stochastic gradient descent, and the feature weights (∆θ) are

initialized to zero. This interpretation enables us to apply the vast array of methods developed for

linear methods (for example linear regression), and their theoretical guarantees. One simple idea is to

center and normalize each input feature dimension, after the non-linear transformation. Another idea

is to apply lasso regularization to find the most important feature dimensions. We leave this as an

interesting direction of future work.

8 Numerical verification

To numerically verify the reduced noise of the linearized difference network compared to vanilla

networks, we train both on a subset of MNIST and measure which predictions are closer to the IEIN

limit. The IEIN limit is computed directly using the connection to a kernel method, using closed-form

expressions (58) and (62) from section 9.2.
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Our training data consists of the first 50 zeros and 50 ones from the MNIST dataset. The test set

consists of the next 50 zeros and 50 ones. All these input features are normalized to have unit

length ‖Xi‖ = 1. The targets are set to 0 for zeros and 1 for ones. The targets are then scaled,

this scaling factor is given on the x-axes of figures 1, 2 and 3. We train both a vanilla network

and a linearized difference network (implemented using equation (44)). These networks share the

same initial parameter weights before training. ReLU and erf(2x) were used as activation functions.

We train each network for 10000 batch gradient descent iterations with learning rate 0.01, these

hyper-parameters were manually selected to be sufficient for convergence. The networks were then

evaluated on the unseen test data. If a network gave output u, it’s prediction error was given as
‖u−uIEIN‖
‖y‖ , where uIEIN was computed analytically by applying the limiting kernel method (see

section 4.2.1) on the training and test data.

Figure 1: Comparison between linearized difference network (LD-Net) and vanilla network (Normal),
with the erf activation function, σ(x) = erf(2x). The prediction error along the y-axis is ‖u−uIEIN‖‖y‖ .

13



Figure 2: Comparison between linearized difference network (LD-Net) and vanilla network (Normal),
with the ReLU activation function, σ(x) = max{x, 0}. The prediction error along the y-axis is
‖u−uIEIN‖
‖y‖ .

From figures 1 and 2 we see that linearized difference networks generally produce predictions closer

to the IEIN limit than the corresponding vanilla networks. Note also that the linearized difference

network is independent of target scaling (any fluctuations are due to variance in the sampling and

possibly numerical rounding errors, see figure 3).

We can clearly see that the initialization is causing a lot of variance in the vanilla network predictions

for low target scales. This noise is independent of target scale, and therefore makes up a large

portion of the total noise when the targets are small. Even at no target scaling (y scale = 100) the

initialization causes the bulk of the variance in the vanilla networks. On the other hand, when the

target scales are large, non-linearity from moving parameters causes most of the noise. Because

the ReLU activation function is mostly linear, it suffers less noise from non-linearity than the more

non-linear erf(2x) activation. Vanilla networks with bounded activation functions, like erf, will have

even more problems when fitting large targets, as they may never produce output larger than O(
√
m).

This is not a problem for linearized difference networks, as they may produce predictions of any

magnitude, giving the same predictions (up to scale) independent of target scale.
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Figure 3: Comparison between linearized difference network (implemented as a difference network
with targets downscaled 1000 times) and vanilla network (Normal), with the ReLU activation function,
σ(x) = max{x, 0}. The prediction error along the y-axis is ‖u−uIEIN‖‖y‖ .

We include an example of results obtained by implementing the linearized difference network as

a difference network with downscaled targets in Figure 3. We see the numerical rounding errors

causing problems for large networks with already low target scales, in the lower left part of the figure.

We need to be careful to avoid this combination of small targets, large networks and high target

downscaling in the implementation. This simple and efficient implementation can otherwise be seen

to produce results very close to the implementation using equation (44), which was used in Figure 2.

9 Dual activation

Within our analysis we often come across expressions involving fσ and gσ. The function fσ(c) can

be used for calculating H∞ = fσ(XXT ), and gσ(c) can be used for calculating the covariance of

the initial output of the neural network gσ(XXT ). gσ(c) also describes the kernel we get if we train

the output layer instead of the input layer H∞ = gσ(XXT ).

It is therefore of interest to calculate fσ and gσ for common activation functions, and find closed

form expressions when possible. [1] introduces the dual of an activation function. In their terms, gσ
is the dual activation of the activation function σ. They give many more or less practically useful

properties of the dual activation function and its relationship with the original activation function. In

this section, we list some properties allowing for practical calculation of fσ and gσ . Additionally, we

compute and plot fσ and gσ numerically for a variety of activation functions.
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9.1 Practical tools for calculation

The tools in this section can be derived from results in [1]. This section is however arguably more

specific towards computing fσ and gσ , than the results in [1].

If we have ways to calculate gσ(c), we can use the following identities to calculate fσ(c), and extend

properties from gσ(c) to fσ(c). We therefore focus on properties of gσ(c).

fσ(c) = c gσ′(c) = c g′σ(c) (50)

We want to efficiently calculate expectations of the following form:

gσ(x · y) = Ew∼N(0,I)(σ(x · w)σ(y · w)), for x, y s.t ‖x‖ = ‖y‖ = 1 (51)

One useful way to rewrite the function is as follows:

gσ(c) =

∫ ∞
−∞

∫ ∞
−∞

σ(x)σ(y)
1

2π
√

1− c2
exp(

2xyc− x2 − y2

2(1− c2)
) dx dy (52)

The problem is also closely related to Hermite polynomials, as shown in the following form.

gσ(c) =

∞∑
k=0

ck
(∫ ∞
−∞

1√
2πk!

σ(x)Hek(x) exp(−x
2

2
) dx

)2

(53)

Here, Hek(x) is the k’th probabilists’ Hermite polynomial.

Noting that γk :=
∫∞
−∞

1√
2πk!

σ(x)Hek(x) exp(−x
2

2 ) dx is the k’th coefficient of the Hermite series

of σ, we can also write (53) as:

gσ(c) =

∞∑
k=0

ckγ2
k (54)

Differentiation of σ leads to differentiation of gσ:

gσ′(c) = g′σ(c) (55)

Rescaling σ rescales gσ:

gaσ(c) = a2gσ(c) (56)

Offsetting σ, offsets gσ:

gσ+b(c) = gσ(c) + b2 + 2b
√
gσ(0) (57)
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9.2 Duals of common activation functions

Using the tools from the preceeding section, we compute the analytical forms of several activation

functions (58-63). We note again that fσ(c) = c g′σ(c).

fReLU(c) =
c

2

(
1− cos−1(c)

π

)
(58)

gReLU(c) =

√
1− c2 + c

(
π − cos−1(c)

)
2π

(59)

fsin + cos(c) = cec−1 (60)

gsin + cos(c) = ec−1 (61)

fa·erf(γx)+b(c) =
2a2c

π

(
(1 +

1

2γ2
)2 − c2

)− 1
2 + b2 (62)

ga·erf(γx)+b(c) =
2a2

π
tan−1

(
c
(
(1 +

1

2γ2
)2 − c2

)− 1
2

)
+ b2 (63)

When interpreting (58-63) as kernels, it is important to remember the condition ‖x‖ = ‖y‖ = 1. This

means c = x · y = 1− ‖x−y‖
2

2 . Then we can rewrite for example, gsin + cos(x · y) = e−
‖x−y‖2

2 and

recognize it as the RBF kernel.

We implemented equation (53) by numerical integration, and use this to plot fσ and gσ for a variety

of standard activation functions used in neural networks. See figure 4 and figure 5. Each result in

(58-63) was indistinguishable from it’s numerical approximation when overlaying the numerical and

exact solutions in plots.

We note that the sigmoid and tanh activation functions are very well approximated by rescaled

versions of erf. We define

erfa(x) :=
erf(x/2.4) + 1

2
≈ sigmoid(x) (64)

erfb(x) := erf(x/1.2) ≈ tanh(x) (65)

We may use these approximations to get approximate closed form expressions for fsigmoid(c),

gsigmoid(c), ftanh(c) and gtanh(c). We note that there are several other similar activation functions (like

tan−1) which can also be approximated in this way.
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Figure 4: Numerical fσ for different activation functions and different scalings of the activation
functions. For example "Tanh (3x) / 3" means σ(c) = 1

3 tanh(3x)

Figure 5: Numerical gσ for different activation functions and different scalings of the activation
functions. For example "Tanh (3x) / 3" means σ(c) = 1

3 tanh(3x)
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9.3 λmin(H∞) and ‖X‖ for real datasets

In the case of finite width neural networks, as shown in section 6.1, we depend on the two quantities

‖X‖ and λmin(H∞) (the minimum eigenvalue of H∞) to bound the approximation of H∞ by H .

These two quantities were also contained in the bounds of [8], [2] and [3], both for bounding the

number of required hidden neurons m, and for bounding the convergence rate of gradient descent

training.

[8] studied these quantities under the assumption that each training sample was chosen uniformly

from the unit ball in dimension d. They claim that λmin(H∞) is roughly constant, and ‖X‖ scales

roughly as
√

n
d "in many cases". Verification of these claims for real datasets has however, to the

author’s knowledge, not been done. We calculating the quantities for two common datasets: MNIST

[6] and CIFAR10 [5].

We consider three different ways to preprocess the input features:

• Normalization

Each training image is normalized so that ‖Xi‖ = 1.

• Zero-mean

We subtract the average image intensity of each image from it Xi → Xi(I− 1
d11

T ). Here 1

is a column vector of ones, and I is the identity matrix. The image is then normalized.

• Whitening

Each training image is first made to have zero mean. The dataset is then whitened by

singular value decomposition, so that each of the d feature directions has unit variance (PCA

whitening). Each image is then normalized.

We calculated ‖X‖2 by finding the largest eigenvalue of the symmetric matrix XTX . H∞ for the

ReLU activation function, was obtained by using the closed form expression fReLU(XXT ) given in

equation (58). We note that the results were calculated using 32-bit floating point numbers, so they

might contain slight rounding errors.

‖X‖2 λminH
∞

MNIST / normalization 24454.8 0.01515

MNIST / zero-mean 18488.5 0.01574

MNIST / whitening 314.871 0.02003

CIFAR10 / normalization 40885.2 0.00647

CIFAR10 / zero-mean 8154.87 0.01311

CIFAR10 / whitening 33.7366 0.09878

For MNIST, n = 60000, d = 784. While for CIFAR10, n = 50000, d = 3072. We see that

preprocessing can have a dramatic effect on how well the dataset is conditioned. With whitening

we come close to the bounds on random samples from the unit ball predicted by [8] for ‖X‖. For

MNIST: 314.871/4.1 < n
d ≈ 77, while for CIFAR10: 33.7366/2.1 < n

d ≈ 16.
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10 Discussion

10.1 Extension to other over-parameterized models and loss functions

Most of the central derivations in this paper make few assumptions on the neural network architecture.

The main requirements for applying linearized difference networks to a model are: optimization by

(stochastic) gradient descent and training an over-parameterized model. The technical requirement of

H∞ existing in the limit of infinite width, is often automatically satisfied, because the models are

usually already scaled so they don’t change output scaling when increasing the number of parameters.

Supported models includes convolutional networks, recurrent networks, some attention models,

different loss functions, etc. In these cases, the linearized difference networks should produce

predictions closer to the IEIN limit than their vanilla counterparts for the same reasons as our shallow

network. These linearized difference networks would also enjoy the theoretical properties explained

in section 7.2.

To apply linearized difference networks in these settings we may use the same definition as in (44),

but generalized to vector outputs.

∆u1
θ =

∂uθ
∂θ

∣∣∣
θ=θ(0)

∆θ (66)

The network output ∆u1
θ may then be trained by (stochastic) gradient descent on any loss function.

For practical implementations, we may use the tricks and reformulations described in section 7.1. In

this paper we only verified the validity of using linearized difference networks on a simple, shallow

neural network with accessible IEIN limit. Evaluating the performance of these more complicated

linearized difference models on real world datasets remains an exciting avenue for future research.

10.2 Using a neural network vs directly using the limiting kernel method

Since we can compute the exact IEIN limit using kernel methods, it might seem unnecessary to train

neural networks at all. However, there are advantages to using neural networks. The most important

advantage might be that the computational cost of evaluating a neural network does not depend on

the number of training samples. Even if the number of parameters of the neural network is much

larger than the number of training samples, the number of hidden nodes is typically smaller. This

may lead to better computational complexity compared to kernel methods (which often require the

complexity of about one hidden node per training sample). Additionally, several techniques, such as

early stopping, dropout, etc., were developed to improve neural networks, and some of them might

be hard to apply successfully to kernel methods.

11 Conclusion

In this paper, we have introduced linearized difference networks, an extension to over-parameterized

neural networks. This model was analytically shown to remove noise in the predictions made

by vanilla neural networks, in the case of infinitely wide networks, when compared to an infinite
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ensemble of infinitely wide neural networks (IEIN limit). We also showed empirically that even for

finitely sized linearized difference networks, they produce predictions closer to the IEIN limit than

their vanilla counterparts. This was made possible through analytical analysis allowing us to compute

the exact predictions of the IEIN limit, by exploiting the connection to a kernel method. Finally, we

discussed how linearized difference networks may be extended to deep networks and different loss

functions, and view this as an exciting direction of future research.
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