• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elektroniske systemer
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elektroniske systemer
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Readout instrumentation for Fabry-Perot sensors

Bartholsen, Ingebrigt
Master thesis
Åpne
13601_FULLTEXT.pdf (Låst)
13601_COVER.pdf (Låst)
13601_ATTACHMENT.zip (Låst)
Permanent lenke
http://hdl.handle.net/11250/2615963
Utgivelsesdato
2015
Metadata
Vis full innførsel
Samlinger
  • Institutt for elektroniske systemer [1532]
Sammendrag
Continuous monitoring of blood glucose levels (BGL) on intensive care unit (ICU)

patients opens up for the possibility of keeping insulin at normal levels. This

method is called intensive insulin therapy (IIT) and reduces both recovery time,

chances for complications and death, thus saves the hospital resources. Before

IIT can be employed as the standard treatment, better products are needed for

continuous glucose monitoring (CGM).

GlucoSet A/S is currently developing a CGM system based on a Fabry-Pérot

(FP) hydrogel sensor that responds to BGL by changing length. By sending a

light spectrum to the sensor and measuring the interference pattern returned,

information about the length of the sensor cavity is achieved; the frequency of

the interference pattern directly depends on the length of the cavity.

In this thesis an accurate quadrature demodulation technique (QDT) used by GlucoSet

today in a scientific setup, it transfered over to a 32-bit microcontroller

unit (MCU) based platform. Simulation of critical parameters such as superluminescent

light emitting diode (SLED) light source bandwidth is conducted and

performance improving alterations are made on the algorithm to make it perform

faster calculations. The results showed that the QDT can be implemented on a

32-bit MCU; when the SLED bandwidth is 80nm the phase estimate calculates

cavity length with a <0.21% error(~±50 nm), while the QDT phase estimate

tracks changes in cavity length with a <0.013% error(~±3 nm). If real sensor

measurements yields the same accuracy as simulated in this thesis, less accurate

components are suggested tested to benefit from an accuracy/price trade-off as

further work.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit