
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Andrzej Cabala
Eivind Gautvik
Trygve Nerland

Using Machine Learning to Detect
Fraud and Predict Time Series

Bachelor’s project in Computer Engineering
Supervisor: Nils Tesdal

May 2019

Andrzej Cabala
Eivind Gautvik
Trygve Nerland

Using Machine Learning to Detect Fraud
and Predict Time Series

Bachelor’s project in Computer Engineering
Supervisor: Nils Tesdal
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

1

Abstract

The rise of machine learning allows for many new applications in data analysis
and prediction. Self-learning algorithms have shown themselves to be capable of
outperforming human-made systems in several fields, and have been integrated on
a large scale in human computer systems.

In this document, we will first examine the possibility of risk-scoring transactions
with respect to the data already sent as part of the transactions, using unsupervised
machine learning. Then, we will showcase our attempts at creating a model to
predict maintenance data time series with Recurrent Neural Networks such as LSTM
and GRU. Our goal is to determine whether the methods are applicable to the data
sets, and to create proofs of concept, rather than working systems. Relevant machine
learning theory will be introduced, and further work suggested.

Sammendrag

Kraftigere maskinvare og bedre maskinlæringsbibloteker gir nye muligheter for databehan-
dling og analyse. Selv-lærende algoritmer har vist at de er i stand til å utkonkurrere
menneskeskapte systmer i flere felt, og har blitt viktige deler av mange systemer.

I denne rapporten skal vi se p̊a mulighetene rundt risikovurdering av transak-
sjoner med henysn p̊a data som allerede er inkludert innad i transaksjonene ved
å bruke maskinlæring. Videre skal vi demonstrere v̊are forsøk p̊a å utvikle en
modell til å forutse driftsdata med nevrale nettverk, som LSTM og GRU. Målet
v̊art er å bestemme om metodene kan anvendes p̊a datasettene, og å lage et gjen-
nomførbarhetsbevis, istedenfor et komplett system. Vi skal beskrive relevant maskin-
læringsteori, og foresl̊a videre arbeid.

2

Foreword

We acquired our bachelor task from Signicat. The task seemed interesting and
challenging enough for us to improve our machine learning knowledge. The goal
of the project is not to develop a product, but rather to create a proof of concept,
and therefore we had no use for extensive documentation or any specific software
development methodology. We started with what some of us already knew of basic
machine learning, and went onward from there.

During the initial weeks we had no data available, and we spent our time reading
relevant articles and testing algorithms on generated data. We had no knowledge of
the systems, and did not know whether or not we could access them, so we had to rely
on help from employees to retrieve the data. Our intention was to prepare ourselves
for the production data, by making sure we would have functioning machine learning
methods ready. The primary problem was that some of our methods were based on
supervised learning, which requires a form of indicator to train. Unfortunately the
production data had no such, and we had to change our approach to find a solution.

We had to turn to unsupervised machine learning methods in order to have any
chance to classify the data. Yet again, the lack of any fraud indicators made it
impossible to be certain about the correctness of our results. As a result we had to
modify our task to something more achievable. We agreed with the task giver to
instead attempt to predict performance metrics using machine learning. The reason
why we chose this instead, is because all the necessary data is already available
from within Signicat, and the results are therefore verifiable. We quickly acquired
the necessary access, although much of the project time had already passed by then.
This new task allowed us to create a simple demonstration of how machine learning
applies to the time series. This is also the reason the report is split in two parts.
The first part details our progress with the original task, while the second describes
the task we spent most of the semester on, the time series prediction.

Acknowledgements

Special thanks to Magnus Selvaag for helping us interfacing with Signicat’s systems,
and suggesting courses of action. Additional thanks to Signicat and Lars Klemet-
saune for providing us with computers, a work space and a bachelor thesis task. We
also wish to thank Nils Tesdal for guidance and wisdom throughout the project.

Contents 3

Contents

1 Introduction 7
1.1 Task and Objective . 7

1.1.1 Original Task description . 7
1.2 Software Base . 8

2 Theory Part 1 9
2.1 Scaling Data . 9

2.1.1 Min-Max Scaler . 9
2.1.2 Standard Scaler . 10
2.1.3 Robust Scaler . 10
2.1.4 Normalization . 10

2.2 Clustering . 10
2.2.1 Distance Calculation . 10
2.2.2 Categories of Clustering Algorithms 10

2.3 Association Rule . 12
2.4 Dimension Reduction . 13

2.4.1 Principal Component Analysis (PCA) 14
2.4.2 Independent Component Analysis (ICA) 14
2.4.3 t-distributed Stochastic Neighbor Embedding (t-SNE) 14
2.4.4 Isometric Mapping (ISOMAP) 14
2.4.5 Uniform Manifold Approximation and Projection (UMAP) . . 14

2.5 Outlier Detection . 14
2.5.1 Methods for Unsupervised Outlier Detection 15

3 Method Part 1 16
3.1 Initial Work . 16
3.2 After Receiving Datasets . 16
3.3 Strategy . 17
3.4 Data . 17

3.4.1 Production Authentication data 17
3.4.2 BankID Data . 18

3.5 Clustering . 18
3.6 Association Rules . 18
3.7 Outlier Detection . 19
3.8 Choices . 19

3.8.1 Scaling . 19
3.8.2 Dimension Reduction . 19
3.8.3 Outlier Detection . 20
3.8.4 Difficulties . 21

4 Contents

4 Analysis Part 1 22

5 Discussion Part 1 25

5.1 Reliability . 25

5.2 Result . 25

6 Conclusion Part 1 27

6.1 Further Work . 27

7 Introduction Part 2: Time series 28

7.1 Thesis Problem . 28

8 Theory Part 2 29

8.1 Time Series . 29

8.1.1 Forecasting . 29

8.2 Neural Networks . 30

8.2.1 RNN . 31

8.2.2 LSTM . 31

8.2.3 GRU . 32

8.2.4 Optimizers . 32

8.3 Regression . 33

8.3.1 Linear Regression . 33

8.4 Decision Tree . 34

8.4.1 Random Forest . 34

8.5 SVM . 35

8.6 Common Challenges in Machine Learning 35

8.6.1 Datasets . 35

8.6.2 Run Time . 36

8.6.3 Overfitting and Underfitting 36

8.6.4 Exploding/Vanishing Gradient 36

8.7 Training, Validation and Test Sets . 36

8.7.1 Train-Test Split . 36

9 Method Part 2 39

9.1 Datasets . 40

9.1.1 Pre-processing and Scaling . 41

9.2 Naive Approach . 41

9.3 Feature Selection . 41

9.4 Scikit-learn Regression Methods . 42

9.5 Model Optimization . 42

9.5.1 Bayesian Optimization . 42

9.5.2 Early Stopping . 43

9.6 Comparability of Results . 43

10 Analysis Part 2 44

10.1 Talos . 44

10.2 Comparison . 45

10.3 Final Model . 47

Contents 5

11 Discussion Part 2 49

12 Conclusion Part 2 51
12.1 Further Work . 51

List of Figures 52

List of Tables 54

Bibliography 55

A Talos Run 1 60

B Talos Run 2 69
B.1 Sorted by validation loss . 69
B.2 Sorted by test loss . 71

6 Contents

Abbreviations

DBSCAN Density-Based Spatial Clustering of Applications with Noise

ELU Exponential Linear Unit

GeoIP Geographical information based on an IP address

GRU Gated Recurrent Unit

HDBSCAN . . Hierarchical DBSCAN

ICA Independent Component Analysis

ISOMAP Isometric Mapping

LARS Least-angle regression

LASSO least absolute shrinkage and selection operator

LSTM Long Short-Term Memory

MIMO Multi-Input Multi-Output

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RNN Recurrrent Neural Network

SVM Support Vector Machine

t-SNE t-distributed Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection

Chapter 1. Introduction 7

Chapter 1

Introduction

In our increasingly digitized world where thousands of users access services that
handle sensitive information at any time, there are always new threats to our security
and privacy. While new security measures are constantly being created and broken,
could machine learning provide us with some stability?

Signicat is responsible for maintaining and developing authentication services
for many other services which require high security. Our goal is to explore whether
machine learning can be used to estimate the chances of authentication fraud within
these services, and complement existing methods used to detect suspicious user
activity. This would allow Signicat to offer better fraud detection services to their
customers, by helping to prevent misuse of their systems.

In this report, we will first describe some relevant theory, and then detail the
path we took in order to reach a solution. Finally, we will reflect on the results and
their reliability.

1.1 Task and Objective

Our goal is to determine whether machine learning algorithms can be used to supple-
ment and improve the services used to detect fraud and abuse provided by Signicat.
Should that be the case, we are to create a proof of concept for a ”fraud risk score”
to aid those services.

1.1.1 Original Task description

Signicat has for several years delivered solutions for strong authentication and sign-
ing in Scandinavia, and is now about to establish solutions for the rest of Europe. In
addition to being an ID hub Signicat wants to deliver value added services on top as
registry lookups and similar. Signicat collects huge amounts of data about a person’s
use of electronic ID and signing and wants to use these data in order to avoid fraud
and abuse. The solution need to comply with GDPR regulation and the end-user’s
need for confidentiality protection.

The students should create a proof of concept that covers the following aspects:

• Find and normalize data from different ID providers

• Anonymize data when required

8 Chapter 1. Introduction

• Use AI/ML for finding anomalies in behaviour as input for fraud risk score

• Create a fraud risk score based on the findings

1.2 Software Base

We used the Python programming language[57] version 3.6.7 in this project. The
major software libraries are listed below:

Library Version Description

Keras [13] 2.2.4-tf High-level neural networks API. Running on top of Tensorflow.
Tensorflow [3] 1.12.0 Open source machine learning library for research and production.

scikit-learn [43] 0.20.3 Simple and efficient tools for data mining and data analysis.
Pandas [27] 0.24.2 High-performance, easy-to-use data structures and data analysis.

Talos [6] 0.4.9 Hyperparameter Optimization for Keras Models.
Matplotlib [24] 3.0.2 Plotting library for the Python programming language.

Chapter 2. Theory Part 1 9

Chapter 2

Theory Part 1

Machine learning is a term that encompasses a wide variety of methods, where cer-
tain parameters of algorithms are approximated without human intervention [5].
While social media might portray these algorithms as capable of solving any prob-
lem, there are still many and great limitations to what one can achieve using these
techniques.

We will now describe two types of machine learning; supervised and unsuper-
vised. In order to apply supervised machine learning, large sets of labeled examples
are required, from which an algorithm can learn to recognize which patterns lead to
which results. By labeled is means that the dataset includes a truth table. [5]

An unsupervised algorithm on the other hand, does not require the examples to
be labeled. These types of algorithms focus on recognizing general patterns within
data, allowing to group or separate the data according to some formula. The two
types of machine learning algorithms have different use cases, and not every problem
can be solved by either or both. [5]

2.1 Scaling Data

We will briefly describe the scaling methods considered during his project. Below is
a quote from [8, p.19] explaining the importance of data scaling:

”Normalization (scaling) of data within a uniform range (e.g., 0–1) is
essential (i) to prevent larger numbers from overriding smaller ones, and
(ii) to prevent premature saturation of hidden nodes, which impedes the
learning process. This is especially true when actual input data take
large values. There is no one standard procedure for normalizing inputs
and outputs.”

These scalers can be set to scale each feature of the input data independently, so that
every feature will have the same resulting range. In other words, every feature will
have the same minimum and maximum value. All the scalers used in this project
are from the scikit-learn library.

2.1.1 Min-Max Scaler

With this technique the original data range will be scaled linearly to fit a defined
new range, for example [0, 1]. The relationship between the scaled data points will
be the same as the unscaled data. [42]

10 Chapter 2. Theory Part 1

2.1.2 Standard Scaler

Standard Scaler, also known as Z-Score normalization, is a non-linear Scaler. The
data points are scaled by taking the mean value as the zero value, and then scaling
the rest to a Gaussian distribution accordingly, which results in values in the range
[−1, 1]. [42]

2.1.3 Robust Scaler

While the Standard Scaler can behave in unintentional ways if the dataset contains
outliers, the Robust Scaler utilizes more resistant statistics to scale the data well
despite the outliers.[48]

2.1.4 Normalization

One easy way to scale the data is to use norms, for instance the l1 or l2 norm. The
data is scaled by dividing by the norm, resulting in normalized values. Additional
information on normalization can be found at[63].

2.2 Clustering

Clustering is one of the most common types of unsupervised learning, where the
idea is to group similar objects into as uniform groups as possible. These groups,
also known as ”clusters”, should then have some underlying properties in common.
This is commonly used to create an algorithm to classify objects into categories, so
that new unknown objects can be classified into a category based on the clusters
found earlier. It is not uncommon for real life datasets to have high dimensional
data, and therefore one has to consider dimension reduction in order to visualize or
reduce run time.[10]

2.2.1 Distance Calculation

All clustering algorithms are dependent on distance measurement to determine the
dissimilarity between two data points. The we used the Euclidean distance because
it is easy to understand and was the default distance measure for scikit-learn. The
Euclidean distance is the length of a straight line drawn between two points in a
space. Another term for this is the L2 distance.[35]

d(p, q) = d(q, p) =

√√√√ n∑
i=1

(qn − pn)2 (2.1)

2.2.2 Categories of Clustering Algorithms

Distribution Based

Distribution based clustering algorithms employ statistical models such as Gaussian
distribution. The clusters are defined by the probability of objects belonging to the
same distribution. [64]

Chapter 2. Theory Part 1 11

Expectation-Maximization (EM) with Gaussian Mixture Models (GMM) is an
example of distribution based clustering algorithm. Provided that the data points
have a Gaussian distribution, we can use the covariance and mean to find GMM.
The clusters are determined by the mean and standard deviation of the parameter,
and EM is used to find the most optimal values for each cluster. The method
can be described with these steps: We begin by choosing a number of clusters
and initial parameters. Data points are then distributed according to computed
probabilities for cluster connection. New parameters are calculated based on the
probabilities, and the placing of data points and calculation of parameters continues
until convergence. [64]

Centroid Based

A centroid based algorithm uses a given number of center points that the clusters
will be based around. This center points will get moved around by the algorithm in
an attempt to reduce the loss. The loss can be calculated in a number of ways, the
most common loss function is to calculate the Euclidean distance between each point
and closest centroid. This is repeated until the centroids stop moving. The most
common algorithm for centroid based algorithms is K-Means. Every data point has
the closest cluster centroid assigned to them. [21]

Connectivity Based

Connectivity based or hierarchical clustering can be seen as a binary tree, where
every node is a cluster with two subclusters as children, data points as leaf nodes
and the whole collection of data points as a root node.

Figure 2.1: The output from hierarchical clustering is a tree diagram called dendro-
gram, which shows relationships based on similarity. [60]

We can divide connectivity based clustering into two types: Agglomerative clus-
tering and divisive clustering. In agglormerative clustering we consider all the data
points as individual clusters. Clusters will then be paired based on a proximity
calculation (e.g Euclidean distance). The pairing continues until all clusters are
merged together into one ”root node” cluster. Divisive clustering is rarely used, and
its execution is the opposite of agglomerative. It begins with the data points as a
single cluster and divides the clusters by two and two until every data point has its
own cluster. [12, 64]

12 Chapter 2. Theory Part 1

Density Based

Density based clustering turns high density areas into clusters, which means that
this type of clustering can be used to find noise or outliers. The clusters are then
separated from each other by low density areas. There are two parameters that
will determine the result from this type of clustering, and these are epsilon and
minimum points, which are used to dictate core points. A core point is a data point,
which satisfies the requirement of having minimum points inside its epsilon or radius
reach. If a data point is connected to a core point, but has less than minimum points
required inside its reach circle, we call it a border point. A cluster is shaped of core
points and border points connected to each other directly or indirectly through other
points. Noise points or outliers are points, which are not connected to any core point
and not fulfilling the core point conditions. [17]

Figure 2.2: Density based clustering with 3 minimum points. Blue = noise, yellow
= border and red = core [61]

The most common density based clustering algorithm is DBSCAN (Density-
Based Spatial Clustering of Applications with Noise), and it uses the parameters
mentioned above: minimum points and epsilon. The epsilon should be picked wisely
based on the overall distance in the data frame. A large amount of noise indicates
a too low epsilon value, and a cluster with the majority of data points indicates
otherwise. The minimum points required can be adjusted based on the quantity
of data points. The algorithm iterates through the points and decides whether the
point is a core point or not. If the point is a independent core point it will become
a new cluster, but if the point is connected with a cluster it will be assigned to it.
The algorithm is finished when all points are visited. [18]

2.3 Association Rule

Association rule or co-occurrence grouping is a type of unsupervised learning which
finds patterns in datasets. The method is often used in market analysis to find which
items are often purchased together, but it is also useful in other situations since it
finds frequent combinations of features and correlations between them.

Support, confidence and lift are commonly used terms in association rule min-
ing. To describe the terms we have used the words antecedent and consequent.
Antecedent is a value or values causing the consequent to appear.

Chapter 2. Theory Part 1 13

Support is the frequency of an item or items occurring together, and we can not
tell whether a rule is a coincidence or not without a high support value.

Support(antecedent) = number of data points containing antecedent
number of data points

Support(antecedent => consequent) = number of data points containing both antecedent and consequent
number of data points

Confidence is the probability that a consequent occurs with given antecedents. This
measure tells us how useful information the association rule provides.

Confidence(antecedent => consequent) = Support(antecedent=>consequent)
Support(antecedent)

Lift is an indicator of how strong the correlation between the consequent and the
antecedents is. A high Confidence value does not necessary mean an interesting as-
sociation rule, because the consequent can be an common item with a high support
value located in almost every data point. To check if the confidence is based on
popularity or a strong correlation we could divide the value by the support value
of the consequent to get the lift value. A good minimum for the lift would be 1.0.
[19, 55, 53]

Lift(antecedent => consequent) = Support(antecedent=>consequent)
Support(antecedent)∗Support(consequent)

The most commonly used association rule algorithm is the Apriori algorithm.
The algorithm is composed of the following steps [40]:

1. Set the minimum requirements for metrics such as support.

2. Create a frequency table for every item set with length n, and remove those
which do not meet the requirements.

3. Join the frequent item sets from step 2 to create a frequency table for item sets
with length n+1, and again remove those which do not meet the requirements.

4. Repeat steps 2 and 3 until no more combinations can be created.

2.4 Dimension Reduction

Datasets often have many features, which can increase the complexity. Dimension
reduction is used in order to reduce this complexity, by using various methods to
reformat the high-dimensional space into one with lower-dimensional space. The
resulting space should then have more relevant features/dimensions, which then
allow machine learning algorithms to learn the important connections faster. This
can especially help with visualization of the dataset, given that the higher dimensions
are not as easy to process for the human mind. A common use case is visualizing
the result of a clustering algorithm. The methods have varying degrees of structure
preservation, usually either focusing on maintaining the local structure, or the global
patterns of the data.[20]

Below are the Dimension reduction methods used in this project:

14 Chapter 2. Theory Part 1

2.4.1 Principal Component Analysis (PCA)

This method creates “new” features by using orthogonal linear combinations of the
original features. The new features will be ordered most relevant to least relevant,
using the variance of the features, making it easy to further eliminate more features.
[20]

2.4.2 Independent Component Analysis (ICA)

The goal of ICA is to create dimensions which are as independent of each other as
possible. ICA is more commonly used for separating mixed signals to retrieve the
originals, though it can also be used for dimension reduction. [25]

2.4.3 t-distributed Stochastic Neighbor Embedding (t-SNE)

A method based on statistics. It is sensitive to the local structure of the data, so
the global structure becomes less preserved. One of the problems with this method
is that it costs large amounts of processing power, and is therefore not well suited
for larger datasets. [15]

2.4.4 Isometric Mapping (ISOMAP)

This method consists of several steps. First it searches for neighbours, and then uses
an algorithm, commonly Dijkstra’s algorithm, to find the shortest paths. Finally, it
utilizes partial eigenvalue decomposition. [7]

2.4.5 Uniform Manifold Approximation and Projection (UMAP)

UMAP is a recent method similar to t-SNE, but is noticeably faster and scales more
efficiently for high-dimensional data. It also preserves global structure better in most
cases. We are using the UMAP implementation in the paper cited here. [39, 38]

2.5 Outlier Detection

Machine learning can be used in many different ways. When our dataset have data
points that lie too far away from the rest, it can sometimes be a good idea to remove
these values in order to improve the accuracy of our machine learning models. The
methods used to achieve this goal can be grouped under the term “outlier detection”.
While similar to “anomaly detection”, the former assume that the training data have
the outliers already contained within them, and seeks to locate them. The latter
assumes the data is clean of any strange data points, and then evaluates whether
new data points fit in with the previous data. [41] The results of these methods
might be similar to that of clustering, but the goal is different. These methods try
to find which regions have the highest density of data points, and evaluates which
points are too far away from these regions. Therefore, we gain two “clusters”, or
groups; one for the points that are inliers, meaning the ones that were accepted, and
the outliers, which were deemed too far away. [31, 4]

Chapter 2. Theory Part 1 15

2.5.1 Methods for Unsupervised Outlier Detection

The methods described below are the same methods compared in [2].

Robust Covariance

This method assumes the data has a normal distribution, and attempts to draw an
ellipse around the data points to decide which points to consider inliers. [45]

One-Class SVM

One-Class SVM, also known as Single-class SVM, is a SVM with only one class, the
normal class. Instead of separating two classes with a hyperplane, One-class SVM
marks an area in multidimensional space witch where everything within will become
a part of the normal class, and everything outside will be an outlier. SVM is further
detailed at 8.5 on page 35. As One-class SVM is sensitive to outlying points, it often
does not produce good results for detecting outliers. [51]

Isolation Forest

The algorithm selects a feature, and chooses a random value to split at for the
feature, to then separate the values by this division. This process is recursive,
and therefore the process of isolating one single point is presentable by a tree data
structure. Points which are separated quickly on average are considered to be more
likely to be outliers, as these points are more susceptible to isolation due to their
low numbers and difference from the rest. [36]

Local Outlier Factor

The Local Outlier Factor is a value that shows how divergent a point is from local
clusters of points. The main difference here is that the inliers are not gathered in one
big area in the center, but instead in smaller clusters surrounded by outliers near
those clusters. In other words, this method focuses more on the local divergence,
rather than the global density. [37]

16 Chapter 3. Method Part 1

Chapter 3

Method Part 1

While working on the task, we were located in Signicat’s office, which allowed us
to easily contact the employees when we needed help with technical issues. It was
also necessary to access internal resources, especially data representations. We were
provided with computers, and an area where we could work. In the beginning, we
had to wait a few weeks for Signicat to acquire the data we needed.

3.1 Initial Work

As the year begun we wished to start working on the project as soon as possible,
and distribute the work evenly throughout semester. Unfortunately, it was difficult
to do anything meaningful at the time, as we had to wait until someone would
grant us access to the necessary data. This was not something we could acquire
ourselves due to security and privacy concerns. As this took an unexpected amount
of weeks, we decided that we must get something else than reading theory done in
the meantime, so we decided to work on setting up the project, and to create a
random self-generated dataset for the time being. We did not know the structure
of the dataset we would receive, or what would be in the dataset. Still, we set up
some basic machine learning methods, such as supervised learning and clustering.
The supervised learning later turned out to be useless, as the data did not have
any columns that stated whether a data point is fraudulent. There were some ideas
from employees about using the alerts that companies use to determine suspicious
activity for this purpose, though it did not lead anywhere. This is also the reason
we did not detail the supervised learning further here.

3.2 After Receiving Datasets

After a few weeks, we were given some simple anonymous transaction data. This
data is further described later in this document. Initially, we aimed to cluster and
classify the data, using appropriate algorithms combined with dimension reduction.
The idea was to observe whether any interesting patterns would emerge within the
clusters. The clustering is not particularly interesting here. While we could not
find fraud in this dataset, we hoped that would change. Alas, our inquiries were
in vain, as we were later notified this data would not be retrievable. As this did
not lead anywhere, we searched for other solutions, while considering modifying
the task to something more appropriate. We discovered outlier/anomaly detection

Chapter 3. Method Part 1 17

and saw that this would be fitting for the task, as it is an unsupervised method, it
does not require labels to train. Implementing this allowed us to at least determine
how divergent points are. We then experimented with a few setups with different
methods, dimension reduction and scaling.

3.3 Strategy

Classification is rather impossible to accomplish, as having labels for the training
data is essential to train a classifier, and we have no way of knowing which data
points are fraudulent.

Initially we tried clustering the data, to see how they are distributed. This allows
us to get a early idea about what patterns are prevalent throughout the dataset.
Naturally as we change datasets these patterns would change, so running clustering
is still a viable option for visualization. This left us with the option of outlier
detection. The idea is to see whether any data points stand out from the others,
and which might have a higher risk of being fraudulent.

3.4 Data

When we started to work on the project, we had no access to data. Therefore we
first made a program to generate example data for the machine learning algorithms,
so that we could set up our project more easily before we got access to real data.

3.4.1 Production Authentication data

Later in the project we received access to production data containing the following
variables:

• User-Agent - browser, operating system, language settings

• GeoIP data - longitude, latitude, continent, country, region and city, timezone

• Metadata - Timestamp, Duration, Session ID, Transaction ID, Service, State,
Method

• IP address based identifier.

The IP addresses were each hashed and converted to an unique index before we
gained access to them. This is because the anonymity of the users has to be main-
tained. In addition several fields were duplicates or unique identifiers, which means
they can be removed from the dataset to improve the learning rates and reduce
memory usage. Features with very high correlation are also not very valuable, as
they contain very similar information, and should therefore be reduced before train-
ing. Some operations included multiple transactions and where combined based on
session ID. We should expect fraudulent transactions to be quite rare compared to
legitimate transactions, and must therefore use large amounts of data in order for
them to be represented. The dataset contained 115130 transactions. In some exam-
ples we use a reduced dataset due to run time and to demonstrate various concepts,
though our results use the complete set.

18 Chapter 3. Method Part 1

3.4.2 BankID Data

We have evaluated the possibility of using BankID fraud risk indicators as a “truth-
table” for supervised learning and as a metric for unsupervised learning. A fraud
risk indicator is a flag that has been triggered for a transaction that could indicate
suspicious activity. The idea was to use these as a starting point to train algorithms
with supervised learning, and then determine whether such an approach results in
better accuracy than the tests in use today. We where later informed that Signicat
does not have access to the data and it would be unrealistic to acquire any such. The
information is stored by the customers, and gathering it would require co-operating
with them, as well as more time than we can afford during this project.

3.5 Clustering

We have experimented with different clustering algorithms, among them KMeans,
Birch, DBSCAN, MeanShift, AgglomerativeClustering. Since Birch and Meanshift
were not mentioned earlier, it can be of importance to say that Birch is a hierar-
chical clustering type, and Meanshift is centroid based. In addition we also used
HDBSCAN, which is a hybrid between hierarchical clustering and DBSCAN. The
idea was to experiment and look for small clusters and outliers which are isolated
from the rest.

3.6 Association Rules

Association rule is an unsupervised method, which works well with datasets contain-
ing structured discrete data [34]. Since the majority of the transaction data contains
discrete values, we decided that an application of this method could be helpful in
our problem. We have used association rules to find relationships between features
in the datasets, giving us a better overview of the correlations between them. These
can be used to find good candidates for feature reduction. This method can also
used in combination with clustering, because it gives information about typical clus-
ter characteristics. One can then get an general understanding of which features’
values separate the clusters from each other.

The Apriori algorithm is good at finding common patterns with high occurrence,
which does not fit well with our task. Since we expect the fraudulent points to be
extremely rare, it would be difficult to find anomalies by using Apriori. This is due
to the association rules receiving low support when attempting to cover fraudulent
data points. However, we thought of two ways this algorithm could provide us with
useful information. Both solutions utilize a combination of outlier detection and
Apriori. The first solution is to label inliers using outlier detection, and to use
Apriori to find rules with this label as a consequent. We can then get information
about what defines a inlier. The other solution is to separate outliers from inliers
and use the algorithm on the data labeled as outliers to get insight in common
outlier patterns.

Chapter 3. Method Part 1 19

3.7 Outlier Detection

In our case, outlier detection can help us find which data points in our datasets
are the most unlike the others. In other words, we can get a good idea of which
points are suspicious. Many of the methods within scikit-learn use a value known
as “contamination” to estimate how much of the data should be outliers. As we
have no statistics available to estimate this, we can use an incrementing value for
the contamination to see at which value the points become selected as outliers. To
visualize this, we convert the contamination value to colour values, as shown in figure
3.1. This way we get a ”score” for each point, using any of the methods described
earlier except One-Class SVM. Note that Local Outlier Factor has a limit for the
contamination value of 0.5, while the others can go up to 1. This means that the
distribution of the score will inevitably be different for this method.

Figure 3.1: Color values represent contamination values. Blue points are closer to
the norm, while red indicates high divergence from the rest. The dark-coloured points
are somewhere in between.

3.8 Choices

We had to choose between the methods available for dimension reduction, outlier
detection and scaling functions.

3.8.1 Scaling

We chose to use the robust scaler for our project as it is not sensitive to outliers,
leaving other outliers easier to detect after scaling. Other scalers, such as min-max
scaler or standard scaler, are much more sensitive to outliers because of their linear
nature, and therefore less useful in our case.

3.8.2 Dimension Reduction

While applying all the methods mentioned in theory above, we focused on UMAP
and PCA for the unsupervised learning. PCA was useful in the beginning when
testing out how other functions affect the result because it is quite fast, and it

20 Chapter 3. Method Part 1

allows us to see to some degree which features are important for the result (see
Figure 4.1). For the most important tests we used UMAP, because of the way it
preserves both the local and global structure. The results from UMAP were also
the most visually intuitive, which is important when it comes to illustrations and
understanding. ISOMAP causes high memory usage, and t-SNE is much too slow
for this practical application. On a dataset with over 115 000 elements, the run time
is above 3 hours. Therefore we do not include ISOMAP and t-SNE as options in
this case.

Figure 3.2: dataset reduced with
UMAP. Points more or less
gather in clusters.

Figure 3.3: The same dataset re-
duced with t-SNE, here the data
points lose much more of the
global structure, resulting in a less
clear cloud of points.

3.8.3 Outlier Detection

As outlier detection is best suited to the situation, we have considered various meth-
ods of detecting outliers. We focused on the methods illustrated in [2]. It turns out
that the results from Robust Covariance and Isolation Forest are very similar, and
therefore we focus on only Isolation Forest from this point. Although UMAP gives a
slightly different distribution every time, both the results are quite similar. Note that
applying the methods can produce slightly different results every time, and some-
times the same distribution is merely rotated while maintaining the same structure.
While we had no numerical metric to measure how good any given result is, visually
observing the result is a good approximation when checking whether dense clusters
of points count as inliers. See figure 3.4 and 3.5.

Figure 3.4: Robust Covariance Figure 3.5: Isolation Forest

The One-Class SVM implementation in scikit-learn does not use a contamination
value, as it is more suited for novelty detection, which is not what we are dealing

Chapter 3. Method Part 1 21

with, and therefore we do not consider it a meaningful option. Still, figure 3.6 shows
an example of how it divides the data. The division here is much more chaotic,
though that is because the divergence here is not a colour gradient.

Local Outlier Factor gives a completely different result, although is not neces-
sarily better or worse. As described in the theory section, it detects outliers on a
local scale, and therefore focuses outliers near clusters of points. As seen in figure
3.7 this approach looks more chaotic, though it catches more singular separated
points, likely at the expense of many false positives. It is also less probable for
whole clusters to be considered anomalous.

Figure 3.6: One-Class SVM, all
the black points are considered
outliers.

Figure 3.7: Local Outlier Factor

3.8.4 Difficulties

Our initial expectation was that we would gain access to data with some kind of
“truth table” as to whether a transaction is fraudulent or not. This is a prerequisite
for any kind of supervised learning, and is necessary to verify the accuracy of any
findings. Later it turned out this data would be unrealistic to acquire, and therefore
we had to make do with the data available from within Signicat. This meant that
our only options were various kinds of unsupervised learning, where we attempted
to detect divergence from what is “normal”. Therefore we had no way of verifying
that the divergent transactions are in any way fraudulent. Considering the rarity
of fraudulent transactions in the real world, the best outcome here was a score of
how divergent a point is. The most likely cause for the initial lack of needed data,
was poor preparation before we begun. We might also have saved some time had
we not been waiting for fraud risk indicator data, and likely concluded this part of
the thesis sooner.

22 Chapter 4. Analysis Part 1

Chapter 4

Analysis Part 1

One of the first issues that come as a result of using outlier detection on this dataset,
is that the majority of the transactions are originating from within Norway. This
leads data points originating from other countries, especially countries far away from
Norway, to quickly become labeled as outliers, see figure 4.1 for an example.

Figure 4.1: 3D visualization of the dataset after dimension reduction with PCA.
There is a distinct pattern here that implies geographical location plays an important
role in deciding how divergent a point is. Keep in mind that most of the transactions
originate from within Norway.

While this is not as apparent with the other dimension reduction methods, it
is still raises a concern whether the geographical location should be included. Is
the geographical distance from Oslo, Norway a good measure for divergence? In
addition, some customers have different configurations and use cases for the services
provided by Signicat. This results in transactions from customers who use the service
with an old configuration to be classified as outliers. In a more extreme case, one
single customer accounted for 93% of the 5% most divergent points, although this
was not prevalent through all configurations of dimension reduction and scaling.
Worth noting here is that the customer accounted for approximately 1

6
of the total

data points in this set.

Since we initially attempted clustering the data, we will demonstrate one result
of the clustering here.

Chapter 4. Analysis Part 1 23

Figure 4.2: 3D visualization of the dataset after dimension reduction with PCA.
There is a distinct pattern here that implies geographical location plays an important
role in deciding how divergent a point is. Keep in mind that most of the transactions
originate from within Norway.

In figure 4.3 we can observe how the dataset looks like after accounting for how
likely the data points are to be outliers. Here we can observe that the majority
of points are grouped together in clusters near the center, surrounded by smaller
clusters nearby. This might be a symptom of UMAP preserving some of the global
structure. Further out from the center there are a few clusters, which have a quite
dark colour, because they are far out from the norm, but are still in close proximity
to other points. Those of the points with the strongest red gradient are visibly the
furthest away from the dense areas, which is what we expected. Some of the isolated
points seem to be blue or dark, while they could be good candidates for outliers.

The result in figure 4.4 is consistent with the behaviour described in the examples
in the method section. Here we can see that more of the singular points between the
clusters get a stronger red colour, indicating they have a high divergence. On the
other hand, the groups of point near the outer edges of the point cloud get lesser
values of divergence, despite being far away from the big clusters.

(a) View 1 (b) View 2

Figure 4.3: The result is achieved using UMAP, Robust Scaler and Isolation Forest.
There are two different views, because the three-dimensional structure is hard to
discern when viewing it from only one perspective.

24 Chapter 4. Analysis Part 1

(a) View 1 (b) View 2

Figure 4.4: Same as figure 4.3, though it uses Local Outlier Factor instead of Isola-
tion Forest. The variance in the point distribution can be attributed to UMAP giving
different results after each run.

By utilizing the results from both clustering and outlier detection we observed
that outliers are distributed across multiple clusters as shown in table 4.1. The
chance of finding a “pure fraud” cluster is minimal.

Outlier score Outlier Cluster

0.02 Outlier 4
0.01 Outlier 3
0.02 Outlier 1
0.05 Outlier 4
0.05 Outlier 2
0.02 Outlier 4
0.05 Outlier 4
0.05 Outlier 4
0.03 Outlier 2
0.02 Outlier 1
0.03 Outlier 0
0.05 Outlier 0
0.01 Outlier 1
0.02 Outlier 4
0.01 Outlier 0
0.02 Outlier 4
0.02 Outlier 4
0.04 Outlier 3
0.03 Outlier 2

Table 4.1: Outliers detected by Isolation Forest and which clusters the outliers be-
longed to, using KMeans with 5 clusters.

Chapter 5. Discussion Part 1 25

Chapter 5

Discussion Part 1

5.1 Reliability

The lack of any way to determine which points are fraudulent makes the task of
predicting whether a new transaction is fraudulent impossible, though by using
outlier detection, we can at least determine that something is out of the ordinary.
The definition of “ordinary” here is of course left for the machine learning algorithms
to define, and with this dataset it often ends up being based on the geographical
location or user agent. We can approximate a fraud risk score by using the divergence
score mentioned before, and therefore complete the task as it was specified. The
reliability of the score can not be verified without testing it on transactions that are
certainly fraudulent.

The use of geographical location in the anomaly detection warrants consideration.
In theory, if most of the transactions originating from within Norway, any transaction
outside Norway will be much more divergent, as the algorithm will consider being
in Norway the norm. A supervised learning method should not relay so heavily on
such factors, as the algorithm could learn that geographical location is not the cause
of divergence from the labels. Since we are forced to rely on unsupervised methods,
filtering it out manually might increase the accuracy.

5.2 Result

As for the result displayed in the Analysis chapter, if the dimension reduction is
to be trusted, the Isolation Forest does well when it comes to the clusters close
to the center. Applying Local Outlier Factor instead can catch more of the points
between the clusters of points, while seemingly also being stricter as to what counts
as outliers. Which of these is more desirable depends on the use case, though for
this report we can not conclude that one of them gives better accuracy, because as
mentioned before, we have no metric to use for this purpose.

In addition, clusters and outliers were mostly determined by the user agent and
GeoIP-location. This made decision trees and association rules not as useful as we
hoped for. Decision trees could find the relevant features which outliers and clusters
were based on, however the trees ceased to provide a good visual overview due to
the high variance in the user agent features. This also made it difficult to find
interesting association rules, as the variety in user agents led to low support values.
It is difficult to provide association rules covering geographical location since some

26 Chapter 5. Discussion Part 1

of the data is continuous, and association rules algorithms are not suited for those.
If we had to work further on this, we could perhaps prevent the high variance by
grouping similar user agents and using discrete intervals for the continuous values.

Another issue when using outlier detection, is that it is difficult to measure the
accuracy of the model, and to conclude whether it does well or poorly. We have no
concrete examples of what should or should not be considered divergent, making it
impossible to verify whether the model is reliable.

In addition, the results of doing outlier detection on the entire dataset at once
might not necessarily be useful, although it is a first step. Since the use cases vary
between customers, creating one common model will not highlight the normal state
for each customer. Some customers might become outliers when nothing out of
the ordinary is happening. Therefore, creating separate models for each customer
should give more accurate representations.

Clustering also can potentially have some use cases, as transactions can have
other properties that could be interesting to group by. This could then be used
further to identify in which group new transactions belong to quickly. Still, this was
not the task we were supposed to solve, so we did not pursue this further.

Chapter 6. Conclusion Part 1 27

Chapter 6

Conclusion Part 1

We have examined ways in which machine learning, specifically unsupervised learn-
ing, can be applied for detecting authentication fraud. Unfortunately due to lack of
appropriate data, no conclusions can be drawn as to the existence or non-existence
of fraud in the dataset. The only information our models can provide is a level
of divergence any one point has from the rest, creating a value that fits the task
description to some degree. A sudden divergence in the activity of a single user or
company could imply something is out of the ordinary. This could supplement exist-
ing methods of detecting suspicious activity, though it can not be used as a basis to
determine whether any one transaction is fraudulent. Should the appropriate data
surface in the future, a more reliable model would be possible.

If this data would become available, one could disprove the validity of our ap-
proach should most of the fraudulent points end up with within the dense clusters,
or support it should they most of them be far from the center. One could also
verify which of the methods is the most accurate, or whether the combination we
suggested in the discussion chapter is a viable option. In the end, our approach can
at the very least provide a starting point for further work on the subject.

6.1 Further Work

This can be further developed to follow a single individual or company over time,
which could potentially show sudden divergence from the normal behaviour of that
person or company. Such a alteration would potentially allow for much more accu-
rate risk scoring, as the variance for a single individual or company should on average
be much lower. This would however require access to datasets which contain per-
sonal information, and privacy concerns would have to be addressed beforehand.

The most important improvement would be to acquire more relevant data, even
from customers if possible. The datasets we used have quite limited information, and
are insufficient to give the desired results. A possible improvement to our results
would be to combine both Isolation Forest and Local Outlier Factor, in order to
catch both the isolated points closer to the center, and the ones in smaller clusters
further out. This could be done by taking the average of the two, or to weight them
according to which points are desirable to catch.

There are also many more options to analyze the data which does not involve
machine learning that could be attempted. Those would make it possible to draw
conclusions about whether or not machine learning is necessary for this problem in
the first place.

28 Chapter 7. Introduction Part 2: Time series

Chapter 7

Introduction Part 2: Time series

Whenever an issue occurs, it is already too late to prevent it from happening. At
this point, the only thing one can do is try to minimize the damage and attempt to
find the cause. The occurrence of errors, or operation anomalies, can in some cases
cause severe disruptions to the delivery of service for companies working with infor-
mation technologies. If such errors could in any degree be predicted and mitigated
early, the problems caused could be avoided, saving costs and working hours. Can
this be achieved using modern machine learning techniques? With the increasing
popularity of machine learning, new applications of these algorithms are discovered
continuously.

The objective of this project is to examine the potential of predicting Signicat’s
server performance metrics. Can we accurately predict the resource utilization or
network traffic in the future? In order to limit the scope of the project, we will
focus on predicting one single variable in the system. We selected CPU activity
because it should reflect the activity in Signicat’s systems well. This CPU activity
variable represents the average percentage of free CPU time for the system in the
last minute.

From this point, we will present some of the most relevant theory necessary for
this project, and show how we applied it to predict a variable from Signicat’s systems.
Furthermore, we will discuss the reliability of the models, and consider which factors
might affect the result. Finally, we conclude the report with suggestions for future
improvements.

7.1 Thesis Problem

Can a form of Recurrent Neural Networks provide accurate predictions for Signicat’s
service performance metrics, and do the predictions provide useful information?

Chapter 8. Theory Part 2 29

Chapter 8

Theory Part 2

8.1 Time Series

Time series are data gathered from a period of time. This data can take various
forms, for example weather, sensor measurements or stock prices. It is common to
separate the time series in two categories, univariate and multivariate. Multivariate
time series are as the name implies, time series which contain multiple variables for
the same points in time. Univariate time series on the other hand, only contains
one variable per point in time. [59]

8.1.1 Forecasting

There are different approaches one can take to predict groups of future values for
a time series. For this report, we will focus on the two methods described in the
following sections.

Recursive Strategies

The recursive strategy attempts to predict one point ahead in time from the known
values, by using the predictions produced as a basis to predict further points. This
is visualized in figure 8.1. The disadvantages of this strategy is that the error from
a previous step affects every step afterwards. Since no prediction is perfect and has
a certain loss, basing the next prediction on the previous one will in essence mean
that the new prediction is based on partially inaccurate information. This again
leads to the loss of that next prediction being greater, as it is composed of both
the loss of its predecessors and its own prediction error. This means the errors will
rapidly accumulate over time. [9]

Figure 8.1: A recursive prediction strategy.

30 Chapter 8. Theory Part 2

Multi-Input Multi-Output (MIMO) strategy

The MIMO strategy is based on the idea of stochastic dependency. Unlike Recursive
strategies, a MIMO strategy returns all future values in one single step. This means
there will be no accumulation of errors, though because the model will be used to
predict all future values at once, it could end up being less flexible and result in
worse predictions overall. [9]

Figure 8.2: A MIMO based prediction strategy.

8.2 Neural Networks

Neural Networks can be described as structures comprised of many neurons con-
nected together. A neuron is a simple processing element that takes one or more
inputs and gives an output. The network starts with an input layer and ends with
an output layer, between these there are one or more hidden layers connecting with
connections between them. For a visual representation of a NN see figure 8.3. [8]

There are several types of NNs, each made to tackle different tasks. We will
focus on the type of NNs often used for time series prediction.

Figure 8.3: A neural network with one hidden layer.

Chapter 8. Theory Part 2 31

8.2.1 RNN

Some of the most relevant NN to time series are Recurrent Neural Networks (RNN).
These networks are distinguished by looping the previous output from the unit and
adding it to the new input. This leads recurrent networks to have a form of short
term memory, where previous decisions impact future ones. This memory fades away
quickly as new predictions are made. The use of both past and present information
makes the order of the samples relevant. Its architecture is quite simple compared
the other architectures described below. [16, 23, 50]

Figure 8.4: A RNN network.

Figure 8.5: A RNN cell.

Figure 8.6: An unfolded RNN network
predicting on three samples.

For more detailed theory on RNN types not described here, and RNNs in general,
see [50].

BRNN

While the standard RNN only forms recurrent connections in one direction, it can
also be modified to form connections both ways. Using a Bidirectional RNN(BRNN),
the neural network will learn connections not only in the positive time direction, but
also the negative. Other RNN types can also be made bidirectional. [52]

8.2.2 LSTM

LSTM stands for “Long Short Term Memory”, and is designed to let RNN retain
their memory for longer and make more complex predictions based on both short
term and long term trends. For usual RNNs, this either takes a extremely long time
or does not work at all. LSTM aims to remedy the issues of exploding and vanishing
gradients that are common in RNNs, by keeping the back-propagating error more
constant. To achieve this, it uses gates and memory cells. The memory changes
infrequently, allowing the learning to remain more stable than simple RNNs. [23]

32 Chapter 8. Theory Part 2

(a) An unfolded LSTM network predict-
ing on three samples. (b) LSTM cell

Figure 8.7: LSTM

8.2.3 GRU

The Gated Recurrent Unit has some similarities with LSTM, though it uses an
update and a delete gate to adjust the learning inside the unit, rather than keeping
additional memory. The update gates control the rate of updates to the functions,
while the delete gate resets the unit, allowing it to restart, and continue without
considering all that it has seen earlier. Using these update and delete gates, the
GRU can store information for longer periods of time, and counter the vanishing
gradient problem. [50, 28]

Figure 8.8: A GRU cell. 1. is the reset gate. 2. is the update gate. The structure
around the cell is the same as in figure 8.6.

In some cases GRU performs better than LSTM and learns faster in terms of
CPU time [28, 14]. Though it is not always the case as mentioned by [14, p. 7]:

”These results clearly indicate the advantages of the gating units over
the more traditional recurrent units. Convergence is often faster, and the
final solutions tend to be better. However, our results are not conclusive
in comparing the LSTM and the GRU, which suggests that the choice
of the type of gated recurrent unit may depend heavily on the dataset
and corresponding task.”

8.2.4 Optimizers

The algorithms used to adjust the weights/parameters of NNs during training are
called optimizers. An optimizers goal is to reduce the NN model’s loss and do-

Chapter 8. Theory Part 2 33

ing it the most optimal way. Different optimizers are designed to tackle different
challenges. The choice of optimizer can be what makes a model succeed or fail. [49]

A very common algorithm for adjusting the weights toward their optimal values
is known as Gradient Descent. It uses mathematical gradients in order to navigate
the weights towards the most optimal value. The length of the steps taken using
the gradient is known as the ”learning rate”. Other optimizers are often based on
gradient descent. [49]

All optimizer algorithms used in this project are based on gradient descent.
These are the ones we use:

• Adam

• Nadam

• RMSprop

Loss Functions

A loss function calculates how far the prediction deviates from the true value. Dif-
ferent loss functions have different properties and will affect how the model learns.
Mean Square Error (MSE) is the most popular loss function. Small error values
have little effect on the loss, and larger error values cause the loss to increase more
drastically. Mean Absolute Error (MAE) is just the absolute value of the error value.
Root Mean Square Error (RMSE) is the square root of MSE, which causes the loss
to increase more gradually. All loss functions described above always result in a
positive value regardless of the input.

8.3 Regression

Regression predicts continuous numeric values by expressing a relationship between
the dependent feature and the predictors, and there are many different models for
expressing this relationship.

8.3.1 Linear Regression

Linear regression finds the relationship between two continuous variables and ex-
presses it as an equation with in the form y = a + bx, where x is a explana-
tory feature used to predict the dependent y. The equation is the best line to
fit x and y observations from the data points. One explanatory feature is rarely
enough to make a precise prediction, so we can take advantage of more features
using multiple linear regression. A model with multiple predictors has the form
yi = β0 + β1xi1 + β2xi2 +βpxip + εi for i = 1, 2, ...n. A common method for
estimating the unknown values is to use least square error to minimize the vertical
deviations between the best fitting line and the data points. For details see [33, 32].

To avoid overfitting in our linear regression model, one can add a regularization
term to the least square approach using Lasso, Ridge or Elastic net. These regu-
larization terms has a lambda parameter. If λ is too low we will get a model very
similar to linear regression, but if the parameter is to high however, the chance of
underfitting will increase. Choosing a optimal lambda can prevent both underfitting
and overfitting. [58]

34 Chapter 8. Theory Part 2

Lasso

Lasso or L1-regularization adds the absolute value of β coefficients to the least square
calculation. [58]
Min

∑n
i=1(yi − β0 + β1xi1 + β2xi2 +βpxip)

2 + λ
∑p

j=1 |βj|

Ridge

Ridge or L2-regularization uses squares of β coefficients instead. [58]
Min

∑n
i=1(yi − β0 + β1xi1 + β2xi2 +βpxip)

2 + λ
∑p

j=1 β
2
j

Elastic Net

Elastic net uses both L1 regularization and L2 regularization. [58]

Least Angle Regression

Least Angle Regression or LARS is a fast step-wise algorithm used to fit linear
regression models. To include the same solutions as linear regression, the algorithm
only require steps equivalent to the p predictors. All β coefficients are initially set
to zero, and it then finds the most correlated explanatory value by finding the least
angle between the predictors and dependent. It translates in the direction of the
most correlated explanatory value until a new one has the same correlation and takes
over. The process continues until all the correlated features have been incorporated
in the model. If the number of the correlated features equals p, we will get same
model as with linear regression. [26]

8.4 Decision Tree

Decision trees are a supervised method used to both classification and regression
problems. The method is non-parametric, which means that it is not dependent on
numerical data. The trees are structured by approximating sine curves with if-then-
else decisions, and the complexity of these rules is equivalent to the depth of the tree.
The complexity is correlated to how fit the model is, and to prevent overfitting or
underfitting, we can adjust the minimum samples required for each sample and the
max depth of the tree. Trees are useful to create an easily interpretable visualization
of a problem, which does not require any data processing such as normalization,
dummy variables and blank data removal beforehand. It is also a suitable method
for finding which features are relevant for predicting the dependent feature. [44]

8.4.1 Random Forest

Random forest is as the name indicates, a forest containing decision trees. Each tree
in the ensemble is created by generated random vectors. One way to generate the
random vectors is to use random selection with replacement on the training set. The
vectors are independent from each other and have the same length as the training
set. Both the training data x and the random vector Θk is used to assembly the
k-th tree. When the number of k trees are created, the most popular model becomes

Chapter 8. Theory Part 2 35

the chosen one. Random forest is another great method for preventing overfitting
problems in addition to depth and leaf node adjustments. [11]

8.5 SVM

Support vector machines can be used as a classifier and a regression method. SVMs
are inherently binary classifiers. It finds a function for predicting a target feature,
which focuses on minimizing the error between the output from the input points and
the target. For linear SVM we will get a function with the structure f(x) = wx+ b,
where w is a weight vector, x is a vector containing predictors and b a constant.
Figure 8.9 is a simple linear model for visualizing how SVM works. The blue and the
green patterns are separated from each other by a hyperplane, which is constructed
by the marginal line wx − b = 0 and the two other lines on each side. The three
points with black border lying on the edge of the hyperplane are support vectors.
The distance between the marginal line and the hyperplane edges is the margin 1

||w|| ,

and the total margin is 2
||w|| . For a optimized marginal line, the algorithm seeks

to maximize the margin, and to do that it can minimize ||w||. Instead of finding
the minimum of the term ||w||, it finds the minimum of 1

2
||w||2, because this term is

more convenient for more complex mathematics later on. For more details about the
mathematics, and nonlinear kernel functions such as poly, sigmoid and RBF(Radial
basis function) see [65, 46].

Figure 8.9: Hyperplane and margin for a SVM-model trained on two predictors [62]

8.6 Common Challenges in Machine Learning

8.6.1 Datasets

Often the hardest challenge in machine learning is acquiring a relevant and adequate
dataset.

36 Chapter 8. Theory Part 2

8.6.2 Run Time

Training some of the machine learning algorithms can require tremendous amounts
of time and computational power. The complexity of the algorithm or model can
become so great, that training will days or weeks to complete. The required time
can be reduced using techniques such as feature reduction or early stopping [47].

8.6.3 Overfitting and Underfitting

When fitting a model to a dataset, it is possible that the model becomes very good
at predicting the values that are within the training set, but poor at predicting new
values such as those found in validation set or test sets. This phenomenon is usually
called overfitting [47, 56]. One method of countering overfitting is mentioned in
9.5.2 on page 43. Underfitting on the other hand, is the phenomenon that occurs
when the model is too simple, causing it to be unable to learn the patterns in the
dataset. [56]

8.6.4 Exploding/Vanishing Gradient

When error gradients grow during training, they can become too large, leading in
many multiplications with values greater than 1. This results in the gradient grow-
ing too quickly, making the learning less stable. This is commonly referred to as
exploding gradients. The opposite case, vanishing gradients, is when the multiplica-
tion happens with a very small value close to 0. Repeated multiplication will cause
the gradient to quickly shrink, eventually becoming so close to the lowest possible
represented value that is practically nonexistent. Both of these are issues for RNNs,
because the output is reused as input, retaining the values like described in 8.2.1 on
page 31. [22]

8.7 Training, Validation and Test Sets

Training data is used to train the model, by optimizing the weights and biases. Test
data has the purpose of allowing to test the accuracy of the model, and it must be
separate from the training data in order to be a reliable test. Should the model
train on the test data, the results could be biased due to overfitting.

8.7.1 Train-Test Split

This is a simple and intuitive split method. One selects a percentage of the data to be
used for testing, and another for the validation data, then take the corresponding
percentage from the end of the dataset. This is illustrated on figure 8.10. It is
usable for time series because the order of points is retained, which is necessary
as the temporal displacement of points in a time series can affect the result. The
advantage is the easy implementation, and only one model needs to be created and
trained. One of the drawback of only using points from the very end of the dataset
for testing, is that the tests might not be representative of the entire dataset. An
example of this is a strong trend in the train set, but the opposite trend is in the
test set. [29, p. 223]

Chapter 8. Theory Part 2 37

Figure 8.10: Splitting of a dataset into training, validation and testing sets.

Random Split

Splitting randomly involves taking a certain percentage of the data is taken from
random indexes in the dataset for use in the testing set. This is illustrated on figure
8.11. Random split has the advantages of having varied training, validation and test
sets [29]. Splitting this way is not well suited for use with time series because data
leakage can occur if precautions are not taken. In addition, the temporal continuity
is broken, which can be an issue for RNNs, see 8.2.1 on page 31.

Figure 8.11: Random split of a dataset into a train, validation and test set.

Deterministic Split

Deterministic splitting involves taking a certain percentage of the data from indexes
at specific intervals in the dataset for use in the testing set. This is illustrated in
figure 8.12. [29, p. 223] explains why deterministic split should not be used: “A
deterministic method, such as selecting every nth observation as a testing fact, is
also not recommended since it can result in cycles in the sampled data due solely to
the sampling technique employed.”

Figure 8.12: Deterministic split of a dataset into a train, validation and test set.

Walk-Forward Validation

In walk-forward validation the time series is divided in several parts. The parts are
then used in the training set, the test set or not at all. When moving to the next step
a new model is trained, causing this method to be more computationally expensive.
The advantage is that larger numbers of tests can be performed, providing more
accurate results on the performance of the model. We will take a look closer at the
two variants of walk validation. [29]

The first variant is Expanding Window. The dataset is divided in segments.
Initially only the first segment is used for training, and the second for testing. In
the further steps the test segment becomes a part of the training segment, while
the one after it becomes the new test segment. This proceeds until the last segment
becomes the test segment. The advantage here is that both test and training sets
are well represented, and little potential training data is lost to testing.

38 Chapter 8. Theory Part 2

Figure 8.13: Expanding Window increases the amount of data used for training used
each step. A square represents a “part”. A segment is all the squares of the same
colour in the figure.

The other variant is Sliding Window, also known as Moving Window, where the
difference is that the size of the training set is kept constant throughout the steps.
This allows the older parts of the data to be ”forgotten”, which is useful if only the
newest points are of greater relevance. [29]

Figure 8.14: Sliding Window keeps the amount of training data constant while mov-
ing the training window. A square represents a “part”. A segment is the squares of
the same colour in the figure.

Chapter 9. Method Part 2 39

Chapter 9

Method Part 2

Since we had no prior experience on the subject of time series prediction, the first
step was to identify which approaches could potentially achieve this task. One of the
first methods that appeared common for this kind of problem was using recurrent
neural networks[29]. LSTM seemed especially interesting, because we suspected
some of the correlations between columns might be stretched out over longer periods
of time.

We began this part of our project the moment we gained access to performance
metrics from Signicat’s Prometheus service. With help from one of the employees
here we quickly set up a shell script to download the various performance metrics.
We worked further upon this script to allow us to download larger numbers of data
points than what Prometheus allows per request, because of this we could use data
from a much larger time span.

While we initially decided to use LSTM, we also set up some simpler regression
models to check whether they do better in this case. If the neural network model
can not defeat these models, then the simpler approach might as well be used. For
all our models we used MSE as the loss metric, for more about loss see 8.2.4 on page
33.

Towards the end of the project we discovered that one can use hyperparameter
optimization libraries to better test different hyperparameters for the model, so we
applied one to find the optimal configuration. We chose to use Talos, which is further
described at 9.5.1 on page 42. This also gave us the opportunity to easily compare
different model configurations, such as using different layers or other number of
layers, to make sure that our choice of using LSTM was justified. It was at this
point discovered that GRU does better on this dataset.

Due to our lack of initial knowledge on the subject, we missed a better approach
to the problem in the beginning. Considering that in a practical application one
would always expect to see new points in the correct temporal sequence, it would be
plausible to train in a similar way, better utilizing the memory properties of RNNs.
By the end of the project we attempted to correct the data separation by applying
walk-forward validation. Doing so allowed us to train the model better, and utilize
the data more efficiently. This led us to run Talos again with a few alterations, to
make sure we got a good model.

40 Chapter 9. Method Part 2

9.1 Datasets

We had access to the last few months of performance metrics, which are acquired
through Signicat’s Prometheus service. Older values are not accessible through
Prometheus, so we could not use a dataset better distributed throughout the year.
The metrics were discovered through Grafana and the alerts used in Prometheus,
with the assumption that these alerts and graphs show and use information that is
of interest or importance to the system. It was difficult to gather much knowledge
about the variables and various aliases used in these systems, as there was no direct
documentation, and few people know all the details of the setup. An alias is just
an abbreviated name for a host. The time distance between points can be specified,
resulting in time series data with a certain resolution.

Processing it to an useful format only requires it to be unpacked from the JSON
object, resulting in a array of values. Unfortunately, Prometheus enforces a limit
of sending out maximum 11 000 data points per request. To circumvent this limit,
we used a Shell script which divides the time period into small enough intervals,
and then sends multiple requests. The script concatenates the JSON objects and
saves them to a file. This happens for every variable. The dataset is then loaded
in Python and assembled as a Pandas data frame, ready to be used for machine
learning. In total this data frame contains about 50 columns with different metrics.
If a metric column is missing one or more data points in the interval, the column is
dropped. All Prometheus metrics are composed of continuous numerical values.

Our scripts permit to select the variables with emphasis on one specific alias or as
a regular expression for them. We attempted to filter out some of the aliases such as
proxy-services, after being informed that these should not be relevant. In addition,
when using regular expressions to filter aliases the variables become averages for
those aliases. This greatly simplified the acquisition of data points, and gives a
more global scale graph, at the possible expense of accuracy. Not all aliases are
represented in all of the variables, so selecting one specific alias also reduces the
amount of viable columns. Some of the variables, such as swap space, are represented
as the rate of change they have rather than the total value. The idea is to make the
variance more visible to the neural networks. In such cases, a change from 1000.0 to
1000.1 would otherwise appear as a very small change even after the data is scaled,
and considering most of the changes could manifest themselves as such, the variable
would be almost constant. Those of the variables that were already represented as
percentages, for instance the amount of free CPU, were kept as such.

Our target variable for the purposes of this report, the percentage of free CPU
time, is a general metric for the computing load on the system. The exact value
we use is a sum of the relevant aliases divided by the amount of aliases used, and
therefore an average per alias. In order to compare the various methods in a time
efficient manner, we used a small dataset with the time interval beginning at April
15th at midnight and ending at 1st May at midnight. When we select our final
model, we intend to use more data.

Some of the variables we chose practically did not influence the end results, as
they almost always were missing data, and our policy was to disregard the columns
where that was the case. Especially columns regarding amounts of HTTP statuses,
such as 404s or 500s, were always lacking data, and therefore not used.

Chapter 9. Method Part 2 41

9.1.1 Pre-processing and Scaling

There are many options for scaling the data. First of all, the result of applying
default scikit-learn normalization was that all the points changed their value to
0, so we did not try it further. The cause might have been incorrect settings.
Other alternatives are the Robust Scaler, Standard Scaler or Min-Max Scaler. The
Standard Scaler can not guarantee balanced feature scales in the presence of outliers
[1]. We used the Min-Max Scaler to scale the variables to the range [0, 1].

9.2 Naive Approach

In order to get an idea of how well the models perform, we compare them to a
simple naive prediction. There are a few naive approaches we could use, for example
selecting random values from the input or taking a weighted random number from
the input space’s distribution. Our naive method of choice here is simply taking an
average of the entire input and use that as the future predictions. The output is in
other words a straight line parallel to the x-axis.

As an example, when given the input array [[2, 0, 1, 9]] and the output size is set
to 3 values, the output would be [[3.0, 3.0, 3.0]].

While this method is an extremely simple approach, it actually yields a fairly
good accuracy, due to the data often swinging back and forth in a sine-like pattern.
A more complex naive approach we tried, where the line is no longer parallel to
the x-axis, used the derivative of the line drawn between the average values of the
first and second half of the input points. This was in an attempt to make the
”prediction” more in line with where the data is headed, and this version did not
do much differently than the simple approach. Either way, a good model should be
able to defeat any such methods on the testing set.

An advantage of using this method as a comparison over using something that
generates random values, is that it outputs the same value after every run. Since
several of the methods were applied separately, often in parallel, it also helps us
ensure that the data was divided equally in all the applications. Since this is such
an important part of comparing the methods, having this value be constant ensures
we filter out any mistakes.

Calculating the loss from this naive method and comparing it to the current
model see whether it is better. Furthermore, using the difference lossnaive− lossmodel

we can compare different methods by how well they do versus the naive method,
for instance by sorting them by this difference. The greater the difference value, the
better the model is. If the difference is 0 or less, we know the model is bad as it
does equally well as or worse than the naive method.

9.3 Feature Selection

Our datasets contains about 50 features, which can lead to a long and memory
intensive training process. Especially if we use many points backwards to predict
ahead. If we use 10 points, every x sample will contain 500 values. To prevent this
we can use feature selection to find the most correlated predictors for the target. We
have used ExtraTreesRegressor from scikit-learn to reduce the number of features, as

42 Chapter 9. Method Part 2

they gives us information about relevant features for the target feature. Some target
features only require 4-7 features, which means shorter run times, potentially better
learning, and the option to use more data points without depleting the memory. As
shown in table 9.1 the loss difference before and after feature selection is quite low,
as not all features are correlated to the target in the first place. The variance in
the selection of features is caused by the implementation randomly initializing the
decision trees each time.

Method With feature selection Without feature selection

Random forest 0.0393903121708898 0.03891878954942943
Lasso 0.0664701189850755 0.6647011462052438

Elastic net 0.10126800923282353 0.10126800747470582
Lars 0.07512170871355144 0.07512170871354992

Ridge 0.06221560252076057 0.0592391682566869

Table 9.1: This table shows the MSE for CPU prediction after running the scikit-
learn methods with and without feature selection. 30 points are used to predict 10
points, and it uses Min-Max Scaler from -3 to 3.

9.4 Scikit-learn Regression Methods

The methods we imported from scikit-learn were linear regression, Lasso, Ridge,
Elastic net, Lars and Random forest regression. We tested the scikit-learn methods
against each other using MSE and plotting them together. The scikit-learn models
were also tested on how well they adapted to new data in form of using expanding
windows. Recursive prediction strategy was also tested, however the output from
the models quickly converged to a straight line, so we decided to focus on using m
points from the past to predict n points in the future.

We did not use support vector machines in our comparison, because scikit-learn’s
implementation of SVM did not handle the same y input as the other methods we
used. For predicting multiple points ahead we used 2D arrays of y values to train
our models, and the implementation of SVM requires 1D arrays.

9.5 Model Optimization

To get the optimal model, much experimentation and testing is required. There is no
universal best model, it will vary based on the dataset and what you are attempting
to accomplish. We used the two techniques below to improve the model.

9.5.1 Bayesian Optimization

We used the Bayesian Optimization library Talos to find the best hyperparameters
for the NN model. Before the optimization process begun, we needed to provide
options for the hyperparameters, which include number of layers, units per layer,
activation functions and optimizers. This is useful for testing many alternative
configurations of the NN efficiently. The downside of testing all the possible combi-
nations is that it takes a very long time. [54]

Chapter 9. Method Part 2 43

In order to run it within reasonable time, we reduced the dataset when running
Talos as explained in 9.1 on page 40.

9.5.2 Early Stopping

We used early stopping to reduce overfitting of the model during the training. Early
stopping monitors validation loss and stops the training when it stops decreasing.
Early stopping can also reduce the time required to train a NN, because the training
can end sooner [47]. We also restore the weights of the model from epoch with the
lowest validation loss, in order to get the best performing model.

Figure 9.1: An example of early stopping, the vertical dotted line indicates where the
training is to be stopped.

9.6 Comparability of Results

In order for our results to be comparable across different methods, we ensured that
we used the same data, data processing and that it is scaled equally for the testing,
validation and training sets. This is important for gathering reliable data, so that we
can draw conclusions as to what works and what does not. One difference between
the methods is that the scikit-learn methods does not utilize validation sets.

44 Chapter 10. Analysis Part 2

Chapter 10

Analysis Part 2

All the results here use CPU as the target feature, and utilize feature selection.
This leads to only the columns ”Porter”, ”Node Load 1”, ”JVM Memory”, ”Audit
BaseEvent”, ”JMS Consumer Messages” and previous CPU values being used. Note
that this selection varies for each execution, though the selections often have simi-
larities. The number of columns used for this variable varies between 3 and 7, see 9.3
at page 41 for additional information. The full list of columns in use before feature
selection is available in the program code, which might have restricted access.

10.1 Talos

See appendix A for the results of the Bayesian optimization using Talos, before we
altered our data separation. The top result is a network with one bidirectional GRU
layer with the ReLU activation, 60 units and the Nadam optimizer.

This, along with time constraints due to the long run time of this optimization,
led us to exclude the normal RNN from the next run. RNN was only represented
once in the top 20 results in appendix A, and has also often been found inferior in
other similar projects [30]. Furthermore, the tanh and sigmoid activation functions
were excluded, both because of poor performance and time constraints. From this
point, we compared only LSTM and GRU, which yielded the results in appendix B.
Note that this version had early stopping implemented in order to reduce training
time and overfitting, as well as an optional additional dense layer at the end.

In appendix B we appended the evaluation/test loss to the table. The first
table, sorted on validation loss, shows that a model with the ELU activation, Adam
optimizer, 1 layer bidirectional GRU with 60 units, with an additional dense layer at
the end is on the top (run 123). The validation loss for this model is approximately
0.0005589, while the test loss is about 0.3772278. The second entry’s (run 124)
validation loss is only about 1.6 ∗ 10−6 greater, which is a small difference. In
contrast, this value has a significantly lower test loss, at about 0.3240174. Notice
that this table has higher validation loss values than the previous table, which is
due to the different data separation resulting in more tests being done.

If we take a look at the test loss, we can observe that the lowest validation
loss does not correspond with the lowest test loss. Sorting by the test loss instead
(second table, appendix B) gives a new top model with the ReLU activation, 3 GRU
layers with 60 units, 0.2 dropout and the RMSprop optimizer (run 30). This model
has an test loss of about 0.0653591, which is much lower than the model with the
lowest validation loss. In fact, that model has the highest test loss. This does puts

Chapter 10. Analysis Part 2 45

some of our reasoning behind not including RNN in this run in question, as we did
not append the test loss to that result, though the time constraints still apply. In
order to minimize the loss on the test set, we will use this model to represent NNs
in the comparisons.

10.2 Comparison

Now we will present the end result of running all the scikit-learn algorithms we use
in the project, the selected NN and the naive method on the same dataset. We
also included the worst of the NN models here for comparison. All the methods
were trained and made predictions on the test set 20 times. Then the average MSE
for each method over 20 test rounds were calculated, the result are available in
figure 10.1. These values were used to compare each of the methods against each
other. Unfortunately, two of the simpler methods, lasso and elastic net, failed as a
consequence of scaling the data to the interval [0, 1] and where not included. These
require further examination.

Method MSE

Random forest 0.001137607845037226
Linear regression 0.0017986074770151577

Lars 0.0020867141309309583
Ridge 0.0016549403786762721
Naive 0.004172812167342442

GRU-RMSprop 0.0009579661211377005
GRU-Adam 0.0010289894909705287

Table 10.1: Comparison of the average MSE for each method over 20 runs. 30
previous points are used to predict 10 points ahead, and it uses Min-Max Scaler from
0 to 1. Features used: CPU, Porter, Node Load 1, JVM Memory, Audit BaseEvent
and JMS Consumer Messages

As you can see on figure 10.2, the non-NN models result in predictions of mixed
accuracy. However, the accuracy of the non-NN models is lower than the NNs.
Furthermore, we can observe that the graphs on figure ?? of both the NNs are very
similar, despite using both the worst and best results from Talos. As the NN chosen
by sorting the Talos results by test loss did the best, we select it as our final model.
Of the simple models Random Forest (figure 10.3) did the best, with a result not
very far behind the NNs.

46 Chapter 10. Analysis Part 2

Figure 10.1: A visual comparison of all methods’ predictions averaged over 20 runs.
The true values are visualized by the green line. Based on the same data as figure
10.1.

Figure 10.2: A visual comparison of both NNs’ and naive method predictions averaged
over 20 runs. The naive method is included here in order to clearly display the
prediction intervals. The true values visualized by the green coloured line.

Figure 10.3: A visual comparison of both NNs’, Random Forest and naive method
predictions averaged over 20 runs. The naive method is included here in order
to clearly display the prediction intervals. The true values visualized by the green
coloured line.

Chapter 10. Analysis Part 2 47

On the graphs on figure 10.2 it seems as if the NNs make simpler predictions
than the simple methods. This is due to the final predictions being a average of
many and more varying predictions. This affects the simple methods less, as their
results are more similar between runs. Note that on the above figures, each tenth
prediction series was graphed, in order to ensure a good overview. Overall, none
of the models appear to reliably ”predict” significant divergence in the time series,
despite having a quite low loss in total.

10.3 Final Model

Running the model once on a more extensive data set, results in a overall testing
loss of about 2.68 ∗ 10−4. The naive method achieved a loss of about 6.21 ∗ 10−4

for the same dataset, which is a difference of 3.53 ∗ 10−4. Figure 10.4 shows the
loss graph for the model, which indicates that the model might not be complex or
flexible enough to learn all the connections. Furthermore, on figure 10.5 are some
example predictions on the CPU target variable.

Figure 10.4: A graph showing the learning of the model, illustrated by validation and
training loss.

48 Chapter 10. Analysis Part 2

(a) The model is not very far away from the
actual values.

(b) In this section of the test set, the model
makes many mistakes as to the progress of
the true values.

(c) The predictions are missing the true val-
ues in the area with high change, though it
does better on the area to the right.

(d) This is a relatively flat area of the test
set. The model appears to recognize the
rapidly swinging pattern.

Figure 10.5: Final model predictions on a test set. The green graph represents the
true values, while the predictions are red.

Chapter 11. Discussion Part 2 49

Chapter 11

Discussion Part 2

One of the most obvious considerations is the time resolution of the data. The
speed at which variables can change within a computer system is much greater than
more commonly forecast variables. For instance the weather, pressure and humidity
outside rarely swing violently over such short periods of time. Therefore, selecting
a low resolution might increase the chances of the model discovering correlation
between the time series. Prometheus does not retrieve performance metrics often
enough for us to use a resolution higher than 1 minute, so this would have to be
measured by other means if it where to be used. On the other hand, the lower the
resolution is, the harder it could be to predict values further in the future. In our
implementation, the time between data points is always constant.

In the case of recursive predictions, a high resolution would cause each prediction
step to affect a shorter span of time. This would require more recursive predictions to
reach a reasonable amount of time, with the loss growing quickly for each recursion
step. For non-recursive predictions this is much less of an issue, as the NN can be
set to predict a specific number of points ahead in time.

In addition, the size of the dataset grows proportionally with the increase in
resolution. It was a major limitation for us in the beginning of the project, because
of memory limitations. We solved this partially by implementing feature selection,
reducing the amount of features used in predicting the target to about 3-7. In
addition, lower resolution might emphasize the long term changes, rather than the
quick short term changes.

Our selection of features from the Prometheus service might not contain all the
necessary information to accurately predict sudden changes in the time series. In
addition, when considering that the data is often cyclical on the scale of days and
weeks, there is a risk that the algorithm learns to repeat the cyclical pattern, rather
than predict any interesting changes in the system behaviour.

The use of the optimization library Talos allowed us to test many possible com-
binations of hyperparameters in an orderly fashion, resulting in a good network for
the task. Still, it is not certain that this is the best model, because we only had
enough time to test small networks, and the amount of epochs was limited to 400
for the models. In addition, we did not try adding convolution and many other NN
types that are compatible.

The table gained from using Talos allows us to see which NN setups work well,
and which do not. There is one big flaw to our use of Talos, which is every model
combination is only run once instead of 20-30. This means that the results are
not reliable, as to get an accurate result with NNs one has to train them several

50 Chapter 11. Discussion Part 2

times. This could explain why the worst NN did almost as good as the best, despite
them having a completely different evaluation when run through Talos. Due to
time constraints we did not address this issue properly, though our result should be
enough for a proof of concept.

Since we only trained the models on one dataset, we can not be sure as to
the validity of the results. Optimally, we should have used a larger dataset with
Walk-Forward validation and multiple runs per window for a more reliable result.
Additionally, testing with only CPU as the target feature is not enough in order to
make conclusions about how well the other variables can be predicted.

Considering the significantly lower loss for the NN model, we can conclude that
it is better suited for these time series than the simple methods. Still, seeing as the
model often fails to predict radical changes in the 10-point intervals, it is difficult to
trust that the model would do well in those cases. In order for the information to be
useful, it would have to be reliable over time and make few mistakes. Though as seen
in the analysis chapter, the model is on the right path, as some of the predictions
appear to follow the true values quite well.

Chapter 12. Conclusion Part 2 51

Chapter 12

Conclusion Part 2

We have compared a few variations of RNN along with several simpler scikit-learn
methods in forecasting performance metrics of Signicat’s services with CPU as the
target feature.

Comparing the methods against each other revealed that the RNN model chosen
by using Talos did in fact get the lowest loss, though the worst RNN model was
not very far behind. Therefore we can conclude that RNNs, specifically GRUs, are
a good choice for the time series we examined, though Random Forest also shows
promise. On the other hand, the predictions do not appear to predict the anomalies
in the time series, and those are likely the most interesting cases. Therefore, we can
not say for sure whether the predictions are useful at this point, though the model is
a good starting point for further work, and we conclude that RNNs can be applied
to this problem.

12.1 Further Work

Our example was quite artificial, as the metrics were an average of several different
aliases. A more realistic and accurate application would involve creating a separate
model for every alias, and for every variable one should wish to predict within the
alias.

In order to further improve the model, one could try more complicated neural
network structures than what we had time to try, as some correlations can be out of
reach for our simple models. Also, as mentioned before, acquiring data with higher
resolution might allow for more detailed predictions. The rate at which changes
occur in a computer system is much higher than the 1 minute interval between our
data points.

In addition, there are more machine learning methods that could be applied to
the problem. These could be tested, by using the code we already made with few
alterations. In this report we only focused on a selected few, in order to make a
proof of concept. Have we had more time we would implement the three other
forecasting methods described in [9], namely Direct, DirRec and DIRMO, so that
we could compare their performance to those we already implemented.

A natural continuation of this work would be to create models for other variables,
and to explore whether the same type of network works well with them. It should be
a simple matter of running the same code with slightly different parameters, along
with large amounts of patience for the NN training, as some of the programs can
take days to run.

52 List of Figures

List of Figures

2.1 The output from hierarchical clustering is a tree diagram called den-
drogram, which shows relationships based on similarity. [60] 11

2.2 Density based clustering with 3 minimum points. Blue = noise, yellow
= border and red = core [61] . 12

3.1 Color values represent contamination values. Blue points are closer
to the norm, while red indicates high divergence from the rest. The
dark-coloured points are somewhere in between. 19

3.2 dataset reduced with UMAP. Points more or less gather in clusters. . 20
3.3 The same dataset reduced with t-SNE, here the data points lose much

more of the global structure, resulting in a less clear cloud of points. . 20
3.4 Robust Covariance . 20
3.5 Isolation Forest . 20
3.6 One-Class SVM, all the black points are considered outliers. 21
3.7 Local Outlier Factor . 21

4.1 3D visualization of the dataset after dimension reduction with PCA.
There is a distinct pattern here that implies geographical location plays
an important role in deciding how divergent a point is. Keep in mind
that most of the transactions originate from within Norway. 22

4.2 3D visualization of the dataset after dimension reduction with PCA.
There is a distinct pattern here that implies geographical location plays
an important role in deciding how divergent a point is. Keep in mind
that most of the transactions originate from within Norway. 23

4.3 The result is achieved using UMAP, Robust Scaler and Isolation For-
est. There are two different views, because the three-dimensional
structure is hard to discern when viewing it from only one perspective. 23

4.4 Same as figure 4.3, though it uses Local Outlier Factor instead of Iso-
lation Forest. The variance in the point distribution can be attributed
to UMAP giving different results after each run. 24

8.1 A recursive prediction strategy. 29
8.2 A MIMO based prediction strategy. 30
8.3 A neural network with one hidden layer. 30
8.4 A RNN network. 31
8.5 A RNN cell. 31
8.6 An unfolded RNN network predicting on three samples. 31
8.7 LSTM . 32
8.8 A GRU cell. 1. is the reset gate. 2. is the update gate. The structure

around the cell is the same as in figure 8.6. 32

List of Figures 53

8.9 Hyperplane and margin for a SVM-model trained on two predictors [62] 35
8.10 Splitting of a dataset into training, validation and testing sets. 37
8.11 Random split of a dataset into a train, validation and test set. 37
8.12 Deterministic split of a dataset into a train, validation and test set. . 37
8.13 Expanding Window increases the amount of data used for training

used each step. A square represents a “part”. A segment is all the
squares of the same colour in the figure. 38

8.14 Sliding Window keeps the amount of training data constant while mov-
ing the training window. A square represents a “part”. A segment is
the squares of the same colour in the figure. 38

9.1 An example of early stopping, the vertical dotted line indicates where
the training is to be stopped. 43

10.1 A visual comparison of all methods’ predictions averaged over 20 runs.
The true values are visualized by the green line. Based on the same
data as figure 10.1. 46

10.2 A visual comparison of both NNs’ and naive method predictions av-
eraged over 20 runs. The naive method is included here in order to
clearly display the prediction intervals. The true values visualized by
the green coloured line. 46

10.3 A visual comparison of both NNs’, Random Forest and naive method
predictions averaged over 20 runs. The naive method is included here
in order to clearly display the prediction intervals. The true values
visualized by the green coloured line. 46

10.4 A graph showing the learning of the model, illustrated by validation
and training loss. 47

10.5 Final model predictions on a test set. The green graph represents the
true values, while the predictions are red. 48

54 List of Tables

List of Tables

4.1 Outliers detected by Isolation Forest and which clusters the outliers
belonged to, using KMeans with 5 clusters. 24

9.1 This table shows the MSE for CPU prediction after running the scikit-
learn methods with and without feature selection. 30 points are used
to predict 10 points, and it uses Min-Max Scaler from -3 to 3. 42

10.1 Comparison of the average MSE for each method over 20 runs. 30
previous points are used to predict 10 points ahead, and it uses Min-
Max Scaler from 0 to 1. Features used: CPU, Porter, Node Load 1,
JVM Memory, Audit BaseEvent and JMS Consumer Messages 45

Bibliography 55

Bibliography

[1] Sci-kit Learn Examples, Compare the effect of different scalers on data
with outliers. URL https://scikit-learn.org/stable/auto_examples/

preprocessing/plot_all_scaling.html.

[2] Sci-kit Learn Documentation, Novelty and Outlier Detection, 03 2019. URL
https://scikit-learn.org/stable/modules/outlier_detection.html.

[3] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software available from tensorflow.org.

[4] Edgar Acuña and Carlos Rodŕıguez. A meta analysis study of outlier detection
methods in classification. 2004.

[5] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd
edition, 2010. ISBN 026201243X, 9780262012430.

[6] Autonomio. Talos. URL https://github.com/autonomio/talos.

[7] Joshua B. Tenenbaum, Vin Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290:2319–2323, 01
2000.

[8] Imad A. Basheer and Maha N. Hajmeer. Artificial neural networks: fundamen-
tals, computing, design, and application. Journal of microbiological methods,
43 1:3–31, 2000.

[9] Souhaib Ben Taieb, Gianluca Bontempi, Amir Atiya, and Antti Sorjamaa. A
review and comparison of strategies for multi-step ahead time series forecasting
based on the nn5 forecasting competition. Expert Systems with Applications,
39, 08 2011. doi: 10.1016/j.eswa.2012.01.039.

[10] Pavel Berkhin. Survey of clustering data mining techniques. A Survey of Clus-
tering Data Mining Techniques. Grouping Multidimensional Data: Recent Ad-
vances in Clustering., 10, 08 2002. doi: 10.1007/3-540-28349-8 2.

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html
https://scikit-learn.org/stable/modules/outlier_detection.html
http://tensorflow.org/
https://github.com/autonomio/talos

56 Bibliography

[11] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001. ISSN
1573-0565. doi: 10.1023/A:1010933404324.

[12] Gunnar Carlsson and Facundo Mémoli. Characterization, stability and con-
vergence of hierarchical clustering methods. Journal of Machine Learning Re-
search, 11:1425–1470, 04 2010.

[13] François Chollet. keras. https://github.com/fchollet/keras, 2015.

[14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Y Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. 12 2014.

[15] G E. Hinton. Visualizing high-dimensional data using t-sne. Vigiliae Chris-
tianae, 9:2579–2605, 01 2008.

[16] Jeffrey L. Elman. Finding structure in time. COGNITIVE SCIENCE, 14(2):
179–211, 1990.

[17] Martin Ester. Density-based Clustering, pages 795–799. Springer US, Boston,
MA, 2009. ISBN 978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9\ 605.

[18] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters a density-based algorithm for discover-
ing clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96,
pages 226–231. AAAI Press, 1996.

[19] Tom Fawcett and Foster Provost. Data Science for Business. O’Reilly Media,
Inc., 2013. ISBN 9781449374273.

[20] I.K. Fodor. A survey of dimension reduction techniques. Meat Sci., 9:10–20, 01
2002. doi: 10.2172/15002155.

[21] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means clustering
algorithm. Applied Statistics, 28(1):100–108, 1979. ISSN 00359254. doi: 10.
2307/2346830.

[22] Sepp Hochreiter. The vanishing gradient problem during learning recur-
rent neural nets and problem solutions. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 6:107–116, 04 1998. doi:
10.1142/S0218488598000094.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

[24] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science
& Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[25] Aapo Hyvrinen. Survey on independent component analysis. Neural Computing
Surveys, 2, 07 1999.

[26] Eric Iturbide, Jaime Cerda, and Mario Graff. A comparison between lars and
lasso for initialising the time-series forecasting auto-regressive equations. Pro-
cedia Technology, 7:282–288, 12 2013. doi: 10.1016/j.protcy.2013.04.035.

https://github.com/fchollet/keras

Bibliography 57

[27] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. URL http://www.scipy.org/.

[28] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical explo-
ration of recurrent network architectures. In Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning - Volume
37, ICML’15, pages 2342–2350. JMLR.org, 2015.

[29] Iebeling Kaastra and Milton Boyd. Designing a neural network for forecasting
financial and economic time series. Neurocomputing, 10(3):215–236, 1996. doi:
10.1016/0925-2312(95)00039-9.

[30] Andrej Karpathy, Justin Johnson, and Fei Fei Li. Visualizing and understanding
recurrent networks. Cornell Univ. Lab., 06 2015.

[31] Kamaljeet Kaur and Atul Garg. Comparative study of outlier detection algo-
rithms. International Journal of Computer Applications, 147:21–26, 08 2016.
doi: 10.5120/ijca2016911176.

[32] Gülden Kaya Uyanık and Neşe Güler. A study on multiple linear regression
analysis. Procedia - Social and Behavioral Sciences, 106:234–240, 12 2013. doi:
10.1016/j.sbspro.2013.12.027.

[33] Michelle Lacey. Multiple linear regression. URL http://www.stat.yale.edu/

Courses/1997-98/101/linmult.htm.

[34] Ilias Maglogiannis Lazaros Iliadis and Harris Papadopoulos. Artificial Intelli-
gence Applications and Innovations. Springer, 2014.

[35] Leo Liberti, Carlile Lavor, Nelson Maculan, and Antonio Mucherino. Euclidean
distance geometry and applications. SIAM Rev., 56(1):3–67, 2014. doi: 10.
1137/120875909.

[36] F. T. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In 2008 Eighth IEEE
International Conference on Data Mining, pages 413–422, Dec 2008. doi: 10.
1109/ICDM.2008.17.

[37] Markus M. Breunig, Hans-Peter Kriegel, Raymond Ng, and Joerg Sander. Lof:
Identifying density-based local outliers. volume 29, pages 93–104, 06 2000. doi:
10.1145/342009.335388.

[38] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approxima-
tion and Projection for Dimension Reduction. ArXiv e-prints, February 2018.

[39] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Grossberger. Umap:
Uniform manifold approximation and projection. The Journal of Open Source
Software, 3(29):861, 2018.

[40] Qing He Ning Li1, Li Zeng and Zhongzhi Shi. Parallel implementation of apriori
algorithm based on mapreduce, 08 2012.

[41] Salima Omar, Md Ngadi, Hamid H Jebur, and Salima Benqdara. Machine
learning techniques for anomaly detection: An overview. International Journal
of Computer Applications, 79, 10 2013. doi: 10.5120/13715-1478.

http://www.scipy.org/
http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm
http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm

58 Bibliography

[42] S GOPAL PATRO and Kishore Kumar Sahu. Normalization: A preprocessing
stage. IARJSET, 03 2015. doi: 10.17148/IARJSET.2015.2305.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Sci-kit learn doc-
umentation, decision trees, 2019. URL https://scikit-learn.org/stable/

modules/tree.html.

[45] Daniel Peña and Francisco Prieto. Multivariate outlier detection and robust
covariance matrix estimation. Technometrics, 43, 08 2001. doi: 10.1198/
004017001316975899.

[46] Ashis Pradhan. Support vector machine-a survey. IJETAE, 2, 09 2012. ISSN
ISSN 2250-2459.

[47] Lutz Prechelt. Early stopping - but when? 03 2000. doi: 10.1007/
3-540-49430-8 3.

[48] Peter Rousseeuw and Annick M. Leroy. Robust Regression & Outlier Detection.
09 1987. doi: 10.2307/2289958.

[49] Sebastian Ruder. An overview of gradient descent optimization algorithms. 09
2016.

[50] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh
Valaee. Recent advances in recurrent neural networks. 12 2017.

[51] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola,
and Robert C. Williamson. Estimating the support of a high-dimensional
distribution. Neural Comput., 13(7):1443–1471, July 2001. ISSN 0899-
7667. doi: 10.1162/089976601750264965. URL https://doi.org/10.1162/

089976601750264965.

[52] Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks.
Signal Processing, IEEE Transactions on, 45:2673 – 2681, 12 1997. doi: 10.
1109/78.650093.

[53] M Shridhar and Mahesh Parmar. Survey on association rule mining and
its approaches. International Journal of Computer Sciences and Engineering
(IJCSE), 5:129–135, 03 2017.

[54] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian op-
timization of machine learning algorithms. Advances in Neural Information
Processing Systems, 4, 06 2012.

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965

Bibliography 59

[55] Xiaomeng Su. Business Analytics Techniques. NTNU Blackboard, IINI3012
Big Data, 2018.

[56] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen,
E. Kindler, and C. W. Günther. Process mining: a two-step approach to balance
between underfitting and overfitting. Software & Systems Modeling, 9(1):87,
Nov 2008. ISSN 1619-1374. doi: 10.1007/s10270-008-0106-z.

[57] G. van Rossum. Python tutorial. Technical Report CS-R9526, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, May 1995.

[58] Diego Vidaurre, Concha Bielza, and Pedro Larranaga. A survey of l1 regression.
International Statistical Review, 81, 12 2013. doi: 10.1111/insr.12023.

[59] William Wei. Time Series Analysis: Univariate and Multivariate Methods,
volume 33. 01 1989. ISBN 978-0-201-15911-0. doi: 10.2307/2289741.

[60] Wikimedia Commons, the free media repository. An agglomerative clustering
dendogram example, 12 2009. URL https://commons.wikimedia.org/wiki/

File:Agglomerative_clustering_dendogram.png. [Online; accessed April
20, 2019].

[61] Wikimedia Commons, the free media repository. Illustration of dbscan cluster
analysis (minpts=3), 10 2011. URL https://commons.wikimedia.org/wiki/

File:DBSCAN-Illustration.svg. [Online; accessed May 1, 2019].

[62] Wikimedia Commons, the free media repository. Maximum-margin hyperplane
and margin for an svm trained on two classes. samples on margins are called
support vectors., 10 2018. [Online; accessed May 10, 2019].

[63] Shuang Wu, Guoqi Li, Lei Deng, Liu Liu, Yuan Xie, and L.P. Shi. L1-
norm batch normalization for efficient training of deep neural networks. IEEE
Transactions on Neural Networks and Learning Systems, PP, 02 2018. doi:
10.1109/TNNLS.2018.2876179.

[64] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering al-
gorithms. Annals of Data Science, 2(2):165–193, 2015. doi: 10.1007/
s40745-015-0040-1.

[65] Xujun Zhou, Xianxia Zhang, and Bing Wang. Online support vector machine:
A survey. 382:269–278, 01 2016. doi: 10.1007/978-3-662-47926-1 26.

https://commons.wikimedia.org/wiki/File:Agglomerative_clustering_dendogram.png
https://commons.wikimedia.org/wiki/File:Agglomerative_clustering_dendogram.png
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg
https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg

60 Appendix A. Talos Run 1

Appendix A

Talos Run 1

The settings used by Talos:

• Activation functions: ReLU, ELU, tanh, sigmoid

• Optimizers: Nadam, Adam, rmsprop

• Loss: MSE

• Layers: 1, 2, 3

• Size per layer: 10, 30, 60, 120

• Batch size: 64, 128, 256

• Bidirectional: True, False

• Layer type: GRU, LSTM, RNN

• Epochs: 250, 300, 400

Sorted by validation loss

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
735 400 0.000044 0.000038 relu Nadam mse 1 60 64 True gru
53 400 0.000048 0.000017 relu Nadam mse 3 120 64 True gru
368 400 0.000048 0.000064 relu rmsprop mse 1 120 64 True lstm
548 400 0.000048 0.000038 relu Nadam mse 1 60 64 True lstm
751 250 0.000049 0.000053 tanh Nadam mse 3 60 64 True lstm
253 400 0.000049 0.000041 elu Nadam mse 1 120 64 True lstm
527 400 0.000049 0.000048 elu Nadam mse 2 120 64 True lstm
710 400 0.000049 0.000042 relu Adam mse 3 120 64 False gru
236 400 0.000049 0.000044 relu Nadam mse 1 120 64 True lstm
123 250 0.000050 0.000046 relu Adam mse 2 120 64 True gru
553 400 0.000050 0.000044 relu Nadam mse 1 120 64 False lstm
637 400 0.000050 0.000041 tanh Adam mse 3 120 64 False lstm
112 400 0.000051 0.000023 relu Adam mse 2 120 64 False rnn
445 400 0.000051 0.000044 relu Adam mse 3 30 64 True gru
426 400 0.000051 0.000048 elu Nadam mse 2 60 64 True gru
472 300 0.000051 0.000089 relu rmsprop mse 2 120 64 True lstm
297 250 0.000051 0.000052 relu Adam mse 3 60 64 True gru
288 400 0.000051 0.000044 relu Adam mse 1 120 64 True gru
159 400 0.000052 0.000062 elu Adam mse 3 120 64 False gru
299 400 0.000052 0.000062 tanh Adam mse 2 30 64 True lstm
286 400 0.000053 0.000056 relu Adam mse 2 60 64 False gru
435 250 0.000053 0.000056 relu Adam mse 3 30 64 True gru
524 400 0.000054 0.000064 elu Adam mse 2 120 64 False gru
384 300 0.000054 0.000050 relu Adam mse 3 60 64 True lstm
327 400 0.000055 0.000063 elu Adam mse 1 120 64 False lstm
458 300 0.000055 0.000058 relu Adam mse 1 120 64 True gru
214 250 0.000055 0.000062 relu Adam mse 1 60 64 True gru
669 300 0.000055 0.000047 relu Nadam mse 3 30 64 True gru
510 400 0.000056 0.000041 relu Nadam mse 1 60 64 True rnn
731 300 0.000056 0.000069 elu Nadam mse 1 120 64 True lstm
313 400 0.000056 0.000053 relu Adam mse 1 120 64 False lstm
517 400 0.000056 0.000065 elu Nadam mse 2 30 64 True rnn

Appendix A. Talos Run 1 61

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
708 300 0.000056 0.000059 tanh Nadam mse 1 60 64 True gru
753 400 0.000056 0.000038 tanh Nadam mse 2 60 64 True lstm
591 300 0.000057 0.000053 relu Adam mse 2 120 256 True gru
218 400 0.000057 0.000053 elu Nadam mse 2 120 64 False lstm
278 300 0.000057 0.000059 relu Nadam mse 1 60 64 False rnn
141 300 0.000057 0.000069 tanh Adam mse 2 60 64 True gru
663 250 0.000057 0.000046 relu Adam mse 2 60 64 True lstm
383 400 0.000057 0.000032 relu Nadam mse 3 60 128 True rnn
505 300 0.000057 0.000064 relu Adam mse 2 60 128 False gru
728 300 0.000057 0.000073 tanh Nadam mse 2 30 64 False gru
94 300 0.000058 0.000073 tanh rmsprop mse 3 30 64 False lstm
453 250 0.000058 0.000060 relu Adam mse 2 120 128 True lstm
182 400 0.000058 0.000073 elu Adam mse 2 60 128 False gru
489 400 0.000058 0.000090 tanh rmsprop mse 3 120 64 False gru
52 300 0.000058 0.000067 elu Adam mse 1 120 64 True rnn
89 400 0.000058 0.000073 elu Nadam mse 3 10 64 True gru
198 300 0.000058 0.000077 elu Adam mse 3 60 128 False gru
175 400 0.000058 0.000068 tanh Adam mse 2 30 64 False gru
259 400 0.000058 0.000061 relu Nadam mse 1 30 128 True lstm
280 400 0.000058 0.000022 relu Adam mse 2 60 64 True rnn
24 400 0.000058 0.000064 relu Adam mse 2 60 256 False gru
399 300 0.000058 0.000073 tanh Adam mse 3 30 64 False gru
592 250 0.000059 0.000086 tanh rmsprop mse 3 30 64 True lstm
56 250 0.000059 0.000077 relu Adam mse 3 10 64 True gru
337 400 0.000059 0.000067 relu Nadam mse 1 30 64 False gru
210 300 0.000059 0.000080 elu rmsprop mse 3 120 64 True lstm
17 250 0.000059 0.000080 elu Nadam mse 2 60 64 True lstm
385 300 0.000059 0.000082 relu rmsprop mse 2 60 64 False lstm
485 400 0.000059 0.000072 relu Adam mse 2 30 64 False rnn
567 400 0.000060 0.000080 tanh rmsprop mse 1 120 64 False gru
5 250 0.000060 0.000077 elu Adam mse 3 60 64 True gru
564 300 0.000060 0.000075 elu Adam mse 2 30 64 False gru
508 400 0.000060 0.000070 elu Adam mse 1 30 64 False gru
655 400 0.000060 0.000062 relu Nadam mse 3 30 64 False gru
204 400 0.000060 0.000073 elu Adam mse 3 120 128 True gru
74 400 0.000060 0.000077 tanh rmsprop mse 2 60 128 False lstm
321 400 0.000060 0.000038 relu Adam mse 2 120 128 False rnn
86 400 0.000060 0.000062 elu Nadam mse 2 60 64 True lstm
217 400 0.000060 0.000068 relu Nadam mse 1 30 64 False lstm
771 300 0.000060 0.000104 elu rmsprop mse 2 60 64 True lstm
375 400 0.000060 0.000073 elu Nadam mse 3 120 64 False lstm
4 300 0.000060 0.000067 relu Nadam mse 2 30 64 False rnn
47 300 0.000061 0.000075 elu Nadam mse 2 30 64 True lstm
155 250 0.000061 0.000078 relu Adam mse 2 10 64 True gru
179 400 0.000061 0.000070 tanh Nadam mse 3 10 64 True gru
737 400 0.000061 0.000053 tanh Adam mse 3 60 64 True rnn
543 400 0.000061 0.000057 relu rmsprop mse 2 60 64 False lstm
613 300 0.000061 0.000077 tanh Adam mse 2 60 128 False gru
712 300 0.000061 0.000070 tanh Nadam mse 1 60 64 True lstm
599 400 0.000061 0.000056 elu Adam mse 3 60 64 True lstm
260 400 0.000061 0.000078 elu Adam mse 3 120 256 False gru
740 400 0.000061 0.000060 tanh Nadam mse 3 60 128 True lstm
590 400 0.000062 0.000072 tanh Adam mse 1 60 128 True lstm
683 400 0.000062 0.000073 relu rmsprop mse 3 60 64 False gru
65 250 0.000062 0.000059 relu Nadam mse 2 60 128 True lstm
526 300 0.000062 0.000067 relu Adam mse 3 60 128 False gru
520 400 0.000062 0.000090 tanh rmsprop mse 3 30 128 True lstm
266 300 0.000062 0.000071 tanh Nadam mse 1 120 64 False lstm
262 400 0.000062 0.000074 elu Nadam mse 3 30 128 True gru
579 400 0.000062 0.000029 relu Nadam mse 1 120 128 True rnn
353 300 0.000062 0.000082 elu Adam mse 3 120 128 True gru
16 400 0.000062 0.000062 elu Nadam mse 3 120 64 True lstm
36 400 0.000062 0.000067 tanh Adam mse 1 120 128 False gru
177 250 0.000062 0.000070 relu Adam mse 3 30 128 True gru
516 400 0.000063 0.000064 relu rmsprop mse 1 120 64 True rnn
125 300 0.000063 0.000066 relu Adam mse 2 30 64 False gru
671 400 0.000063 0.000064 relu Adam mse 3 30 128 True rnn
300 250 0.000063 0.000073 elu Nadam mse 3 60 64 False lstm
608 400 0.000063 0.000088 elu rmsprop mse 3 60 128 True lstm
365 250 0.000063 0.000076 relu Nadam mse 3 60 64 True lstm
507 300 0.000063 0.000082 relu Adam mse 1 10 64 True gru
673 250 0.000063 0.000085 relu rmsprop mse 1 120 64 True gru
95 250 0.000063 0.000062 relu Adam mse 3 120 128 True lstm
456 250 0.000063 0.000118 relu rmsprop mse 3 120 64 True gru
146 300 0.000063 0.000069 relu Adam mse 1 60 64 False rnn
506 250 0.000064 0.000074 elu Nadam mse 2 60 64 True rnn
499 400 0.000064 0.000064 tanh Nadam mse 3 10 64 True lstm
252 300 0.000064 0.000068 tanh Adam mse 3 60 64 True rnn
341 250 0.000064 0.000075 elu Nadam mse 2 60 64 False gru
326 400 0.000064 0.000057 relu Nadam mse 1 60 128 True rnn
319 400 0.000064 0.000075 elu Nadam mse 1 10 64 False lstm
349 400 0.000064 0.000069 tanh Nadam mse 3 30 128 True lstm
763 400 0.000064 0.000076 relu Adam mse 3 30 256 False gru
699 300 0.000064 0.000078 elu Adam mse 2 120 128 True gru
163 300 0.000064 0.000079 tanh Adam mse 3 30 64 True rnn
486 400 0.000064 0.000073 relu Nadam mse 3 10 64 True lstm
448 300 0.000064 0.000077 relu rmsprop mse 3 120 64 False lstm
34 300 0.000064 0.000085 tanh Adam mse 1 120 64 False rnn
98 400 0.000064 0.000078 relu Nadam mse 1 120 256 False lstm
642 400 0.000064 0.000076 elu Adam mse 2 60 256 False gru
224 300 0.000065 0.000072 relu Nadam mse 3 10 64 True gru
129 250 0.000065 0.000067 relu Nadam mse 1 120 64 False rnn
638 250 0.000065 0.000052 relu Nadam mse 3 30 64 True rnn
350 300 0.000065 0.000082 elu Adam mse 3 10 64 False gru
724 300 0.000065 0.000068 relu Adam mse 2 60 256 True gru
658 300 0.000065 0.000072 elu Adam mse 2 30 64 False lstm
572 250 0.000065 0.000077 relu Nadam mse 1 30 64 True rnn
414 300 0.000065 0.000080 elu Adam mse 3 10 64 True gru

62 Appendix A. Talos Run 1

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
376 400 0.000065 0.000079 relu Adam mse 2 10 64 False gru
27 300 0.000065 0.000081 relu Adam mse 2 30 128 False gru
454 400 0.000065 0.000090 elu rmsprop mse 3 30 128 False lstm
629 300 0.000065 0.000077 elu Adam mse 2 120 128 True lstm
429 250 0.000065 0.000044 relu Nadam mse 2 120 64 False rnn
117 400 0.000065 0.000087 elu Nadam mse 2 10 64 False rnn
212 250 0.000065 0.000083 relu Adam mse 2 10 64 False gru
100 300 0.000065 0.000089 relu rmsprop mse 1 60 64 True rnn
164 400 0.000066 0.000078 elu Adam mse 1 120 128 False rnn
336 250 0.000066 0.000074 relu Adam mse 3 120 256 False gru
104 400 0.000066 0.000026 relu Nadam mse 3 60 64 False rnn
765 300 0.000066 0.000082 elu Adam mse 3 60 256 False gru
645 400 0.000066 0.000053 relu Nadam mse 2 60 128 False rnn
415 400 0.000066 0.000084 relu Adam mse 2 30 128 False rnn
589 400 0.000066 0.000081 elu Nadam mse 3 30 64 False rnn
555 250 0.000066 0.000082 relu Nadam mse 2 120 128 False gru
377 250 0.000066 0.000082 relu Adam mse 1 60 64 False rnn
755 400 0.000066 0.000074 relu Adam mse 1 10 64 False gru
115 300 0.000066 0.000077 tanh Nadam mse 2 10 64 True gru
102 250 0.000066 0.000083 tanh Adam mse 3 120 256 False gru
504 250 0.000067 0.000083 tanh Nadam mse 2 30 64 False gru
393 400 0.000067 0.000105 tanh rmsprop mse 2 60 128 False gru
250 250 0.000067 0.000072 relu Nadam mse 1 120 128 True lstm
407 300 0.000067 0.000084 tanh Adam mse 2 30 64 True rnn
103 400 0.000067 0.000081 elu Adam mse 3 30 256 False gru
432 400 0.000067 0.000104 relu rmsprop mse 1 10 64 True rnn
660 250 0.000067 0.000084 elu Adam mse 3 30 64 False lstm
226 300 0.000067 0.000074 relu Adam mse 3 30 128 False gru
726 250 0.000067 0.000128 elu rmsprop mse 1 60 64 True rnn
314 300 0.000067 0.000085 elu Adam mse 1 60 64 False rnn
202 300 0.000067 0.000081 relu Adam mse 3 10 64 False gru
263 400 0.000068 0.000073 tanh Nadam mse 2 30 128 False lstm
761 400 0.000068 0.000082 relu rmsprop mse 3 10 64 True lstm
720 400 0.000068 0.000119 relu rmsprop mse 3 10 64 False gru
185 300 0.000068 0.000085 elu rmsprop mse 2 30 64 False lstm
77 300 0.000068 0.000073 relu Nadam mse 1 60 128 False rnn
533 300 0.000068 0.000083 elu Adam mse 2 10 64 True gru
197 400 0.000068 0.000097 elu rmsprop mse 1 30 64 True gru
622 400 0.000068 0.000073 relu Nadam mse 2 30 256 True gru
754 250 0.000068 0.000082 elu Adam mse 3 60 256 False gru
741 300 0.000068 0.000070 relu Adam mse 3 30 128 False rnn
509 400 0.000068 0.000085 relu Adam mse 1 10 64 True rnn
48 250 0.000069 0.000076 relu Nadam mse 2 60 256 True gru
235 400 0.000069 0.000081 elu Adam mse 3 60 256 True gru
285 300 0.000069 0.000082 elu Nadam mse 1 10 64 False gru
281 300 0.000069 0.000073 relu Nadam mse 3 120 256 True gru
97 300 0.000069 0.000073 relu Nadam mse 3 120 128 False gru
362 300 0.000069 0.000085 relu Nadam mse 1 10 64 True lstm
661 300 0.000069 0.000082 elu Nadam mse 1 120 128 True lstm
223 400 0.000069 0.000089 elu Adam mse 3 30 64 False rnn
342 400 0.000069 0.000132 relu rmsprop mse 2 30 128 True gru
41 400 0.000069 0.000071 relu Nadam mse 2 120 256 False gru
267 300 0.000069 0.000083 tanh Nadam mse 1 10 64 True gru
371 400 0.000070 0.000094 elu rmsprop mse 3 120 64 False rnn
614 300 0.000070 0.000091 tanh Nadam mse 1 30 64 True rnn
758 250 0.000070 0.000083 tanh Adam mse 1 120 256 False gru
49 250 0.000070 0.000090 elu Adam mse 2 10 64 True gru
358 300 0.000070 0.000090 tanh Nadam mse 2 30 128 False gru
379 250 0.000070 0.000102 relu rmsprop mse 2 30 64 False lstm
623 400 0.000070 0.000088 elu Nadam mse 1 30 128 False rnn
618 250 0.000070 0.000085 elu Nadam mse 1 10 64 True gru
340 250 0.000070 0.000084 tanh Adam mse 1 60 64 False lstm
63 250 0.000070 0.000101 elu rmsprop mse 2 120 64 True rnn
749 400 0.000070 0.000077 tanh Adam mse 3 60 128 True rnn
121 250 0.000070 0.000084 elu Adam mse 3 10 64 False gru
96 250 0.000070 0.000078 relu Adam mse 3 30 128 False rnn
596 400 0.000070 0.000081 relu Nadam mse 1 10 64 True lstm
247 400 0.000071 0.000082 tanh Nadam mse 1 30 128 True lstm
729 300 0.000071 0.000111 elu rmsprop mse 1 30 64 False gru
12 400 0.000071 0.000116 elu rmsprop mse 1 120 128 False rnn
575 300 0.000071 0.000084 tanh Nadam mse 2 120 128 False lstm
662 300 0.000071 0.000089 elu Nadam mse 2 60 128 True lstm
308 400 0.000071 0.000084 elu Nadam mse 1 30 128 True lstm
692 250 0.000071 0.000081 tanh Adam mse 2 120 128 True lstm
114 250 0.000071 0.000077 tanh Adam mse 3 30 64 True lstm
160 250 0.000072 0.000097 relu rmsprop mse 3 60 64 False rnn
145 250 0.000072 0.000089 tanh Nadam mse 1 60 128 False gru
513 250 0.000072 0.000075 relu Nadam mse 1 120 128 False lstm
382 250 0.000072 0.000089 elu Adam mse 3 10 64 True gru
594 400 0.000072 0.000085 relu Nadam mse 2 30 128 False lstm
400 400 0.000072 0.000069 relu Nadam mse 3 60 256 True gru
747 250 0.000072 0.000116 elu rmsprop mse 1 10 64 False gru
44 400 0.000072 0.000109 tanh rmsprop mse 2 10 64 True gru
650 250 0.000072 0.000076 relu Adam mse 1 60 256 True lstm
440 300 0.000073 0.000091 relu Nadam mse 1 10 128 False rnn
80 300 0.000073 0.000089 elu Adam mse 1 120 128 False lstm
500 400 0.000073 0.000083 sigmoid Nadam mse 2 120 64 True lstm
144 250 0.000073 0.000086 tanh Adam mse 3 30 64 True rnn
29 300 0.000073 0.000116 elu rmsprop mse 1 10 64 True gru
335 300 0.000073 0.000083 relu Adam mse 2 10 64 False gru
678 250 0.000073 0.000082 relu Adam mse 3 30 256 False rnn
32 400 0.000073 0.000088 elu Nadam mse 2 60 256 False gru
397 250 0.000073 0.000117 tanh rmsprop mse 2 60 64 False gru
58 300 0.000073 0.000100 relu Nadam mse 1 10 128 True gru
60 250 0.000073 0.000085 relu Nadam mse 1 120 256 True gru
279 400 0.000073 0.000121 tanh rmsprop mse 1 10 128 False gru
559 250 0.000073 0.000139 elu rmsprop mse 2 10 64 True gru
255 250 0.000073 0.000087 tanh Adam mse 1 30 128 True gru

Appendix A. Talos Run 1 63

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
334 250 0.000074 0.000115 relu rmsprop mse 3 10 64 True lstm
607 300 0.000074 0.000090 elu Nadam mse 2 30 128 True lstm
275 300 0.000074 0.000090 elu Adam mse 3 30 256 False gru
261 400 0.000074 0.000089 elu Adam mse 1 10 64 False lstm
684 400 0.000074 0.000092 relu Nadam mse 2 10 64 False rnn
1 250 0.000074 0.000080 tanh Adam mse 1 120 256 True gru
28 250 0.000074 0.000103 relu rmsprop mse 2 60 64 False lstm
7 400 0.000074 0.000091 tanh Nadam mse 2 120 256 False gru
478 300 0.000074 0.000121 elu rmsprop mse 3 30 64 True rnn
632 250 0.000074 0.000146 elu rmsprop mse 1 30 128 False rnn
651 400 0.000074 0.000077 tanh Nadam mse 3 30 64 True rnn
462 400 0.000074 0.000088 relu Adam mse 1 60 256 False rnn
705 400 0.000074 0.000133 tanh rmsprop mse 2 30 128 True gru
733 250 0.000074 0.000085 tanh Adam mse 3 60 128 True lstm
471 300 0.000075 0.000102 tanh Adam mse 2 60 128 True rnn
408 400 0.000075 0.000092 elu Nadam mse 2 10 128 True gru
339 400 0.000075 0.000087 tanh Adam mse 3 30 256 True lstm
93 300 0.000075 0.000104 elu Nadam mse 3 10 64 False rnn
549 300 0.000075 0.000143 tanh rmsprop mse 2 10 64 True gru
681 300 0.000075 0.000142 elu rmsprop mse 2 30 128 True lstm
552 300 0.000075 0.000096 tanh Adam mse 3 60 128 True rnn
143 300 0.000075 0.000086 tanh Nadam mse 1 120 64 False rnn
184 250 0.000075 0.000067 relu Nadam mse 1 120 128 True rnn
374 250 0.000076 0.000123 tanh rmsprop mse 2 60 128 False lstm
419 250 0.000076 0.000126 elu rmsprop mse 1 120 64 False rnn
437 400 0.000076 0.000086 elu Adam mse 2 120 256 False lstm
178 250 0.000076 0.000101 tanh Adam mse 3 30 128 True rnn
654 300 0.000076 0.000130 elu rmsprop mse 2 120 128 True rnn
290 400 0.000076 0.000092 relu Nadam mse 1 10 128 False rnn
196 400 0.000076 0.000119 elu rmsprop mse 1 30 128 False lstm
122 250 0.000076 0.000123 elu rmsprop mse 1 60 64 False lstm
631 400 0.000076 0.000102 sigmoid Nadam mse 3 30 64 True rnn
612 250 0.000076 0.000094 tanh Nadam mse 2 120 256 False gru
35 400 0.000077 0.000104 elu rmsprop mse 2 120 128 True lstm
201 250 0.000077 0.000209 tanh rmsprop mse 2 120 128 True gru
580 300 0.000077 0.000092 elu Adam mse 1 60 128 True rnn
676 300 0.000077 0.000120 tanh rmsprop mse 2 30 64 False gru
55 250 0.000077 0.000097 elu Nadam mse 2 120 128 True gru
19 300 0.000077 0.000170 elu rmsprop mse 3 120 128 True rnn
546 250 0.000077 0.000085 relu Adam mse 3 120 256 False lstm
403 400 0.000077 0.000093 sigmoid Adam mse 3 30 64 True gru
518 250 0.000077 0.000089 tanh Adam mse 1 30 64 True lstm
583 300 0.000077 0.000129 relu rmsprop mse 1 60 128 False lstm
696 400 0.000077 0.000086 elu Adam mse 2 10 64 True lstm
386 250 0.000077 0.000172 elu rmsprop mse 1 60 128 False rnn
37 250 0.000077 0.000082 relu Adam mse 2 30 256 True gru
424 250 0.000077 0.000069 relu Adam mse 3 60 256 True lstm
15 250 0.000078 0.000118 elu rmsprop mse 3 30 128 False lstm
457 250 0.000078 0.000104 relu Nadam mse 1 10 128 False gru
562 250 0.000078 0.000156 tanh rmsprop mse 2 120 64 True gru
477 250 0.000078 0.000118 tanh rmsprop mse 3 120 128 True lstm
773 250 0.000078 0.000133 elu rmsprop mse 3 120 64 True rnn
106 400 0.000078 0.000099 tanh rmsprop mse 3 120 256 False lstm
373 400 0.000078 0.000093 elu Nadam mse 2 30 128 True rnn
680 400 0.000078 0.000139 tanh rmsprop mse 2 60 128 True gru
233 400 0.000078 0.000092 tanh Nadam mse 3 60 64 False rnn
588 250 0.000078 0.000090 tanh Adam mse 2 30 64 False lstm
719 400 0.000078 0.000105 sigmoid Nadam mse 2 30 64 False lstm
441 400 0.000078 0.000105 sigmoid Adam mse 1 120 64 False gru
234 400 0.000079 0.000117 relu rmsprop mse 1 30 256 False gru
176 400 0.000079 0.000107 sigmoid Nadam mse 1 30 64 False rnn
421 400 0.000079 0.000117 elu rmsprop mse 3 120 128 True gru
294 250 0.000079 0.000087 tanh Nadam mse 2 60 128 True lstm
444 250 0.000079 0.000123 elu rmsprop mse 1 120 64 False lstm
2 300 0.000079 0.000094 tanh Nadam mse 1 120 128 True rnn
251 400 0.000079 0.000096 tanh Adam mse 1 60 128 True rnn
91 250 0.000079 0.000130 relu rmsprop mse 3 10 64 True gru
571 250 0.000079 0.000100 tanh Adam mse 2 30 128 True rnn
563 300 0.000079 0.000100 elu Nadam mse 3 60 128 False gru
531 300 0.000079 0.000121 tanh rmsprop mse 3 10 64 True gru
355 300 0.000079 0.000097 relu Adam mse 1 10 128 False lstm
206 400 0.000079 0.000096 tanh Adam mse 2 60 128 False rnn
706 250 0.000079 0.000122 elu rmsprop mse 2 120 128 True rnn
578 250 0.000079 0.000091 elu Adam mse 2 60 128 False lstm
438 400 0.000079 0.000104 sigmoid Nadam mse 2 30 64 True lstm
558 400 0.000080 0.000144 sigmoid rmsprop mse 3 120 64 False lstm
116 400 0.000080 0.000098 sigmoid Nadam mse 2 60 64 False lstm
139 300 0.000080 0.000159 relu rmsprop mse 2 30 128 True rnn
170 400 0.000080 0.000099 elu Nadam mse 1 30 256 False gru
394 400 0.000080 0.000087 tanh Adam mse 3 60 256 True lstm
213 300 0.000080 0.000094 elu Adam mse 1 10 64 False lstm
422 300 0.000080 0.000143 tanh rmsprop mse 1 30 128 False gru
484 400 0.000080 0.000090 elu Nadam mse 3 120 128 True gru
430 300 0.000080 0.000099 tanh Adam mse 3 120 128 True rnn
404 250 0.000080 0.000092 tanh Adam mse 1 120 128 False lstm
501 400 0.000080 0.000096 tanh Nadam mse 1 120 64 False rnn
282 300 0.000080 0.000122 elu rmsprop mse 2 60 128 False lstm
14 400 0.000080 0.000094 tanh Adam mse 1 120 256 False lstm
153 250 0.000080 0.000091 tanh Nadam mse 3 30 128 True lstm
346 250 0.000081 0.000083 relu Nadam mse 1 120 256 False gru
682 250 0.000081 0.000097 relu Nadam mse 2 30 256 False gru
475 400 0.000081 0.000109 elu Adam mse 3 60 128 True rnn
381 250 0.000081 0.000141 tanh rmsprop mse 1 120 128 False gru
264 250 0.000081 0.000086 relu Nadam mse 1 30 128 True gru
147 250 0.000081 0.000094 elu Adam mse 2 10 64 True lstm
476 400 0.000081 0.000101 tanh Nadam mse 1 30 256 True lstm
551 300 0.000081 0.000099 elu Nadam mse 1 60 128 False rnn
150 300 0.000081 0.000090 relu Nadam mse 2 30 128 False rnn

64 Appendix A. Talos Run 1

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
244 300 0.000081 0.000088 tanh Nadam mse 3 30 64 False rnn
276 250 0.000082 0.000101 tanh Nadam mse 3 10 128 False gru
292 300 0.000082 0.000124 elu rmsprop mse 2 10 64 True gru
630 400 0.000082 0.000101 sigmoid Adam mse 3 120 64 True gru
759 250 0.000082 0.000142 elu rmsprop mse 2 120 128 False gru
693 300 0.000082 0.000095 tanh Nadam mse 1 60 256 True gru
428 250 0.000082 0.000140 relu rmsprop mse 3 10 64 True rnn
467 250 0.000082 0.000100 elu Nadam mse 1 10 64 True lstm
668 250 0.000082 0.000137 elu rmsprop mse 2 30 128 False lstm
332 400 0.000082 0.000104 tanh Nadam mse 3 120 64 True gru
330 400 0.000083 0.000096 elu Adam mse 2 10 128 False gru
750 250 0.000083 0.000127 tanh rmsprop mse 2 60 128 True lstm
136 250 0.000083 0.000166 tanh rmsprop mse 1 120 256 True gru
82 250 0.000083 0.000106 relu Nadam mse 2 10 128 True lstm
246 300 0.000083 0.000102 sigmoid Adam mse 3 60 64 True gru
309 300 0.000083 0.000117 tanh rmsprop mse 2 10 64 False lstm
128 300 0.000083 0.000096 tanh Adam mse 3 10 128 True lstm
154 400 0.000084 0.000103 sigmoid Adam mse 3 30 64 False gru
205 250 0.000084 0.000099 elu Nadam mse 3 30 128 False gru
626 300 0.000084 0.000111 elu Nadam mse 3 10 64 True rnn
514 300 0.000084 0.000096 tanh Adam mse 3 30 256 True gru
193 400 0.000084 0.000103 elu rmsprop mse 2 120 256 False gru
124 300 0.000084 0.000102 elu Nadam mse 2 120 256 True lstm
767 250 0.000084 0.000095 elu Nadam mse 3 60 128 True lstm
416 400 0.000084 0.000091 tanh Nadam mse 3 10 128 False gru
610 300 0.000085 0.000129 tanh rmsprop mse 1 120 128 False lstm
135 250 0.000085 0.000126 elu rmsprop mse 2 10 64 False lstm
523 400 0.000085 0.000106 tanh Adam mse 3 60 128 False rnn
151 300 0.000085 0.000098 tanh Adam mse 1 60 256 True lstm
302 400 0.000085 0.000106 sigmoid Adam mse 2 30 64 True gru
343 250 0.000085 0.000100 elu Adam mse 2 30 256 True gru
725 400 0.000085 0.000143 elu rmsprop mse 3 60 128 True gru
23 250 0.000085 0.000152 tanh rmsprop mse 1 120 128 False lstm
521 300 0.000085 0.000122 tanh rmsprop mse 1 60 64 True rnn
616 400 0.000085 0.000104 elu Nadam mse 1 10 128 False lstm
694 250 0.000086 0.000096 tanh Adam mse 2 10 64 True lstm
50 250 0.000086 0.000133 relu rmsprop mse 1 60 128 True rnn
257 250 0.000086 0.000096 elu Adam mse 1 60 128 False lstm
173 250 0.000086 0.000108 relu Nadam mse 2 10 256 False rnn
99 250 0.000086 0.000155 relu rmsprop mse 3 30 128 True lstm
704 300 0.000087 0.000126 relu rmsprop mse 1 10 128 True gru
88 400 0.000087 0.000116 sigmoid Adam mse 3 120 64 True rnn
372 300 0.000087 0.000099 elu Nadam mse 3 120 128 True lstm
199 400 0.000087 0.000116 sigmoid Nadam mse 1 120 64 True lstm
691 400 0.000087 0.000123 sigmoid Nadam mse 1 120 64 True rnn
405 300 0.000087 0.000099 tanh Nadam mse 3 120 128 False gru
296 300 0.000087 0.000105 elu Adam mse 2 30 128 False rnn
73 250 0.000087 0.000104 elu Adam mse 2 30 256 False gru
57 400 0.000087 0.000095 tanh Nadam mse 1 120 128 True rnn
191 250 0.000087 0.000104 tanh Nadam mse 2 30 256 False gru
530 300 0.000087 0.000120 sigmoid Nadam mse 3 30 64 False rnn
703 300 0.000087 0.000095 relu Nadam mse 1 60 256 True lstm
229 400 0.000087 0.000099 tanh Nadam mse 1 120 256 False rnn
315 250 0.000087 0.000188 tanh rmsprop mse 3 120 128 True gru
700 300 0.000088 0.000100 sigmoid Nadam mse 3 60 64 False lstm
200 400 0.000088 0.000119 tanh Nadam mse 2 30 64 False rnn
317 400 0.000088 0.000113 sigmoid Adam mse 2 120 64 True lstm
70 250 0.000088 0.000121 tanh Nadam mse 2 30 64 False rnn
746 400 0.000088 0.000115 sigmoid Adam mse 3 30 64 False rnn
545 300 0.000088 0.000105 elu Nadam mse 1 30 256 True gru
194 300 0.000088 0.000095 elu Nadam mse 1 120 256 True gru
272 300 0.000088 0.000103 tanh Nadam mse 3 30 256 False gru
174 300 0.000088 0.000094 elu Adam mse 1 120 256 True lstm
13 300 0.000088 0.000116 tanh Nadam mse 1 60 128 False rnn
769 300 0.000089 0.000119 sigmoid Adam mse 3 120 64 True gru
356 250 0.000089 0.000151 relu rmsprop mse 2 10 64 True gru
459 400 0.000089 0.000111 elu rmsprop mse 3 120 256 False rnn
92 300 0.000089 0.000119 tanh rmsprop mse 2 120 256 True lstm
762 400 0.000089 0.000140 elu rmsprop mse 1 10 128 False rnn
536 250 0.000089 0.000106 relu Adam mse 1 10 64 False lstm
79 250 0.000089 0.000111 elu Nadam mse 2 10 64 False rnn
621 400 0.000089 0.000122 sigmoid Nadam mse 1 60 64 True rnn
347 400 0.000089 0.000133 tanh rmsprop mse 2 10 128 False rnn
43 300 0.000089 0.000103 relu Nadam mse 1 30 256 False lstm
367 250 0.000089 0.000107 elu Adam mse 2 30 128 True rnn
323 250 0.000089 0.000107 relu Adam mse 1 10 128 True gru
687 300 0.000090 0.000110 tanh Nadam mse 1 120 256 True lstm
258 250 0.000090 0.000098 relu Adam mse 3 10 64 True rnn
423 300 0.000090 0.000131 tanh rmsprop mse 3 60 256 True lstm
240 400 0.000090 0.000117 sigmoid Nadam mse 1 60 64 True lstm
166 400 0.000091 0.000139 elu rmsprop mse 2 60 256 True lstm
401 400 0.000091 0.000108 elu Nadam mse 2 10 256 True gru
352 400 0.000091 0.000160 relu rmsprop mse 3 10 128 True rnn
615 400 0.000091 0.000120 sigmoid Adam mse 2 120 64 True rnn
528 300 0.000091 0.000109 tanh Nadam mse 3 120 256 False lstm
774 300 0.000092 0.000122 sigmoid Nadam mse 2 10 64 True gru
378 250 0.000092 0.000150 relu rmsprop mse 3 10 64 False rnn
641 300 0.000092 0.000094 relu Adam mse 1 60 256 True rnn
189 250 0.000092 0.000117 elu Nadam mse 2 10 128 True lstm
71 400 0.000092 0.000099 relu Nadam mse 2 10 128 False lstm
31 250 0.000092 0.000118 elu Nadam mse 2 60 128 False rnn
766 300 0.000092 0.000107 relu Adam mse 1 10 128 True gru
473 300 0.000092 0.000111 elu Nadam mse 2 60 256 False lstm
561 250 0.000092 0.000161 relu rmsprop mse 2 10 128 False gru
293 250 0.000092 0.000149 relu rmsprop mse 3 60 128 True lstm
738 250 0.000093 0.000091 elu Adam mse 2 60 256 True lstm
305 250 0.000093 0.000115 tanh Adam mse 1 60 128 True rnn
388 300 0.000093 0.000121 sigmoid Adam mse 2 30 64 False gru

Appendix A. Talos Run 1 65

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
496 300 0.000093 0.000145 tanh rmsprop mse 1 30 128 True gru
480 400 0.000093 0.000111 elu Adam mse 3 60 128 False rnn
716 250 0.000094 0.000114 tanh Nadam mse 1 30 128 True lstm
611 400 0.000094 0.000104 relu Adam mse 1 30 256 False rnn
380 250 0.000094 0.000108 tanh rmsprop mse 2 120 256 True lstm
364 400 0.000094 0.000109 tanh Adam mse 1 60 256 False lstm
709 250 0.000094 0.000132 elu Nadam mse 3 30 64 True rnn
547 250 0.000094 0.000106 relu Nadam mse 3 30 128 False lstm
20 400 0.000095 0.000129 elu rmsprop mse 1 120 256 False gru
470 300 0.000095 0.000125 tanh Adam mse 2 30 128 False rnn
550 300 0.000095 0.000110 relu Nadam mse 2 10 256 False gru
593 300 0.000095 0.000118 sigmoid Adam mse 3 10 64 True gru
491 250 0.000095 0.000146 tanh rmsprop mse 1 10 128 True lstm
736 400 0.000095 0.000167 sigmoid rmsprop mse 1 30 64 False gru
639 300 0.000095 0.000109 tanh Adam mse 1 120 256 False lstm
635 400 0.000095 0.000099 relu Nadam mse 3 60 256 True lstm
602 300 0.000096 0.000122 sigmoid Nadam mse 1 30 64 False lstm
697 300 0.000096 0.000128 tanh rmsprop mse 3 10 128 False lstm
466 300 0.000096 0.000132 sigmoid Nadam mse 2 60 64 True rnn
609 400 0.000096 0.000122 sigmoid Nadam mse 3 10 128 False rnn
702 300 0.000096 0.000118 tanh Nadam mse 3 10 256 True gru
582 250 0.000097 0.000132 tanh rmsprop mse 3 10 128 False lstm
203 250 0.000097 0.000124 sigmoid Adam mse 2 30 64 False rnn
220 400 0.000097 0.000097 relu Adam mse 3 30 256 False rnn
11 400 0.000097 0.000111 elu Nadam mse 2 60 256 False rnn
351 400 0.000097 0.000124 tanh Nadam mse 3 10 128 False rnn
119 400 0.000097 0.000115 elu Nadam mse 1 30 256 True lstm
664 250 0.000097 0.000199 relu rmsprop mse 3 30 128 True gru
208 250 0.000097 0.000129 tanh Adam mse 1 60 128 False rnn
215 250 0.000097 0.000120 elu Nadam mse 1 30 256 False lstm
670 300 0.000098 0.000120 sigmoid Adam mse 2 60 64 False gru
744 250 0.000098 0.000125 sigmoid Adam mse 3 30 64 False rnn
603 300 0.000098 0.000131 elu rmsprop mse 1 120 256 True rnn
301 300 0.000098 0.000132 sigmoid Nadam mse 1 60 64 False lstm
688 250 0.000098 0.000124 sigmoid Adam mse 3 120 64 True lstm
291 400 0.000098 0.000129 sigmoid Nadam mse 2 10 128 False rnn
69 400 0.000098 0.000151 elu rmsprop mse 3 120 256 False lstm
188 400 0.000098 0.000093 relu Adam mse 3 30 256 False lstm
232 400 0.000098 0.000121 elu Adam mse 1 10 128 False rnn
542 250 0.000099 0.000134 sigmoid Nadam mse 3 10 64 True rnn
425 300 0.000099 0.000122 sigmoid Adam mse 2 120 64 False gru
237 250 0.000099 0.000112 relu Nadam mse 1 30 128 True rnn
772 300 0.000099 0.000126 sigmoid Nadam mse 2 30 64 False lstm
249 250 0.000099 0.000132 sigmoid Nadam mse 3 30 64 True lstm
157 300 0.000099 0.000104 relu Adam mse 3 30 256 False lstm
222 300 0.000099 0.000123 elu Nadam mse 1 10 128 False rnn
452 250 0.000100 0.000123 sigmoid Nadam mse 2 10 64 False lstm
652 400 0.000100 0.000115 tanh Adam mse 1 30 256 False lstm
556 250 0.000101 0.000119 tanh Adam mse 3 60 256 True rnn
732 250 0.000101 0.000110 tanh Nadam mse 2 120 256 False lstm
554 250 0.000101 0.000127 sigmoid Adam mse 3 60 64 False lstm
324 300 0.000101 0.000120 tanh Adam mse 3 30 256 True rnn
665 300 0.000101 0.000130 sigmoid Adam mse 2 120 64 False lstm
534 250 0.000101 0.000199 tanh rmsprop mse 2 30 128 True gru
225 400 0.000101 0.000127 sigmoid Adam mse 1 60 128 False gru
566 400 0.000101 0.000131 tanh rmsprop mse 1 10 256 False rnn
38 250 0.000101 0.000112 tanh Nadam mse 3 10 128 True lstm
195 250 0.000101 0.000130 sigmoid Adam mse 3 120 64 False rnn
569 300 0.000102 0.000132 tanh rmsprop mse 2 10 256 False gru
647 300 0.000102 0.000134 tanh rmsprop mse 2 30 256 False lstm
130 400 0.000102 0.000122 sigmoid Nadam mse 3 30 128 False lstm
427 300 0.000103 0.000154 elu rmsprop mse 1 10 128 False lstm
646 250 0.000103 0.000208 relu rmsprop mse 2 30 128 True rnn
434 400 0.000103 0.000183 sigmoid rmsprop mse 2 30 64 False gru
469 300 0.000103 0.000114 elu Nadam mse 2 120 256 False lstm
344 250 0.000103 0.000105 elu Adam mse 3 30 128 False lstm
138 300 0.000103 0.000127 sigmoid Adam mse 1 30 64 False lstm
451 250 0.000103 0.000120 tanh Adam mse 2 60 128 False rnn
439 300 0.000104 0.000106 relu Nadam mse 1 30 256 True lstm
354 400 0.000104 0.000234 sigmoid rmsprop mse 1 30 64 True gru
33 400 0.000104 0.000128 sigmoid Adam mse 3 120 128 False rnn
689 400 0.000104 0.000140 elu rmsprop mse 1 60 256 True rnn
241 250 0.000104 0.000130 relu Nadam mse 1 10 256 False gru
760 250 0.000104 0.000124 tanh Adam mse 1 10 64 True rnn
165 250 0.000104 0.000119 elu Adam mse 2 10 128 False lstm
502 400 0.000104 0.000123 tanh Adam mse 3 60 256 False rnn
775 400 0.000105 0.000139 tanh rmsprop mse 3 10 256 False gru
219 400 0.000105 0.000126 relu rmsprop mse 2 120 256 False gru
239 400 0.000105 0.000128 sigmoid Adam mse 3 60 128 False rnn
152 400 0.000105 0.000134 elu rmsprop mse 1 10 256 False gru
51 250 0.000105 0.000122 tanh Adam mse 3 120 128 False rnn
183 250 0.000105 0.000149 sigmoid Nadam mse 1 60 64 False rnn
595 400 0.000105 0.000138 elu rmsprop mse 1 30 256 True gru
54 300 0.000105 0.000122 elu Adam mse 3 30 128 True rnn
674 400 0.000105 0.000148 elu rmsprop mse 2 120 256 True gru
649 400 0.000105 0.000130 sigmoid Adam mse 3 30 128 True rnn
455 400 0.000105 0.000140 sigmoid Adam mse 3 120 128 True rnn
620 400 0.000105 0.000163 sigmoid rmsprop mse 2 30 64 True rnn
142 400 0.000105 0.000135 sigmoid Adam mse 2 120 128 False rnn
587 250 0.000106 0.000130 tanh Adam mse 3 30 256 False rnn
357 300 0.000106 0.000147 tanh rmsprop mse 1 10 128 False lstm
411 300 0.000106 0.000156 relu rmsprop mse 2 60 128 False rnn
303 300 0.000106 0.000135 tanh Adam mse 1 120 256 True rnn
328 250 0.000106 0.000166 relu rmsprop mse 2 30 128 False lstm
216 250 0.000107 0.000127 sigmoid Adam mse 1 10 64 True lstm
570 300 0.000107 0.000140 tanh rmsprop mse 2 30 256 True lstm
133 300 0.000107 0.000145 sigmoid Nadam mse 1 120 64 True gru
90 250 0.000107 0.000176 sigmoid rmsprop mse 2 60 64 True gru

66 Appendix A. Talos Run 1

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
679 400 0.000108 0.000136 tanh Nadam mse 1 30 256 False lstm
268 300 0.000108 0.000124 elu Nadam mse 3 60 128 False rnn
574 250 0.000109 0.000161 relu rmsprop mse 2 60 128 False lstm
61 250 0.000109 0.000216 elu rmsprop mse 3 30 128 False rnn
777 300 0.000109 0.000131 sigmoid Adam mse 2 10 64 False lstm
256 400 0.000109 0.000162 sigmoid rmsprop mse 3 10 64 True rnn
392 300 0.000109 0.000117 relu Nadam mse 2 120 256 False lstm
168 250 0.000110 0.000139 sigmoid Nadam mse 2 30 64 True lstm
396 300 0.000110 0.000130 sigmoid Nadam mse 3 120 128 False gru
672 400 0.000110 0.000140 sigmoid Adam mse 2 30 128 True rnn
180 400 0.000110 0.000161 sigmoid rmsprop mse 3 10 64 True lstm
695 300 0.000110 0.000124 tanh Adam mse 1 30 256 False gru
633 300 0.000111 0.000157 sigmoid rmsprop mse 1 10 64 False rnn
10 300 0.000111 0.000124 elu Adam mse 3 60 128 False rnn
493 250 0.000111 0.000130 relu rmsprop mse 1 10 256 False lstm
711 250 0.000111 0.000136 tanh Adam mse 2 30 128 False rnn
140 250 0.000111 0.000162 sigmoid rmsprop mse 2 10 64 False lstm
134 300 0.000111 0.000136 sigmoid Adam mse 3 30 128 False rnn
492 400 0.000111 0.000137 sigmoid Adam mse 1 60 256 False gru
449 400 0.000111 0.000135 sigmoid Nadam mse 3 10 128 True gru
274 250 0.000111 0.000118 relu Adam mse 2 30 256 False rnn
284 400 0.000111 0.000130 relu rmsprop mse 1 10 256 True gru
348 400 0.000111 0.000142 elu rmsprop mse 1 10 256 False lstm
190 400 0.000111 0.000174 tanh rmsprop mse 3 10 128 False rnn
483 250 0.000111 0.000123 relu Adam mse 2 10 128 False rnn
30 300 0.000111 0.000139 sigmoid Nadam mse 1 30 128 False lstm
8 400 0.000112 0.000127 sigmoid Adam mse 1 10 128 True gru
162 300 0.000112 0.000166 relu rmsprop mse 1 60 256 True gru
640 400 0.000113 0.000137 sigmoid Adam mse 2 10 128 False lstm
734 250 0.000113 0.000236 elu rmsprop mse 2 30 128 False rnn
624 250 0.000113 0.000235 sigmoid rmsprop mse 1 120 64 True rnn
227 250 0.000113 0.000178 sigmoid rmsprop mse 2 10 64 True gru
109 250 0.000113 0.000140 tanh Nadam mse 2 10 128 True rnn
468 300 0.000113 0.000186 sigmoid rmsprop mse 3 60 64 True lstm
465 400 0.000113 0.000149 tanh Nadam mse 3 60 128 True rnn
84 250 0.000114 0.000136 tanh Adam mse 2 60 256 False rnn
565 250 0.000114 0.000144 sigmoid Nadam mse 3 10 128 False rnn
359 300 0.000114 0.000159 sigmoid rmsprop mse 1 10 64 True gru
248 250 0.000114 0.000207 sigmoid rmsprop mse 3 30 64 True gru
644 300 0.000114 0.000182 sigmoid rmsprop mse 1 30 128 False lstm
627 400 0.000114 0.000158 sigmoid Adam mse 1 120 128 True rnn
522 300 0.000114 0.000142 sigmoid Adam mse 2 60 128 False gru
406 300 0.000115 0.000159 tanh rmsprop mse 1 60 256 True gru
739 400 0.000115 0.000135 sigmoid Adam mse 3 30 256 True lstm
643 250 0.000115 0.000141 sigmoid Nadam mse 2 10 128 False lstm
270 300 0.000115 0.000154 sigmoid rmsprop mse 2 10 128 False gru
619 300 0.000116 0.000157 sigmoid rmsprop mse 1 10 128 True lstm
442 400 0.000116 0.000245 sigmoid rmsprop mse 1 60 64 True gru
126 300 0.000117 0.000141 sigmoid Nadam mse 3 60 128 False lstm
474 250 0.000117 0.000132 tanh rmsprop mse 3 60 256 True lstm
730 400 0.000117 0.000147 sigmoid Adam mse 1 120 256 False lstm
461 300 0.000117 0.000172 tanh rmsprop mse 3 10 256 True gru
498 250 0.000117 0.000136 elu Adam mse 3 10 256 True gru
540 300 0.000117 0.000141 tanh Adam mse 2 30 256 False rnn
418 300 0.000118 0.000149 sigmoid Nadam mse 1 120 128 False lstm
87 400 0.000118 0.000140 elu Adam mse 1 10 128 True rnn
659 400 0.000118 0.000158 sigmoid rmsprop mse 3 10 128 False gru
76 400 0.000118 0.000139 sigmoid Adam mse 3 60 256 False lstm
207 300 0.000118 0.000153 elu rmsprop mse 1 120 256 False gru
460 400 0.000118 0.000148 sigmoid Adam mse 1 120 256 True lstm
463 250 0.000119 0.000147 tanh Adam mse 1 120 256 False rnn
604 300 0.000119 0.000144 relu rmsprop mse 1 30 256 False lstm
298 250 0.000119 0.000139 elu rmsprop mse 2 120 256 True lstm
412 300 0.000120 0.000163 tanh rmsprop mse 1 30 256 True gru
667 300 0.000120 0.000170 relu rmsprop mse 3 60 128 False rnn
6 250 0.000120 0.000135 tanh Adam mse 1 10 128 False gru
541 300 0.000120 0.000182 sigmoid rmsprop mse 1 10 64 True rnn
283 250 0.000121 0.000139 sigmoid Adam mse 3 10 64 True gru
494 250 0.000121 0.000151 tanh Nadam mse 2 10 256 True rnn
606 300 0.000121 0.000204 sigmoid rmsprop mse 3 30 64 True rnn
398 400 0.000121 0.000158 tanh Nadam mse 3 30 256 True rnn
600 300 0.000121 0.000152 elu rmsprop mse 2 60 256 True lstm
131 300 0.000122 0.000157 sigmoid Adam mse 2 30 128 True rnn
271 250 0.000122 0.000163 sigmoid rmsprop mse 1 10 256 False lstm
495 400 0.000122 0.000201 sigmoid rmsprop mse 3 60 64 True rnn
717 400 0.000122 0.000178 tanh rmsprop mse 1 10 256 True rnn
479 300 0.000123 0.000129 relu Adam mse 3 10 128 True rnn
132 300 0.000123 0.000152 sigmoid Adam mse 3 120 256 False rnn
488 250 0.000123 0.000141 relu rmsprop mse 1 120 256 True gru
420 250 0.000123 0.000200 sigmoid rmsprop mse 1 30 64 True lstm
231 400 0.000124 0.000168 sigmoid Adam mse 1 120 256 False rnn
287 250 0.000124 0.000137 tanh Nadam mse 3 30 256 False lstm
46 250 0.000124 0.000152 sigmoid Adam mse 3 60 128 False rnn
338 250 0.000125 0.000146 elu Adam mse 1 10 128 False gru
745 400 0.000125 0.000211 sigmoid rmsprop mse 1 30 128 False rnn
482 300 0.000125 0.000159 sigmoid Adam mse 2 120 128 False rnn
727 300 0.000125 0.000158 sigmoid Nadam mse 3 120 128 True rnn
78 300 0.000125 0.000159 sigmoid Nadam mse 3 60 128 True lstm
713 400 0.000126 0.000164 sigmoid Adam mse 1 30 256 False lstm
361 250 0.000126 0.000142 sigmoid Adam mse 3 120 256 True gru
586 300 0.000126 0.000175 sigmoid Nadam mse 1 120 256 False lstm
40 300 0.000126 0.000151 sigmoid Adam mse 3 10 128 False lstm
464 400 0.000126 0.000168 sigmoid Adam mse 1 60 256 False rnn
369 400 0.000126 0.000160 sigmoid Adam mse 2 10 128 False rnn
757 300 0.000127 0.000143 sigmoid Nadam mse 2 120 128 True gru
289 250 0.000127 0.000166 tanh Nadam mse 1 10 256 False lstm
481 400 0.000127 0.000245 sigmoid rmsprop mse 3 120 128 True lstm
370 250 0.000128 0.000209 relu rmsprop mse 2 60 256 False gru

Appendix A. Talos Run 1 67

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
39 400 0.000128 0.000164 sigmoid Nadam mse 1 30 256 True lstm
390 250 0.000128 0.000140 elu rmsprop mse 3 120 256 False rnn
768 250 0.000128 0.000193 tanh rmsprop mse 1 120 256 False lstm
172 250 0.000129 0.000197 tanh rmsprop mse 1 60 256 True gru
9 250 0.000129 0.000174 sigmoid Nadam mse 2 30 128 False rnn
158 250 0.000129 0.000159 sigmoid Adam mse 3 30 128 True rnn
653 250 0.000129 0.000116 relu Nadam mse 1 30 128 True lstm
307 400 0.000129 0.000178 sigmoid Nadam mse 2 10 256 False rnn
538 250 0.000129 0.000155 sigmoid Nadam mse 3 30 128 True lstm
111 250 0.000129 0.000219 sigmoid rmsprop mse 3 60 64 False rnn
756 250 0.000129 0.000143 elu Nadam mse 3 60 128 False rnn
137 250 0.000130 0.000210 tanh rmsprop mse 1 10 64 True rnn
22 400 0.000130 0.000147 elu Nadam mse 1 10 128 False gru
597 300 0.000130 0.000152 elu Adam mse 2 10 256 False gru
573 400 0.000130 0.000120 relu rmsprop mse 3 60 256 False lstm
535 250 0.000131 0.000157 sigmoid Adam mse 2 120 256 False gru
21 400 0.000131 0.000157 sigmoid Nadam mse 1 10 256 True gru
601 250 0.000131 0.000193 sigmoid rmsprop mse 1 10 128 True rnn
59 250 0.000131 0.000172 sigmoid rmsprop mse 1 10 256 False gru
577 250 0.000131 0.000298 sigmoid rmsprop mse 3 120 64 True rnn
409 250 0.000132 0.000152 tanh Nadam mse 3 10 256 True gru
511 300 0.000132 0.000163 sigmoid Adam mse 3 30 256 False gru
161 400 0.000132 0.000208 sigmoid rmsprop mse 2 10 128 True rnn
764 300 0.000132 0.000251 sigmoid rmsprop mse 2 30 128 False rnn
395 300 0.000133 0.000143 elu Nadam mse 3 120 256 False lstm
211 300 0.000133 0.000170 sigmoid Nadam mse 1 10 128 True rnn
363 300 0.000133 0.000226 tanh rmsprop mse 2 10 128 True rnn
677 250 0.000133 0.000182 elu rmsprop mse 2 30 256 False lstm
329 300 0.000134 0.000164 relu rmsprop mse 3 120 128 True rnn
721 300 0.000134 0.000251 sigmoid rmsprop mse 2 60 128 False gru
101 300 0.000134 0.000161 sigmoid Nadam mse 3 30 256 False gru
67 250 0.000134 0.000163 sigmoid Nadam mse 3 120 128 True gru
628 300 0.000134 0.000194 relu rmsprop mse 1 30 256 True lstm
436 300 0.000135 0.000143 relu Nadam mse 2 10 256 False rnn
18 250 0.000135 0.000227 elu rmsprop mse 3 60 256 False rnn
634 400 0.000136 0.000193 elu rmsprop mse 3 10 256 False rnn
318 250 0.000136 0.000172 sigmoid Nadam mse 3 30 256 False gru
230 300 0.000136 0.000157 elu Nadam mse 3 30 128 False rnn
617 300 0.000137 0.000157 sigmoid Adam mse 3 60 256 True lstm
242 250 0.000137 0.000178 sigmoid Adam mse 1 120 256 True lstm
698 300 0.000137 0.000168 sigmoid Nadam mse 3 60 256 False gru
156 300 0.000137 0.000209 sigmoid rmsprop mse 1 10 128 True rnn
149 250 0.000138 0.000175 sigmoid Nadam mse 1 30 256 True lstm
209 250 0.000138 0.000198 relu rmsprop mse 2 120 128 False rnn
81 250 0.000138 0.000162 sigmoid Adam mse 3 120 256 True lstm
770 300 0.000139 0.000161 elu Adam mse 3 60 256 True rnn
85 250 0.000139 0.000240 sigmoid rmsprop mse 3 30 64 True rnn
722 250 0.000140 0.000191 sigmoid Adam mse 2 120 256 True rnn
497 300 0.000141 0.000220 elu rmsprop mse 3 60 256 True gru
431 300 0.000143 0.000205 relu rmsprop mse 2 120 128 True rnn
625 400 0.000143 0.000255 tanh rmsprop mse 1 30 128 True rnn
186 300 0.000143 0.000208 relu rmsprop mse 3 10 256 True lstm
560 250 0.000144 0.000196 sigmoid Nadam mse 1 60 256 False rnn
238 300 0.000145 0.000180 sigmoid Adam mse 1 10 256 True lstm
167 250 0.000145 0.000229 sigmoid rmsprop mse 3 10 128 True rnn
443 400 0.000145 0.000187 sigmoid Nadam mse 1 60 256 True lstm
656 400 0.000145 0.000226 sigmoid rmsprop mse 3 30 128 True lstm
685 300 0.000146 0.000219 elu rmsprop mse 1 60 256 True rnn
360 400 0.000146 0.000161 relu rmsprop mse 3 120 256 False lstm
331 300 0.000146 0.000178 sigmoid Adam mse 2 10 128 False gru
66 250 0.000147 0.000264 sigmoid rmsprop mse 2 120 128 True lstm
26 300 0.000148 0.000169 elu Adam mse 1 10 256 False gru
148 250 0.000148 0.000176 tanh Nadam mse 3 30 128 True rnn
62 250 0.000149 0.000197 sigmoid Adam mse 3 30 256 False lstm
584 300 0.000153 0.000201 elu Nadam mse 3 60 128 True rnn
557 400 0.000153 0.000232 sigmoid rmsprop mse 1 30 256 False rnn
105 400 0.000154 0.000169 elu Nadam mse 2 10 256 False rnn
312 250 0.000156 0.000216 relu rmsprop mse 2 120 256 False gru
25 250 0.000157 0.000205 sigmoid Nadam mse 1 60 256 True gru
433 250 0.000157 0.000201 sigmoid Nadam mse 2 10 256 True lstm
345 400 0.000158 0.000180 sigmoid Adam mse 1 30 256 False gru
245 300 0.000159 0.000184 sigmoid Nadam mse 1 10 256 False gru
120 250 0.000160 0.000269 sigmoid rmsprop mse 3 60 128 False lstm
316 300 0.000161 0.000297 sigmoid rmsprop mse 3 60 128 True lstm
366 300 0.000162 0.000186 sigmoid Nadam mse 2 10 256 False gru
72 300 0.000163 0.000181 tanh Adam mse 1 30 256 True rnn
387 250 0.000163 0.000205 sigmoid Adam mse 3 10 128 True rnn
410 250 0.000164 0.000211 relu rmsprop mse 3 120 128 True rnn
118 300 0.000164 0.000189 relu rmsprop mse 2 30 256 False lstm
450 250 0.000164 0.000203 sigmoid Nadam mse 3 10 256 True lstm
42 250 0.000164 0.000235 sigmoid Adam mse 2 10 128 False lstm
310 300 0.000165 0.000221 sigmoid Nadam mse 1 120 256 True lstm
107 400 0.000165 0.000196 sigmoid Nadam mse 3 10 256 False gru
113 300 0.000168 0.000187 elu rmsprop mse 3 10 256 True gru
320 400 0.000169 0.000207 relu rmsprop mse 3 10 256 False rnn
776 400 0.000170 0.000307 sigmoid rmsprop mse 1 30 128 True gru
581 400 0.000170 0.000230 tanh rmsprop mse 2 30 256 False rnn
532 300 0.000171 0.000223 tanh Nadam mse 1 10 256 False rnn
447 250 0.000171 0.000226 sigmoid Nadam mse 1 120 256 True lstm
743 250 0.000173 0.000258 tanh rmsprop mse 3 10 256 True rnn
657 300 0.000174 0.000201 elu Adam mse 1 10 64 True rnn
503 300 0.000175 0.000292 sigmoid rmsprop mse 2 30 128 True gru
417 250 0.000175 0.000260 sigmoid rmsprop mse 2 30 128 False gru
544 250 0.000175 0.000256 relu rmsprop mse 2 60 256 False lstm
311 400 0.000175 0.000157 relu Adam mse 2 10 256 True rnn
64 250 0.000177 0.000212 sigmoid Nadam mse 3 120 128 True rnn
83 300 0.000178 0.000261 sigmoid Nadam mse 2 10 256 False rnn
273 250 0.000181 0.000366 sigmoid rmsprop mse 1 60 128 True lstm

68 Appendix A. Talos Run 1

run epochs valLoss loss activation optimizer losses layers size batchSize bidirectional layer
295 250 0.000181 0.000216 elu Nadam mse 3 120 64 False rnn
228 400 0.000182 0.000196 relu rmsprop mse 3 60 256 True gru
110 250 0.000183 0.000197 relu Nadam mse 1 10 256 True rnn
701 250 0.000183 0.000261 sigmoid Adam mse 2 30 256 False lstm
515 250 0.000184 0.000247 sigmoid rmsprop mse 3 10 256 True gru
723 400 0.000185 0.000212 relu rmsprop mse 3 120 256 False rnn
519 300 0.000185 0.000237 sigmoid Nadam mse 3 60 256 True rnn
636 300 0.000186 0.000258 sigmoid rmsprop mse 2 10 256 True rnn
715 400 0.000187 0.000192 elu Nadam mse 3 120 256 False rnn
68 300 0.000187 0.000269 sigmoid rmsprop mse 3 30 256 False gru
304 300 0.000189 0.000339 sigmoid rmsprop mse 1 60 128 False rnn
568 300 0.000192 0.000299 elu rmsprop mse 2 10 256 True rnn
675 250 0.000194 0.001892 tanh rmsprop mse 2 120 256 True rnn
265 400 0.000196 0.000350 sigmoid rmsprop mse 3 30 256 True rnn
690 300 0.000200 0.000273 relu rmsprop mse 2 10 256 True rnn
413 250 0.000200 0.000281 relu rmsprop mse 2 60 256 True rnn
402 250 0.000201 0.000365 sigmoid rmsprop mse 2 30 256 False rnn
333 300 0.000206 0.000223 relu Nadam mse 2 10 256 True rnn
748 400 0.000207 0.000256 sigmoid rmsprop mse 3 60 256 False lstm
598 250 0.000210 0.000339 sigmoid rmsprop mse 1 30 256 True lstm
3 250 0.000211 0.000240 elu Adam mse 3 30 256 False rnn
525 300 0.000211 0.000238 tanh rmsprop mse 2 30 256 True gru
605 300 0.000214 0.000383 sigmoid rmsprop mse 3 30 128 True rnn
742 250 0.000215 0.000294 elu rmsprop mse 2 10 256 True rnn
325 300 0.000215 0.000380 sigmoid rmsprop mse 2 60 256 False rnn
127 250 0.000216 0.000348 sigmoid rmsprop mse 3 60 128 True lstm
446 300 0.000216 0.000248 elu rmsprop mse 3 10 256 False rnn
707 250 0.000219 0.000329 tanh rmsprop mse 1 30 256 False rnn
537 250 0.000220 0.000288 relu rmsprop mse 3 120 256 False lstm
45 250 0.000226 0.000317 relu rmsprop mse 3 30 256 False rnn
322 300 0.000234 0.000299 sigmoid Adam mse 1 10 256 True rnn
243 250 0.000241 0.000258 tanh Nadam mse 1 30 256 True rnn
306 250 0.000242 0.000300 tanh Nadam mse 1 10 256 False rnn
169 400 0.000246 0.000348 sigmoid rmsprop mse 2 120 256 False rnn
192 300 0.000249 0.000383 sigmoid rmsprop mse 1 120 256 False lstm
666 300 0.000250 0.000249 elu Nadam mse 3 120 256 True rnn
181 400 0.000250 0.000476 sigmoid rmsprop mse 3 120 256 True gru
585 250 0.000250 0.000267 elu Nadam mse 3 60 256 False rnn
487 250 0.000266 0.000377 sigmoid Nadam mse 2 10 256 False lstm
648 250 0.000269 0.000309 elu Nadam mse 3 10 256 False rnn
752 250 0.000281 0.000475 sigmoid rmsprop mse 1 120 128 False gru
686 300 0.000283 0.006180 tanh rmsprop mse 2 120 64 True rnn
539 250 0.000300 0.000358 relu rmsprop mse 2 120 256 True rnn
389 250 0.000320 0.001396 tanh rmsprop mse 2 120 64 False rnn
269 250 0.000320 0.000381 relu rmsprop mse 2 120 256 False rnn
108 300 0.000322 0.000694 tanh rmsprop mse 2 30 64 True rnn
187 400 0.000327 0.000614 tanh rmsprop mse 2 60 128 False rnn
75 250 0.000334 0.000473 sigmoid rmsprop mse 3 120 256 False lstm
718 300 0.000342 0.001883 tanh rmsprop mse 2 120 64 False rnn
529 250 0.000342 0.000354 relu Adam mse 1 10 256 True rnn
221 250 0.000343 0.000487 sigmoid Adam mse 2 10 256 True rnn
714 250 0.000360 0.000361 tanh Nadam mse 2 60 256 True rnn
254 300 0.000405 0.000440 elu Adam mse 1 10 128 True rnn
171 250 0.000430 0.000456 elu Nadam mse 2 10 256 True rnn
576 300 0.000479 0.000751 tanh rmsprop mse 3 60 256 False rnn
490 400 0.000572 0.000707 sigmoid rmsprop mse 1 120 256 False gru
391 300 0.001111 0.001780 tanh rmsprop mse 2 60 256 True rnn
512 250 0.001713 0.002920 tanh rmsprop mse 3 120 256 False rnn
277 300 0.002318 0.003301 tanh rmsprop mse 3 60 256 True rnn

Appendix B. Talos Run 2 69

Appendix B

Talos Run 2

The settings used by Talos:

• Activation functions: ReLU, ELU

• Optimizers: Nadam, Adam, rmsprop

• Loss: MSE

• Layers: 1, 2, 3

• Size per layer: 30, 60, 120

• Batch size: 128

• Bidirectional: True, False

• Layer type: GRU, LSTM

• Epochs: 400

• (Recurrent) Dropout: 0.0, 0.2

• Extra dense layer size: 0, 30, 90

B.1 Sorted by validation loss

run epochs valLoss loss activation optimizer losses layers size bidirectional dropout dense layer testLoss
123 380 0.000559 0.000270 elu Adam mse 1 60 True 0 90 gru 0.377228
124 329 0.000560 0.000356 elu Nadam mse 2 120 False 0.2 0 lstm 0.324017
11 197 0.000563 0.000310 elu Nadam mse 3 120 False 0.2 90 gru 0.340967
81 263 0.000563 0.000248 elu Adam mse 3 120 True 0.2 0 gru 0.325456
84 317 0.000571 0.000241 elu Nadam mse 3 120 False 0.2 90 lstm 0.355334
102 309 0.000571 0.000321 elu Adam mse 2 120 True 0.2 0 gru 0.342152
65 400 0.000579 0.000250 elu Adam mse 2 30 True 0 90 gru 0.354498
89 400 0.000580 0.000426 elu rmsprop mse 2 60 True 0.2 90 gru 0.349329
103 400 0.000584 0.000416 elu Nadam mse 1 120 False 0.2 0 gru 0.310417
112 400 0.000587 0.000477 elu Adam mse 2 60 False 0.2 90 gru 0.262152
93 355 0.000593 0.000305 elu Nadam mse 3 60 False 0.2 30 gru 0.323147
26 169 0.000594 0.000226 elu Adam mse 3 120 True 0 90 gru 0.326938
27 155 0.000595 0.000282 relu Nadam mse 1 120 True 0 0 gru 0.315502
128 400 0.000601 0.000503 elu rmsprop mse 1 120 True 0.2 0 gru 0.303748
23 264 0.000609 0.000320 elu rmsprop mse 3 30 True 0 0 gru 0.335117
117 400 0.000618 0.000283 relu Nadam mse 2 120 False 0.2 0 lstm 0.321786
83 400 0.000622 0.000497 elu rmsprop mse 1 120 False 0.2 0 lstm 0.271461
12 312 0.000623 0.000328 relu Adam mse 3 120 False 0.2 0 lstm 0.266114
122 293 0.000630 0.000298 elu Adam mse 2 60 False 0 0 gru 0.341811
61 262 0.000631 0.000485 elu Adam mse 2 120 True 0.2 30 lstm 0.286525
63 215 0.000635 0.000176 elu Nadam mse 1 120 False 0 0 gru 0.353077
72 258 0.000638 0.000400 elu Nadam mse 3 120 True 0 90 gru 0.320142
46 339 0.000638 0.000418 relu Adam mse 2 120 False 0.2 0 gru 0.263046
17 196 0.000638 0.000348 elu Adam mse 1 120 True 0 0 lstm 0.249039
127 235 0.000641 0.000466 elu rmsprop mse 3 60 True 0.2 30 gru 0.303977
54 400 0.000642 0.000359 elu Adam mse 1 60 False 0 0 gru 0.314058
98 399 0.000644 0.000491 elu Adam mse 3 30 False 0.2 30 lstm 0.105100
114 286 0.000646 0.000384 relu Adam mse 2 60 False 0 0 gru 0.305044
125 318 0.000648 0.000433 elu Adam mse 2 60 True 0.2 0 gru 0.329163
104 172 0.000649 0.000267 elu Nadam mse 3 60 False 0 90 gru 0.337518
75 216 0.000652 0.000186 elu Nadam mse 2 60 True 0 0 lstm 0.313548
60 166 0.000654 0.000315 relu Nadam mse 2 60 False 0 90 gru 0.318951
86 400 0.000657 0.000385 elu Nadam mse 3 30 False 0.2 0 lstm 0.246972
94 400 0.000657 0.000548 elu Adam mse 2 30 True 0.2 30 lstm 0.135762
19 400 0.000662 0.000483 relu Nadam mse 1 60 True 0.2 0 lstm 0.263520
0 400 0.000671 0.000596 elu Nadam mse 1 60 False 0.2 30 gru 0.297633
15 265 0.000673 0.000269 elu Adam mse 2 60 True 0 0 lstm 0.254788
79 160 0.000676 0.000228 elu Nadam mse 2 120 False 0 90 lstm 0.311716

70 Appendix B. Talos Run 2

run epochs valLoss loss activation optimizer losses layers size bidirectional dropout dense layer testLoss
36 237 0.000676 0.000173 relu Nadam mse 2 120 False 0 30 lstm 0.294147
51 359 0.000677 0.000382 elu rmsprop mse 1 60 True 0 0 gru 0.316340
25 383 0.000678 0.000351 relu Adam mse 3 120 False 0.2 0 gru 0.327694
111 364 0.000679 0.000414 elu Adam mse 1 30 True 0 90 lstm 0.286464
100 316 0.000679 0.000396 relu Nadam mse 3 60 False 0.2 0 lstm 0.147575
119 260 0.000680 0.000433 relu Nadam mse 2 60 True 0.2 0 gru 0.254822
107 400 0.000683 0.000419 elu Adam mse 2 30 False 0 0 gru 0.315303
38 329 0.000684 0.000241 relu Adam mse 3 60 False 0 30 lstm 0.211797
68 400 0.000685 0.000543 elu rmsprop mse 1 120 False 0.2 90 lstm 0.255893
22 324 0.000686 0.000306 relu Adam mse 2 120 True 0.2 30 gru 0.309502
28 189 0.000690 0.000317 elu rmsprop mse 2 120 False 0 90 lstm 0.329985
32 272 0.000694 0.000178 relu Nadam mse 3 120 False 0 0 lstm 0.303562
6 173 0.000694 0.000306 elu Adam mse 3 60 True 0 0 lstm 0.159340
67 347 0.000695 0.000445 relu Nadam mse 1 30 True 0 0 gru 0.338427
45 177 0.000699 0.000327 elu rmsprop mse 3 120 False 0 0 gru 0.316596
99 400 0.000700 0.000577 elu Adam mse 1 60 True 0.2 90 lstm 0.206794
49 400 0.000702 0.000475 elu rmsprop mse 1 30 True 0 0 lstm 0.310804
96 237 0.000703 0.000299 relu Nadam mse 1 60 True 0 30 gru 0.338350
40 309 0.000707 0.000208 elu rmsprop mse 2 120 False 0 0 gru 0.327171
101 173 0.000707 0.000219 elu Nadam mse 3 60 False 0 30 lstm 0.277087
39 400 0.000709 0.000381 elu Adam mse 2 30 False 0 90 gru 0.297933
48 212 0.000710 0.000398 relu Adam mse 3 30 True 0 30 lstm 0.099257
21 373 0.000714 0.000315 elu Adam mse 2 30 False 0 30 lstm 0.261694
14 400 0.000716 0.000453 elu Adam mse 1 30 True 0 30 gru 0.312362
34 361 0.000718 0.000614 elu Adam mse 3 30 False 0.2 0 gru 0.254599
42 400 0.000721 0.000390 relu rmsprop mse 1 60 False 0 0 lstm 0.252239
4 191 0.000724 0.000372 relu Nadam mse 3 120 False 0.2 30 lstm 0.153979
58 351 0.000724 0.000554 elu rmsprop mse 1 30 True 0 0 gru 0.317311
69 372 0.000726 0.000473 relu Nadam mse 2 30 True 0.2 0 lstm 0.177666
41 242 0.000726 0.000161 relu Adam mse 2 120 True 0 90 gru 0.320478
108 226 0.000727 0.000391 relu Adam mse 1 120 False 0 90 gru 0.300244
53 257 0.000727 0.000296 elu rmsprop mse 2 120 False 0 90 gru 0.314131
59 342 0.000729 0.000473 relu Adam mse 2 30 False 0 90 gru 0.274595
18 400 0.000730 0.000562 relu rmsprop mse 1 120 False 0.2 30 lstm 0.185067
29 329 0.000730 0.000346 elu rmsprop mse 3 30 False 0 30 gru 0.301207
118 210 0.000730 0.000360 relu Adam mse 2 60 True 0 90 lstm 0.150735
77 253 0.000730 0.000369 relu Nadam mse 1 60 False 0 90 lstm 0.149891
37 200 0.000738 0.000408 relu rmsprop mse 1 120 True 0 30 gru 0.234496
82 275 0.000739 0.000625 elu rmsprop mse 2 60 False 0.2 90 gru 0.279774
70 346 0.000742 0.000538 relu Nadam mse 1 120 False 0.2 90 lstm 0.172193
24 160 0.000744 0.000394 elu Nadam mse 2 30 True 0 0 lstm 0.143464
74 384 0.000744 0.000534 relu Adam mse 3 30 False 0 0 gru 0.249823
97 320 0.000747 0.000500 relu rmsprop mse 1 60 False 0 0 gru 0.257723
44 400 0.000747 0.000664 elu Adam mse 2 30 False 0.2 90 lstm 0.088270
120 175 0.000750 0.000352 relu Nadam mse 2 120 False 0 90 lstm 0.100401
52 265 0.000752 0.000301 relu Nadam mse 2 120 True 0.2 30 lstm 0.218848
55 400 0.000754 0.000717 elu Adam mse 1 60 False 0.2 30 gru 0.226035
71 232 0.000755 0.000379 relu Nadam mse 3 30 False 0 90 lstm 0.094111
20 317 0.000756 0.000521 relu Nadam mse 1 60 True 0.2 90 gru 0.238386
78 281 0.000761 0.000468 relu rmsprop mse 3 30 False 0 0 gru 0.235401
115 227 0.000763 0.000364 elu rmsprop mse 3 30 False 0 0 lstm 0.238088
90 280 0.000766 0.000406 relu Adam mse 2 120 False 0.2 90 lstm 0.111439
91 400 0.000781 0.000731 elu rmsprop mse 2 30 False 0.2 30 gru 0.175891
57 400 0.000786 0.000587 relu Adam mse 1 30 False 0 90 lstm 0.104289
30 271 0.000787 0.000590 relu rmsprop mse 3 60 False 0.2 30 gru 0.065359
10 149 0.000790 0.000421 relu rmsprop mse 2 120 False 0 0 gru 0.224381
76 244 0.000798 0.000372 relu rmsprop mse 2 60 True 0 30 gru 0.219530
3 274 0.000803 0.000514 relu rmsprop mse 3 60 False 0.2 30 lstm 0.140990
33 327 0.000810 0.000428 relu Nadam mse 2 30 True 0.2 90 lstm 0.129975
80 400 0.000813 0.000717 elu Nadam mse 1 30 True 0.2 0 gru 0.243995
73 308 0.000815 0.000589 relu Nadam mse 2 30 False 0.2 90 lstm 0.090874
31 191 0.000821 0.000806 elu Nadam mse 1 60 True 0.2 0 lstm 0.245856
64 238 0.000821 0.000241 relu Nadam mse 3 30 True 0 90 gru 0.264734
113 207 0.000821 0.000497 relu rmsprop mse 3 120 False 0.2 90 lstm 0.102530
92 157 0.000828 0.000548 relu rmsprop mse 2 60 False 0 90 gru 0.092564
88 221 0.000832 0.000434 relu rmsprop mse 3 120 False 0.2 0 lstm 0.180532
1 400 0.000832 0.000825 relu Nadam mse 3 120 True 0.2 0 lstm 0.145229
5 224 0.000835 0.000371 relu rmsprop mse 3 60 False 0 0 gru 0.278175
50 151 0.000840 0.000673 relu Nadam mse 1 30 True 0 30 gru 0.173106
85 187 0.000849 0.000441 relu Nadam mse 2 30 True 0 0 lstm 0.144560
66 259 0.000854 0.000549 relu Adam mse 2 30 True 0.2 30 lstm 0.118987
106 231 0.000855 0.000460 relu rmsprop mse 3 60 True 0.2 30 gru 0.132336
2 373 0.000857 0.000626 relu Adam mse 1 60 True 0.2 90 gru 0.223455
43 206 0.000858 0.000554 elu rmsprop mse 2 30 True 0 90 lstm 0.137286
95 165 0.000858 0.000411 relu Adam mse 2 60 True 0 0 lstm 0.119521
62 172 0.000879 0.000591 relu Adam mse 2 60 True 0.2 90 lstm 0.120663
109 335 0.000885 0.000721 relu Adam mse 1 30 False 0 0 gru 0.166450
9 168 0.000889 0.000499 relu rmsprop mse 2 60 False 0 30 lstm 0.131224
87 292 0.000911 0.000653 relu Adam mse 1 60 True 0.2 30 lstm 0.102552
35 176 0.000931 0.000583 relu rmsprop mse 2 120 True 0.2 90 gru 0.143602
121 141 0.000969 0.000486 relu rmsprop mse 3 120 False 0 90 gru 0.101326
8 129 0.000989 0.000520 relu rmsprop mse 3 60 True 0 30 gru 0.066600
47 315 0.000995 0.000944 elu Adam mse 1 30 True 0.2 30 lstm 0.108665
7 145 0.001046 0.000751 relu rmsprop mse 2 30 False 0 90 lstm 0.076396
110 272 0.001063 0.000795 relu Adam mse 1 30 True 0.2 90 lstm 0.091134
56 308 0.001086 0.000851 relu rmsprop mse 1 30 True 0.2 0 lstm 0.141503
116 113 0.001095 0.001055 elu Nadam mse 2 60 True 0.2 0 lstm 0.140773
126 297 0.001096 0.000954 relu Adam mse 2 30 False 0.2 0 gru 0.137186
105 295 0.001110 0.000912 relu Adam mse 1 30 False 0 30 gru 0.133213
13 379 0.001117 0.000915 relu rmsprop mse 2 30 False 0.2 0 gru 0.140778
16 182 0.001174 0.001071 relu rmsprop mse 1 30 True 0.2 30 gru 0.126193

Appendix B. Talos Run 2 71

B.2 Sorted by test loss

run epochs valLoss loss activation optimizer losses layers size bidirectional dropout dense layer testLoss
30 271 0.000787 0.000590 relu rmsprop mse 3 60 False 0.2 30 gru 0.065359
8 129 0.000989 0.000520 relu rmsprop mse 3 60 True 0 30 gru 0.066600
7 145 0.001046 0.000751 relu rmsprop mse 2 30 False 0 90 lstm 0.076396
44 400 0.000747 0.000664 elu Adam mse 2 30 False 0.2 90 lstm 0.088270
73 308 0.000815 0.000589 relu Nadam mse 2 30 False 0.2 90 lstm 0.090874
110 272 0.001063 0.000795 relu Adam mse 1 30 True 0.2 90 lstm 0.091134
92 157 0.000828 0.000548 relu rmsprop mse 2 60 False 0 90 gru 0.092564
71 232 0.000755 0.000379 relu Nadam mse 3 30 False 0 90 lstm 0.094111
48 212 0.000710 0.000398 relu Adam mse 3 30 True 0 30 lstm 0.099257
120 175 0.000750 0.000352 relu Nadam mse 2 120 False 0 90 lstm 0.100401
121 141 0.000969 0.000486 relu rmsprop mse 3 120 False 0 90 gru 0.101326
113 207 0.000821 0.000497 relu rmsprop mse 3 120 False 0.2 90 lstm 0.102530
87 292 0.000911 0.000653 relu Adam mse 1 60 True 0.2 30 lstm 0.102552
57 400 0.000786 0.000587 relu Adam mse 1 30 False 0 90 lstm 0.104289
98 399 0.000644 0.000491 elu Adam mse 3 30 False 0.2 30 lstm 0.105100
47 315 0.000995 0.000944 elu Adam mse 1 30 True 0.2 30 lstm 0.108665
90 280 0.000766 0.000406 relu Adam mse 2 120 False 0.2 90 lstm 0.111439
66 259 0.000854 0.000549 relu Adam mse 2 30 True 0.2 30 lstm 0.118987
95 165 0.000858 0.000411 relu Adam mse 2 60 True 0 0 lstm 0.119521
62 172 0.000879 0.000591 relu Adam mse 2 60 True 0.2 90 lstm 0.120663
16 182 0.001174 0.001071 relu rmsprop mse 1 30 True 0.2 30 gru 0.126193
33 327 0.000810 0.000428 relu Nadam mse 2 30 True 0.2 90 lstm 0.129975
9 168 0.000889 0.000499 relu rmsprop mse 2 60 False 0 30 lstm 0.131224
106 231 0.000855 0.000460 relu rmsprop mse 3 60 True 0.2 30 gru 0.132336
105 295 0.001110 0.000912 relu Adam mse 1 30 False 0 30 gru 0.133213
94 400 0.000657 0.000548 elu Adam mse 2 30 True 0.2 30 lstm 0.135762
126 297 0.001096 0.000954 relu Adam mse 2 30 False 0.2 0 gru 0.137186
43 206 0.000858 0.000554 elu rmsprop mse 2 30 True 0 90 lstm 0.137286
116 113 0.001095 0.001055 elu Nadam mse 2 60 True 0.2 0 lstm 0.140773
13 379 0.001117 0.000915 relu rmsprop mse 2 30 False 0.2 0 gru 0.140778
3 274 0.000803 0.000514 relu rmsprop mse 3 60 False 0.2 30 lstm 0.140990
56 308 0.001086 0.000851 relu rmsprop mse 1 30 True 0.2 0 lstm 0.141503
24 160 0.000744 0.000394 elu Nadam mse 2 30 True 0 0 lstm 0.143464
35 176 0.000931 0.000583 relu rmsprop mse 2 120 True 0.2 90 gru 0.143602
85 187 0.000849 0.000441 relu Nadam mse 2 30 True 0 0 lstm 0.144560
1 400 0.000832 0.000825 relu Nadam mse 3 120 True 0.2 0 lstm 0.145229
100 316 0.000679 0.000396 relu Nadam mse 3 60 False 0.2 0 lstm 0.147575
77 253 0.000730 0.000369 relu Nadam mse 1 60 False 0 90 lstm 0.149891
118 210 0.000730 0.000360 relu Adam mse 2 60 True 0 90 lstm 0.150735
4 191 0.000724 0.000372 relu Nadam mse 3 120 False 0.2 30 lstm 0.153979
6 173 0.000694 0.000306 elu Adam mse 3 60 True 0 0 lstm 0.159340
109 335 0.000885 0.000721 relu Adam mse 1 30 False 0 0 gru 0.166450
70 346 0.000742 0.000538 relu Nadam mse 1 120 False 0.2 90 lstm 0.172193
50 151 0.000840 0.000673 relu Nadam mse 1 30 True 0 30 gru 0.173106
91 400 0.000781 0.000731 elu rmsprop mse 2 30 False 0.2 30 gru 0.175891
69 372 0.000726 0.000473 relu Nadam mse 2 30 True 0.2 0 lstm 0.177666
88 221 0.000832 0.000434 relu rmsprop mse 3 120 False 0.2 0 lstm 0.180532
18 400 0.000730 0.000562 relu rmsprop mse 1 120 False 0.2 30 lstm 0.185067
99 400 0.000700 0.000577 elu Adam mse 1 60 True 0.2 90 lstm 0.206794
38 329 0.000684 0.000241 relu Adam mse 3 60 False 0 30 lstm 0.211797
52 265 0.000752 0.000301 relu Nadam mse 2 120 True 0.2 30 lstm 0.218848
76 244 0.000798 0.000372 relu rmsprop mse 2 60 True 0 30 gru 0.219530
2 373 0.000857 0.000626 relu Adam mse 1 60 True 0.2 90 gru 0.223455
10 149 0.000790 0.000421 relu rmsprop mse 2 120 False 0 0 gru 0.224381
55 400 0.000754 0.000717 elu Adam mse 1 60 False 0.2 30 gru 0.226035
37 200 0.000738 0.000408 relu rmsprop mse 1 120 True 0 30 gru 0.234496
78 281 0.000761 0.000468 relu rmsprop mse 3 30 False 0 0 gru 0.235401
115 227 0.000763 0.000364 elu rmsprop mse 3 30 False 0 0 lstm 0.238088
20 317 0.000756 0.000521 relu Nadam mse 1 60 True 0.2 90 gru 0.238386
80 400 0.000813 0.000717 elu Nadam mse 1 30 True 0.2 0 gru 0.243995
31 191 0.000821 0.000806 elu Nadam mse 1 60 True 0.2 0 lstm 0.245856
86 400 0.000657 0.000385 elu Nadam mse 3 30 False 0.2 0 lstm 0.246972
17 196 0.000638 0.000348 elu Adam mse 1 120 True 0 0 lstm 0.249039
74 384 0.000744 0.000534 relu Adam mse 3 30 False 0 0 gru 0.249823
42 400 0.000721 0.000390 relu rmsprop mse 1 60 False 0 0 lstm 0.252239
34 361 0.000718 0.000614 elu Adam mse 3 30 False 0.2 0 gru 0.254599
15 265 0.000673 0.000269 elu Adam mse 2 60 True 0 0 lstm 0.254788
119 260 0.000680 0.000433 relu Nadam mse 2 60 True 0.2 0 gru 0.254822
68 400 0.000685 0.000543 elu rmsprop mse 1 120 False 0.2 90 lstm 0.255893
97 320 0.000747 0.000500 relu rmsprop mse 1 60 False 0 0 gru 0.257723
21 373 0.000714 0.000315 elu Adam mse 2 30 False 0 30 lstm 0.261694
112 400 0.000587 0.000477 elu Adam mse 2 60 False 0.2 90 gru 0.262152
46 339 0.000638 0.000418 relu Adam mse 2 120 False 0.2 0 gru 0.263046
19 400 0.000662 0.000483 relu Nadam mse 1 60 True 0.2 0 lstm 0.263520
64 238 0.000821 0.000241 relu Nadam mse 3 30 True 0 90 gru 0.264734
12 312 0.000623 0.000328 relu Adam mse 3 120 False 0.2 0 lstm 0.266114
83 400 0.000622 0.000497 elu rmsprop mse 1 120 False 0.2 0 lstm 0.271461
59 342 0.000729 0.000473 relu Adam mse 2 30 False 0 90 gru 0.274595
101 173 0.000707 0.000219 elu Nadam mse 3 60 False 0 30 lstm 0.277087
5 224 0.000835 0.000371 relu rmsprop mse 3 60 False 0 0 gru 0.278175
82 275 0.000739 0.000625 elu rmsprop mse 2 60 False 0.2 90 gru 0.279774
111 364 0.000679 0.000414 elu Adam mse 1 30 True 0 90 lstm 0.286464
61 262 0.000631 0.000485 elu Adam mse 2 120 True 0.2 30 lstm 0.286525
36 237 0.000676 0.000173 relu Nadam mse 2 120 False 0 30 lstm 0.294147
0 400 0.000671 0.000596 elu Nadam mse 1 60 False 0.2 30 gru 0.297633
39 400 0.000709 0.000381 elu Adam mse 2 30 False 0 90 gru 0.297933
108 226 0.000727 0.000391 relu Adam mse 1 120 False 0 90 gru 0.300244
29 329 0.000730 0.000346 elu rmsprop mse 3 30 False 0 30 gru 0.301207
32 272 0.000694 0.000178 relu Nadam mse 3 120 False 0 0 lstm 0.303562
128 400 0.000601 0.000503 elu rmsprop mse 1 120 True 0.2 0 gru 0.303748
127 235 0.000641 0.000466 elu rmsprop mse 3 60 True 0.2 30 gru 0.303977
114 286 0.000646 0.000384 relu Adam mse 2 60 False 0 0 gru 0.305044
22 324 0.000686 0.000306 relu Adam mse 2 120 True 0.2 30 gru 0.309502

72 Appendix B. Talos Run 2

run epochs valLoss loss activation optimizer losses layers size bidirectional dropout dense layer testLoss
103 400 0.000584 0.000416 elu Nadam mse 1 120 False 0.2 0 gru 0.310417
49 400 0.000702 0.000475 elu rmsprop mse 1 30 True 0 0 lstm 0.310804
79 160 0.000676 0.000228 elu Nadam mse 2 120 False 0 90 lstm 0.311716
14 400 0.000716 0.000453 elu Adam mse 1 30 True 0 30 gru 0.312362
75 216 0.000652 0.000186 elu Nadam mse 2 60 True 0 0 lstm 0.313548
54 400 0.000642 0.000359 elu Adam mse 1 60 False 0 0 gru 0.314058
53 257 0.000727 0.000296 elu rmsprop mse 2 120 False 0 90 gru 0.314131
107 400 0.000683 0.000419 elu Adam mse 2 30 False 0 0 gru 0.315303
27 155 0.000595 0.000282 relu Nadam mse 1 120 True 0 0 gru 0.315502
51 359 0.000677 0.000382 elu rmsprop mse 1 60 True 0 0 gru 0.316340
45 177 0.000699 0.000327 elu rmsprop mse 3 120 False 0 0 gru 0.316596
58 351 0.000724 0.000554 elu rmsprop mse 1 30 True 0 0 gru 0.317311
60 166 0.000654 0.000315 relu Nadam mse 2 60 False 0 90 gru 0.318951
72 258 0.000638 0.000400 elu Nadam mse 3 120 True 0 90 gru 0.320142
41 242 0.000726 0.000161 relu Adam mse 2 120 True 0 90 gru 0.320478
117 400 0.000618 0.000283 relu Nadam mse 2 120 False 0.2 0 lstm 0.321786
93 355 0.000593 0.000305 elu Nadam mse 3 60 False 0.2 30 gru 0.323147
124 329 0.000560 0.000356 elu Nadam mse 2 120 False 0.2 0 lstm 0.324017
81 263 0.000563 0.000248 elu Adam mse 3 120 True 0.2 0 gru 0.325456
26 169 0.000594 0.000226 elu Adam mse 3 120 True 0 90 gru 0.326938
40 309 0.000707 0.000208 elu rmsprop mse 2 120 False 0 0 gru 0.327171
25 383 0.000678 0.000351 relu Adam mse 3 120 False 0.2 0 gru 0.327694
125 318 0.000648 0.000433 elu Adam mse 2 60 True 0.2 0 gru 0.329163
28 189 0.000690 0.000317 elu rmsprop mse 2 120 False 0 90 lstm 0.329985
23 264 0.000609 0.000320 elu rmsprop mse 3 30 True 0 0 gru 0.335117
104 172 0.000649 0.000267 elu Nadam mse 3 60 False 0 90 gru 0.337518
96 237 0.000703 0.000299 relu Nadam mse 1 60 True 0 30 gru 0.338350
67 347 0.000695 0.000445 relu Nadam mse 1 30 True 0 0 gru 0.338427
11 197 0.000563 0.000310 elu Nadam mse 3 120 False 0.2 90 gru 0.340967
122 293 0.000630 0.000298 elu Adam mse 2 60 False 0 0 gru 0.341811
102 309 0.000571 0.000321 elu Adam mse 2 120 True 0.2 0 gru 0.342152
89 400 0.000580 0.000426 elu rmsprop mse 2 60 True 0.2 90 gru 0.349329
63 215 0.000635 0.000176 elu Nadam mse 1 120 False 0 0 gru 0.353077
65 400 0.000579 0.000250 elu Adam mse 2 30 True 0 90 gru 0.354498
84 317 0.000571 0.000241 elu Nadam mse 3 120 False 0.2 90 lstm 0.355334
123 380 0.000559 0.000270 elu Adam mse 1 60 True 0 90 gru 0.377228

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Andrzej Cabala
Eivind Gautvik
Trygve Nerland

Using Machine Learning to Detect
Fraud and Predict Time Series

Bachelor’s project in Computer Engineering
Supervisor: Nils Tesdal

May 2019

	Introduction
	Task and Objective
	Original Task description

	Software Base

	Theory Part 1
	Scaling Data
	Min-Max Scaler
	Standard Scaler
	Robust Scaler
	Normalization

	Clustering
	Distance Calculation
	Categories of Clustering Algorithms

	Association Rule
	Dimension Reduction
	Principal Component Analysis (PCA)
	Independent Component Analysis (ICA)
	t-distributed Stochastic Neighbor Embedding (t-SNE)
	Isometric Mapping (ISOMAP)
	Uniform Manifold Approximation and Projection (UMAP)

	Outlier Detection
	Methods for Unsupervised Outlier Detection

	Method Part 1
	Initial Work
	After Receiving Datasets
	Strategy
	Data
	Production Authentication data
	BankID Data

	Clustering
	Association Rules
	Outlier Detection
	Choices
	Scaling
	Dimension Reduction
	Outlier Detection
	Difficulties

	Analysis Part 1
	Discussion Part 1
	Reliability
	Result

	Conclusion Part 1
	Further Work

	Introduction Part 2: Time series
	Thesis Problem

	Theory Part 2
	Time Series
	Forecasting

	Neural Networks
	RNN
	LSTM
	GRU
	Optimizers

	Regression
	Linear Regression

	Decision Tree
	Random Forest

	SVM
	Common Challenges in Machine Learning
	Datasets
	Run Time
	Overfitting and Underfitting
	Exploding/Vanishing Gradient

	Training, Validation and Test Sets
	Train-Test Split

	Method Part 2
	Datasets
	Pre-processing and Scaling

	Naive Approach
	Feature Selection
	Scikit-learn Regression Methods
	Model Optimization
	Bayesian Optimization
	Early Stopping

	Comparability of Results

	Analysis Part 2
	Talos
	Comparison
	Final Model

	Discussion Part 2
	Conclusion Part 2
	Further Work

	List of Figures
	List of Tables
	Bibliography
	Talos Run 1
	Talos Run 2
	Sorted by validation loss
	Sorted by test loss

