Vis enkel innførsel

dc.contributor.advisorTesdal, Nils
dc.contributor.authorCabala, Andrzej
dc.contributor.authorGautvik, Eivind
dc.contributor.authorNerland, Trygve
dc.date.accessioned2019-08-21T14:00:30Z
dc.date.issued2019
dc.identifierno.ntnu:inspera:43470939:44005098
dc.identifier.urihttp://hdl.handle.net/11250/2609596
dc.descriptionFull text available on 2022-05-20
dc.description.abstractKraftigere maskinvare og bedre maskinlæringsbibloteker gir nye muligheter for databehandling og analyse. Selv-lærende algoritmer har vist at de er i stand til å utkonkurrere menneskeskapte systmer i flere felt, og har blitt viktige deler av mange systemer. I denne rapporten skal vi se på mulighetene rundt risikovurdering av transaksjoner med henysn på data som allerede er inkludert innad i transaksjonene ved å bruke maskinlæring. Videre skal vi demonstrere våre forsøk på å utvikle en modell til å forutse driftsdata med nevrale nettverk, som LSTM og GRU. Målet vårt er å bestemme om metodene kan anvendes på datasettene, og å lage et gjennomførbarhetsbevis, istedenfor et komplett system. Vi skal beskrive relevant maskinlæringsteori, og foreslå videre arbeid.
dc.description.abstractThe rise of machine learning allows for many new applications in data analysis and prediction. Self-learning algorithms have shown themselves to be capable of outperforming human-made systems in several fields, and have been integrated on a large scale in human computer systems. In this document, we will first examine the possibility of risk-scoring transactions with respect to the data already sent as part of the transactions, using unsupervised machine learning. Then, we will showcase our attempts at creating a model to predict maintenance data time series with Recurrent Neural Networks such as LSTM and GRU. Our goal is to determine whether the methods are applicable to the data sets, and to create proofs of concept, rather than working systems. Relevant machine learning theory will be introduced, and further work suggested.
dc.languageeng
dc.publisherNTNU
dc.titleUsing Machine Learning to Detect Fraud and Predict Time Series
dc.typeBachelor thesis


Tilhørende fil(er)

FilerStørrelseFormatVis

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel