Vis enkel innførsel

dc.contributor.advisorAamo, Ole Mortennb_NO
dc.contributor.authorHelgesen, Henriknb_NO
dc.date.accessioned2014-12-19T14:01:47Z
dc.date.available2014-12-19T14:01:47Z
dc.date.created2010-09-03nb_NO
dc.date.issued2008nb_NO
dc.identifier347624nb_NO
dc.identifierntnudaim:4068nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/259704
dc.description.abstractThe desired properties of a multi-loop PID tuning procedure is to find some parameters that makes the plant robust, meet some desired performance requirements and guarantee failure tolerance. A detailed literature survey of the different multi-loop PID tuning procedures are presented. Properties of the Independent design methods, Detuning methods, Sequential closing methods, Iterative or trial and error methods, Optimization methods and Relay feedback approaches are described in detail and discussed. Most of the tuning procedures result in a too conservative design without integrity. It is shown how the integrity property may be achieved with a multi-loop Hinf optimal tuning method. How to deffine and solve such a Hinf optimal problem is presented. The desired properties of the multi-loop PID tuning procedure is obtained with this method. The method aim for its object to solve a Hinf optimization problem with Linear Matrix Inequality (LMI) constraints. The optimization problem is non-convex, so a Successive Semidefnite Programming (SSP) algorithm is used to find local solutions to the problem. Several initial points must be examen to aim for a global solution. The SSP algorithm is implemented in MATLAB, and applied at a distillation column example. The implemented algorithm does not converge to a solution. Hence no simulation results that back up the theoretical work is presented.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for teknisk kybernetikknb_NO
dc.subjectntnudaimno_NO
dc.subjectSIE3 teknisk kybernetikkno_NO
dc.subjectReguleringsteknikkno_NO
dc.titleA robust Multi-Loop tuning Procedure based at Succsessive Semidefinite Programming, that achieves optimal Performance and Failure Tolerancenb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber93nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikknb_NO


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel