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Problem Description
Multi-loop PID controllers are widely used in the process industry even if more advanced
controllers are available. Due to interactions between the loops, it is difficult to obtain optimal
tuning of such systems. The objective of this project is to develop a tool for tuning multi-loop PID
controllers that applies to linear MIMO systems. The tool may be based on available literature. The
following tasks should be addressed.

• Literature survey: Present and discuss existing multi-loop PID tuning procedures

• Methodology: Develop a tuning procedure for multi-loop PID controllers in linear MIMO systems.

• Implementation: implement the tuning procedure in MATLAB.

• Application: Apply the tuning procedure to a suitable example.

• User interface: Use MATLAB GUI (GUIDE) to develop an interface that makes the tuning
procedure user-friendly.
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Supervisor: Ole Morten Aamo, ITK





Abstract

The desired properties of a multi-loop PID tuning procedure is to �nd some parameters
that makes the plant robust, meet some desired performance requirements and guarantee
failure tolerance.

A detailed literature survey of the di�erent multi-loop PID tuning procedures is
presented. Properties of the Independent design methods, Detuning methods, Sequential
closing methods, Iterative or trial and error methods, Optimization methods and Relay
feedback approaches are described in detail and discussed. Most of the tuning procedures
result in a too conservative design without failure tolerance ensured.

It is shown how the integrity property may be achieved with a multi-loop H∞ optimal
tuning method. How to de�ne and solve such a H∞ optimal problem is presented.
The desired properties of the multi-loop PID tuning procedure are obtained with this
method. The method aim to solve a H∞ optimization problem with Linear Matrix
Inequality (LMI) constraints. The optimization problem is non-convex, so a Successive
Semide�nite Programming (SSP) algorithm is used to �nd local solutions to the problem.
Several initial points must be examined to aim for a global solution.

The SSP algorithm is implemented in MATLAB, and applied at a distillation col-
umn example. The implemented algorithm does not converge to a solution. Hence no
simulation results that back up the theoretical work are presented.
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Chapter 1

Introduction

1.1 Background

1.1.1 Control structure in the industry

To be aware of the present challenges in process control, it is important to know today's
industrial practice. The control con�guration at an industrial plant can either be central-
ized or decentralized. In decentralized control several controllers are placed at di�erent
geographical places beyond the plant. This is in contrast to centralized control, where
all measurements are lead into a central control unit.

Decentralized control remains popular in the industry despite of other advanced con-
trol syntheses. Examples are Model Predictive Control, outlined in [32], or strategies
which lead to full multivariable controllers, found in [39]. The controller must be cen-
tralized if a full multivariable controller can be used.

In decentralized control each single measurement is paired with one single actuator.
This results in N Single Input Single Output (SISO) loops. Hence decentralized control
is also called a multi-loop controller. Traditionally these SISO controllers have a PI or
a PID structure, shown in Section 2.1.2. This is also present in modern gas processing
plants, such as Ormen Lange where all the 800 controllers are PI or PID[15].

In [29] and [39] at page 421, several reasons for this conservatism is outlined.

• A full multivariable controller requires accurate plant models. Modeling is both
time consuming and expensive. Decentralized controllers are usually tuned one at
a time, sometimes on-line, with minimum modeling e�ort.

• The tuning parameters have a direct and localized e�ect, so the controllers are easy
to implement to the physical plant.

• Even with faster computers, the advantage of small computation load is still exist-
ing.

• They may be brought gradually into service during startup and taken gradually
out of service during shutdown.

1



2 CHAPTER 1. INTRODUCTION

• It is possible to maintain robust stability, failure tolerance and the insensitivity to
uncertainty in the inputs.

• The controllers are well known to operators, so they may do the retuning at their
own if the process conditions change.

1.2 Motivation

1.2.1 The need for process control

Some general aims of industrial automation is listed in [45] at page 30. Process control
is desired for safety reasons, and to make the workplace environment more humane. If
a controller stabilizes a natural unstable plant, like a nuclear reactor, it is obvious that
settings and con�gurations which ensure the safeness is of the most important concern.

A desire to minimize the environmental impact is more topical for the industry than
ever. Good control strategies are important when pollution should be minimized.

The general aim for a manufacturer is to maximize the pro�t. Basic optimization the-
ory outlined in [19] states that the optimal value often lies at one or several constraints.
Hence the most pro�table operation is obtained when a process is running at one or
several of its capabilities. These constraints are associated with direct or overhead costs,
product and quality speci�cations, or pollution minimization. Physical constraints ap-
pear at the inputs to the process as saturation characteristics. Examples are valves with
�nite range of adjustment, �ow rates with maximum values due to �xed pipe diameters
or control surfaces with limited de�ection angles.[32] For instance, if a product has to
be at least a certain quality in order to be useful, the cost can be minimized by making
its quality just su�cient. This constraint is soft, and could be included in the objective
function by a penalty term, as described at in chapter 15 in [19]. It is not critical for the
system functionality if some product of bad quality is produced over a short time period.
An example of a hard constraint is the compressors 'surge line'. It is desired that the
operating point is as close to the line as possible, but if it operates at the wrong side,
the compressor will collapse[22].

Due to model error and disturbances, the set-points can not be chosen at the real
limits of its capabilities. As Figure 1.1 illustrates, the better the control system deals
with these error sources, the operating point can be chosen closer to the constraints. The
disturbances origin from temperature variations, liquid slugs, compositional changes from
the wells, system shut downs due to maintenance activities and changes of substances in
the tank. Since PI/PID are linear controllers, the tuning are based at linear models. Due
to the valve characteristics, tank shapes or the chemical dynamics, the plant is nonlinear.
These nonlinearities, approximations of transport delays or simpli�cations in the linear
model are sources of model errors. Hence robust controllers need to be designed. The
need for optimal disturbance dampening versus optimal set-point control is therefore
clear, since the desired set-points, due to constrains, do seldom change[44]. The set-
point responses are typically of secondary importance. This is in contrast to motion
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Figure 1.1: An illustration of why the set-point can be chosen closer to the real limits of the
system capabilities, if the controller has optimal tuning settings. In this illustration
the uncertainty is assumed to have a Gaussian distribution, which may not be the
general case.

control systems such as ships, cranes or robot arms, where obviously the set-point is of
most importance. Still most papers focus on the set-point control.

If the aim is to reach a desired set-point, a fast settling time is often desired. If this
control imposes oscillations at the controller output, the actuator may tear needlessly.
Therefore in some cases, it may be desirable with a more sluggish control. In some
systems it is not required to reach a set-point at all. Bu�er tanks are used to store
a product between individual units in production process. Their purpose is to absorb
disturbances in one unit, thus preventing the propagation of the e�ects to downstream
units. The level of the tanks has to be controlled, so they do not become empty or full.
If the controller is tuned too tight to a set-point in these systems, the bu�er tanks would
lose their purpose. Hence, as pointed out in [1], the bu�er tanks need slow level control.

Due to the need for maintenance, shutdown of some part of the plant may be neces-
sary. An undesired failure in the system circuits may also occur. Hence it is desired that
the remaining system is stable while some loops are out of service or in manual. Stability
ought to be guaranteed if some control outputs saturate. Control outputs saturate for
instance when a higher �ow rate than the maximum �ow rate is desired. It is possible
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to guarantee such failure tolerance with decentralized control if the system holds some
speci�cations called integrity.

When a controller is tuned, trade o�s between performance and robustness must
be made. These trade o�s varies between the di�erent control problems. It is seldom
possible to achieve both properties.[39]

1.2.2 Interactions between the SISO-loops in multi-loop systems

Interactions between the di�erent system inputs and outputs will usually occur in Multi
Input Multi Output (MIMO) systems. If one of the inputs is changed, then it will
a�ect some of, or all the outputs. If the objective is to keep a substance at a certain
temperature and one of the the two �ows into the tank contains a hot substance while
the other contains a cold substance, they will both a�ect the temperature with opposite
signs. Hence, multi-loop control will not directly compensate for these interactions.
With a decentralized control con�guration, a set-point change in one SISO loop results
in disturbances in the other SISO-loops. Hence the performance in each loop will depend
on all the controllers in the multi-loop system.

Interconnections are also associated with recirculation. The re�ux �ow back to the
destination tank shown in Figure 1.2 is an example of such recirculation.

Figure 1.2: Distillation column with LV con�guration



1.3. DESIRED PROPERTIES OF THE TUNING APPROACH 5

The binary distillation example in Figure 1.2 is detailed explained in [31, 38, 42, 36]
and [39] at page 406. The objective is to control the top and bottom quality product.
Trade o�s must be considered when choosing inputs and outputs. Some interactions
appear in the system no matter how the control con�guration is chosen. The LV con-
�guration, shown in Figure 1.2 is strongly interactive at steady state, but the quality
control is nearly independent of the tuning of the level controls in the tanks. An alterna-
tive is the DV con�guration, which is usually used for di�cult separations. The steady
state interactions are usually less compared to the LV con�guration, but the tank-level
and pressure control in�ict strongly at the quality speci�cation control.

1.3 Desired properties of the tuning approach

Since multi-loop PI/PID control remains popular in the process industry, a tuning ap-
proach for such controllers is obviously desirable. This tuning procedure should make
the controller robust with respect to model errors and disturbances, and at the same
time meet some performance requirements. The main concern is disturbance rejection
for systems in the process industry. If some parts of the plant are shut down or some
controllers saturate or fail, the rest of the system should be stable. A tuning procedure
that results in such failure tolerance is desired.

The main challenge when obtaining the objectives above, are the system interactions.
The tuning of each controller will a�ect the performance in some of, or all the other
loops in a multi-loop system. The tuning procedure should handle these interactions,
and preferably utilize the interaction dynamics.



Chapter 2

MIMO system properties

Some MIMO-system properties and de�nitions are presented in this chapter, so the reader
can achieve a better understanding of the challenges concerning multi-loop PID tuning.
In this thesis the notation (·)(s) refers to a function or a signal in the Laplace domain.
At page 107 in [45] it is de�ned that s = σ + jω. In some cases only the frequency
is considered. Hence the transfer function is denoted as (·)(jω). Since almost all the
functions and signals in this thesis are in the Laplace domain, the notation (·) is the
same as (·)(s).

2.1 MIMO system de�nitions

Controlling of MIMO systems are in general more di�cult than for SISO systems. Some
MIMO system properties and de�nitions according to control issues are here presented.

The transfer matrix from a vector of inputs u(s) to a vector of measurements y(s) is
de�ned as G(s), where the element gij(s) is de�ned as the transfer function from input
ui(s) to measurement yj(s). The transfer matrix K(s) is de�ned as the controller. In
this thesis, decentralized control in a N ×N system will be the main concern, so

G(s) =


g11(s) g12(s) · · · g1N (s)
g21(s) g22(s) · · · g2N (s)

...
...

. . .
...

gN1(s) gN2(s) · · · gNN (s)

 (2.1)

K(s) =


k1(s) 0 · · · 0

0 k2(s)
. . .

...
...

. . . . . . 0
0 · · · 0 kN (s)

 (2.2)

6
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2.1.1 System loop transfer functions

A common way of representing the system in negative feedback interconnection is shown
in Figure 2.1, where r(s) is the reference value, and e(s) is the reference-measure mis-
match. According to [39] at page 22, the following relations hold

Figure 2.1: Simple block diagram of the system and the controller in a negative feedback in-
terconnection.

L(s) , G(s)K(s) (2.3)

S(s) , (I +G(s)K(s))−1 = (I + L(s))−1 (2.4)

H(s) , (I +G(s)K(s))−1G(s)K(s) = (I + L(s))−1 L(s) = I − S(s) (2.5)

where L(s) is called the loop transfer function, S(s) is called the sensitivity function and
H(s) is called the complementary sensitivity function. These transfer functions relates
to the di�erent system inputs and outputs as follows

y(s) = L(s)e(s) (2.6)

e(s) = S(s)r(s) (2.7)

y(s) = H(s)r(s) (2.8)

The notation diag{(·)} is a diagonal matrix with the diagonal elements of (·) at its
diagonal. At page 437 in [39] some convenient de�nitions are given.

Γ(s) , G̃(s)G−1(s) (2.9)

G̃(s) , diag{G(s)} (2.10)

E(s) , (G(s)− G̃(s))G̃(s)−1 (2.11)

S̃(s) , (I + G̃(s)K(s))−1 (2.12)

H̃(s) , G̃(s)K(s)(I + G̃(s)K(s))−1 = I − H̃(s) (2.13)

where Γ is the Performance Relative Gain Array (PRGA), G̃ contains the diagonal el-
ements of G and E is a interaction measure normalized with respect of the diagonal
elements of G. The transfer functions S̃ and H̃ are the sensitivity function and the
complementary sensitivity function respectively when only the diagonal elements of G
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is concerned. Note S̃ is not the same as diag{S}. The sensitivity function S can be
expressed by E, S̃ and H̃ as

S(s) = S̃(s)(I + E(s)H̃(s))−1 (2.14)

2.1.2 PI and PID control

PI or PID controllers take several forms, as shown in [39] at page 56. The ideal form is
expressed as

kPID ideal(s) = kc

(
1 +

1
τI s

+ τD s

)
(2.15)

The cascade form is
kPID cascade(s) = k̃c

τ̃I s+ 1
τ̃I s

(τ̃D s+ 1) (2.16)

The cascade version does not allow complex zeros. If α = 1+ τ̃D
τ̃I
, the relationship between

the ideal form and the cascade form is

kc = k̃c α (2.17)

τI = τ̃I α (2.18)

τD =
τ̃D
α

(2.19)

(2.20)

The PID controller is improper. Hence a �lter needs to be added to the controller itself
or to the controller input. If the ideal form is considered, then

kPID,practical(s) = kc

(
1 +

1
τI s

+ τD s

)
1

ετD s+ 1
(2.21)

where is typically ε ≈ 0.1. This �lter may also avoid di�erentiation of high frequent
noise. The closed loop response is not considerably changed with the �lter added.

To avoid derivative kick, the reference is usually not di�erentiated. The practical
controller is then

u = kc

[(
1 +

1
τI s

)
(r − ym)− τD s

ετD s+ 1
ym

]
(2.22)

Throughout this thesis, the control elements ki in (2.2) are either PI or a PID con-
trollers.

2.1.3 System scaling

It is desired that the system is properly scaled as shown in [39] at page 5. Let the
unscaled system be

ŷ = Ĝû, ê = ŷ − r̂ (2.23)
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where Let De and Du be scaling matrices with the maximum errors emax i and the
maximum controller outputs umax i at the diagonal respectively. The scaled system then
becomes

y = D−1
e ĜDu u (2.24)

Now u should be less than 1 in magnitude.

2.1.4 Singular value decomposition and H∞- norm

In [39] at page 75 it is derived that any matrix G(jω) with a �xed frequency ω can be
decomposed as

G(jω) = U(jω)Σ(jω)V H(jω) (2.25)

where Σ is an l×m matrix with k = min{l,m} non-negative singular values σi, arranged
in descending order along its main diagonal. The other elements in Σ is zero. The l × l
matrix U is unitary and consists of output singular vectors us

i , not to be confused with the
input system vector u. The m×m matrix V is unitary, and consists of the input singular
vectors vi. The vectors us

i and vi represent the output and input direction respectively.
Since V HV = I, (2.25) can be rewritten as GV = UΣ. Since ‖us

i‖2 = ‖vi‖2 = 1, σi

directly gives the gain of the system G(jω) in the i'th direction. The most interesting
is the systems maximum and minimum singular values σ̄ = σ1 and σ = σk, and the
corresponding input and output directions v̄ = v1, v = vk, ūs = us

1 and us = us
k.

σ̄(G) = max
u 6=0

‖Gus‖2

‖us‖2

=
‖Gv1‖2

‖v1‖2

(2.26)

σ(G) = min
u 6=0

‖Gus‖2

‖us‖2

=
‖Gvk‖2

‖vk‖2

(2.27)

Hence, v̄ corresponds to the direction with the largest ampli�cation of the output with
the direction ūs.

The H∞- norm de�ned at page 60 in [39], relates to the maxim singular value to a
system matrix G as follows.

‖G(s)‖∞ , max
ω

σ̄ (G(jω)) (2.28)

2.1.5 Structured singular value

The structured singular value was �rst de�ned in [18] as

De�nition 1. Let M be a given complex matrix, and let ∆ = diag {∆i} denote a set

of complex matrices with σ̄(∆) ≤ 1 and with a given block-diagonal structure (in which
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some of the blocks may be repeated and some may be restricted to be real.) The real

non-negative function µ(M), called the structured singular value is de�ned by

µ(M) =
1

min{km |det(I − kmM∆) = 0 for structured ∆, σ̄(∆) ≤ 1}
(2.29)

If no such structured ∆ exists then µ(M) = 0.

2.1.6 Padé approximation

A plant model G(s) often includes a transport delay denoted eθ s in the Laplace domain.
This makes the transfer function irrational. Hence it can not be used in calculations
of linear time-invariant (LTI) systems in simulation programs such as MATLAB. An
approximation of this expression is found by an n order Taylor series called Padé approx-
imation, de�ned in [39] at page 127 as

eθ s =

(
1− θ

2n s
)n(

1 + θ
2n s

)n (2.30)

A higher order gives a more accurate approximation.

2.2 Interactions

As explained in Section 1.2.2 some interactions will usually occur in MIMO systems. In
[39] at page 89 it is stated that the interactions only are one way for an upper triangular
(only zeros at its lower o�-diagonal elements) or lower triangular (only zeros at its upper
o�-diagonal elements) plant G(s). For plants with elements at both sides of its diagonal,
the interconnection is two ways. A plant is non-interacting if a change in ui only results
in a change in yi. The following theorem is stated and proved in [39] at page 441.

Theorem 1. Suppose the plant G(s) is stable and upper or lower triangular (at all

frequencies), and is controlled by a diagonal controller. Then the overall system is stable

if and only if the individual loops are stable.

Hence, one-way interactions can not introduce instability. The same cannot be con-
cluded for two-way interactions.

In [39] at page 440 it is stated that if a matrix is diagonal dominant, then the inter-
actions will not introduce instability. A de�nition of generalized diagonal dominance is
de�ned as

De�nition 2. A matrix G is said to be generalized diagonal dominant if and only if

µ(E) < 1

If some combinations of the inputs have large e�ect on the outputs, whereas other
combinations have weak e�ect, the plant is said to be ill-conditioned.
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2.2.1 Interaction measures

The singular values can be used determine if the plant is ill-conditioned. De�ne the
condition number γ(G) as

γ(G) =
σ̄(G)
σ(G)

(2.31)

A large condition number implies an ill-conditioned plant. The scaling of G(s) will a�ect
the condition number, so the system needs to bee proper scaled.

The Rellative Gain Array (RGA) was �rst de�ned in [10]. In [35, 30, 39] it is outlined
that

RGA(G) = Λ(G) = G× (G−1)T (2.32)

where × denotes element-by-element multiplication. Based at its original de�nition

RGA =

∂yi

∂uj

∣∣∣
uk=0,k 6=j

∂yi

∂uj

∣∣∣
yk=0,k 6=j

=
gij

ĝij
(2.33)

This is the transfer matrix gain when all other loops are open divided at the transfer
matrix gain when all the other loops are closed with perfect control. If the elements
diverge largely from one, it implies that ĝij is a�ected by the interactions. The column
and row sum of the RGA matrix is always one. An interesting property is that RGA = I
if G(s) is upper or lower triangular. Hence RGA is a measure for two-way interaction.

According to [39] at page 437, the interactions are given by the o�-diagonal elements
in G(s) when decentralized control is used. Hence, the magnitude of E(s), de�ned in
(2.11), is a common used interaction measure. It does not distinct the di�erence between
one-way and two-way interactions.

2.2.2 Spectral radius

In [39] at page 518 it is remarked that the eigenvalues of a matrix A are sometimes called
characteristic gains. The set of eigenvalues of A is called the spectrum of A. The largest
absolute values of the eigenvalues of A is the spectral radius of A

ρ(A) , max
i
|λi(A)| (2.34)

2.3 Failure tolerance, integrity and detuneability

In Chapter 1 it is explained why failure tolerance is desired for control systems. To
formalize such requirements, some de�nitions concerning failure tolerance are here pre-
sented.

In this thesis the system has failure tolerance if the closed loop system remains stable
when some loops, but not all, are brought out of service or saturate while the remaining
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loops still are intact. Hence, open unstable systems may have failure if the stabilizing
loops are intact.

A decentralized control system is said to have integrity if the closed loop system
remains stable when an arbitrary subsystem of controllers are brought in and out of
service or when inputs saturate. In [39] at page 442 integrity is explained mathematically.

De�nition 3. The system possess integrity if it remains stable when the controller K(s)
is replaced by the matrix EK(s), where K(s) is the controller and E = diag{εi}. The

diagonal elements εi may take on the values of εi = 1 or εi = 0.

This de�nition requiters that the system must be open stable to possess integrity,
since all the diagonal elements of E can be εi = 0.

If integrity with integral control is possible, it is addressed in [37] that either of the
following conditions must hold:

1. G(0)D is positive de�nite, where

D = diag
{
g11
|g11|

,
g22
|g22|

}
2. There exists a diagonal matrix X such that G(0)X is positive de�nite

3. Spectra of all principal sub-matrices of G(0) exist and are positive

If the decentralized control system remains stable as the gains in the various loops are
detuned (reduced) by an arbitrary factor εi ∈ [0, 1], the system is complete detunable.
If complete detunability is possible with integral control, the system is said to have the
decentralized integral controllability property. This is referred to as DIC, and is de�ned
in [3] and in [39] at page 442 as

De�nition 4. The plant G(s) is DIC if there exists a stabilizing decentralized controller

with integral action in each loop such that each individual loop may be detuned indepen-

dently by a factor εi ∈ [0, 1] without introducing instability.

Since most controllers in decentralized control are PI or PID, this property is desired,
but not always achieved. A stable system is DIC only if the diagonal steady state RGA
elements λii(0) ≥ 0 for all i.

Furthermore it is desired that the system is stable if the model is not accurate. Such
systems are said to be robust stable. In [29] robust decentralized detunable systems is
de�ned as

De�nition 5. A closed loop system is said to be robust decentralized detunable (RDD)

if each controller element can be detuned independently by an arbitrary amount without

endangering robust stability.

RDD is not the same as DIC. The system property DIC implies the existence of a
decentralized controller with integral action that is decentralized detunable.
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2.4 Model uncertainty

Chapter 7 and Chapter 8 in [39] consider the model uncertainties. They are grouped into
two main classes.

• Parametric uncertainty. The model structure is known, but some of the param-
eters are uncertain. If α is a parameter in the model, it is bounded within a region
[αmin αmax]. A common way to represent the parameter is of the form

α = ᾱ(1 + rα ∆) (2.35)

where ᾱ is the mean parameter, rα = αmin−αmax
αmin+αmax

is the relative uncertainty in the
parameter, and ∆ is any real scalar satisfying |∆| ≤ 1.

• Dynamic uncertainty. The lack of dynamics are present, usually at high fre-
quencies, either trough deliberate neglect or because the physical process is not
understood well enough. Representation of this type of uncertainty is best done in
the frequency domain. Hence the perturbation is a complex transfer function such
that ‖∆‖∞ ≤ 1.

It is common to lump the di�erent sources of uncertainty into an additive or mul-
tiplicative uncertainty model. To get a simple uncertainty model for MIMO systems,
unstructured perturbations are often used. Then the ∆ is a �full� complex matrix with
dimensions compatible with those of the plant, where any ∆ satisfying ‖∆‖∞ ≤ 1 is
allowed. If Gp is the plant including uncertainty, examples of representations are

Gp = G+ wA∆A ‖∆A‖∞ ≤ 1 - Additive uncertainty (2.36)

Gp = G(I + wI∆I) ‖∆I‖∞ ≤ 1 - Multiplicative input uncertainty (2.37)

Gp = (I + wO∆O)G ‖∆O‖∞ ≤ 1 - Multiplicative output uncertainty (2.38)

Gp = (I + wiO∆iO)−1G ‖∆iO‖∞ ≤ 1 - Inverse multiplicative output uncertainty
(2.39)

where wA, wI , wO and wiO are some SISO transfer functions. If ∆ is not frequency
dependent, the uncertainty is parametric. The form of wA, wI , wO and wiO will deter-
mine which parameters the uncertainty includes. Using multiplicative uncertainty, the
weighting functions wI , wO and wiO can easily be used to derive bounds of which fre-
quency region the nominal model G can be trusted. If |wI | ≥ 1, then the uncertainty
exceeds 100%.

The uncertainty representations (2.36) to (2.39) can also be used in SISO cases. If
di�erent SISO perturbations δi are lumped into a perturbation matrix ∆, it will re-
sult in some structure in the ∆ matrix. Hence just perturbation blocks with diagonal
structure so that ‖∆‖∞ ≤ 1 is satis�ed should be considered. Perturbations that arise
form uncertainty or neglected dynamics in the individual actuators or in the individ-
ual sensors, are always present. This leads to a complex diagonal perturbation matrix
∆(s) = diag {δii(s)} where |δii(jω)| ≤ 1 ∀ω, i.
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2.5 System performance

An obvious way of describing the performance speci�cation of a system is in the time
domain using for instance rise time, settling time or overshoot. But for control design
purposes it may be convenient to represent the performance speci�cations in the fre-
quency domain. Responses form sinusoids of any frequencies are here considered, and
not only the step response. Some of the frequency domain measures are gain and phase
margins, de�ned at page 32 in [39] or at page 289 in [45], or maximum peaks of S and
H de�ned at page 35 in [39] as MS and MH respectively.

‖S‖∞ = MS ‖H‖∞ = MH (2.40)

A large value of MS and MH (typically larger 4) indicates poor robustness and perfor-
mance.

Since e = y−r = S r it is desired to have S as small as possible. But since real systems
are strictly proper, L→ 0 ⇔ S → 1 as ω →∞. At intermediate frequencies one cannot
avoid a peak value of MS larger than 1. Thus there is an intermediate frequency range
where performance is degrading, and MS is the worst case measure of this degradation.
Since the smallest distance between L(jω) and −1 isM−1

S in the Nyquist curve, a smaller
peak value of S(jω) gives better robustness.

An relationship between the time and frequency domain peaks is pointed out at page
37 in [39]

2.5.1 Bandwidth

The bandwidth is a measure of what frequency range the control is e�ective. In most
cases it is required tight control at steady state, so the bandwidth only concerns the upper
frequency limit. In [39] tree de�nitions of the SISO system bandwidth are outlined in
terms of L(jω), S(jω) and H(jω)

De�nition 6. Bandwidth

1. The closed-loop bandwidth ωc where |L(jω)| �rst crosses 1 from above. This fre-

quency is also de�ned as the gain crossover frequency.

2. The closed-loop bandwidth ωB is the frequency where |S(jω)| �rst crosses 1√
2
≈ 3

dB from below.

3. The closed-loop bandwidth ωBH is the highest frequency at which |H(jω)| crosses
1√
2
≈ 3 form above.

where the relation between them is

ωB < ωc < ωBH (2.41)
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The crossover ωc is used as a bandwidth de�nition due to its simplicity. Generally
frequencies up to ωB, the control will improve the performance. In the range [ωB, ωBH ]
the control will a�ect the response, but not improve the performance. When |S(jω)| > 1,
the control degrades performance.

For the MIMO case, the bandwidth is direction dependent. Let ωB wc denote the
�worst-case� direction, where σ̄(S(jω)) crosses 1√

2
≈ 3 from below, and ωB bc denote the

�best-case� direction where σ(Sjω) crosses 1√
2
≈ 3 from below. The bandwidth region

is then [ωB wc ωB bc]. If the bandwidth must be associated with a single frequency, then
ωB wc is used.

2.5.2 Performance weights

The sensitivity function S is often used as a performance indicator. Speci�cations of S,
so the performance requirements are achieved, may be

1. Minimum bandwidth frequency

2. Maximum tracking error at selected frequencies

3. System type or alternatively the maximum steady state tracking error

4. Shape of S over selected frequency ranges

5. Maximum peak magnitude of S

To achieve the items addressed above, it is convenient to design a performance weighting
function wP (s), and let

|S(jω)| <
∣∣∣∣ 1
w(jω)

∣∣∣∣ , ∀ω ⇔ ‖wP S‖∞ < 1 (2.42)

When (2.42) is satis�ed, nominal performance of the system is achieved.

2.6 Stability and performance analysis

Any system can be represented as a general plant P and a controller matrix K with
a perturbation block ∆, shown in Figure 2.2. The P matrix includes the uncertainty
and performance weights described in Section 2.4 and Section 2.5.2. How to derive the
generalized plant P depends at the system.

In the terms of Figure 2.2, w is the system input vector, z is the system output vector,
v is the controller input, u is the controller output, y∆ is the input to the perturbation
block and u∆ is the output of the perturbation block. With lower Linear Fractional
Transformation (LFT), the PK representation can be lumped into a N representation
as
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Figure 2.2: PK representation of the system with perturbation block ∆.

Figure 2.3: N representation of the system with perturbation block ∆.

N = Fl(P,K) = P11 + P12K (I − P22K)−1 P21 (2.43)

The system is represented as in Figure 2.3
To include the perturbation into the system, an upper LFT is used.

F = Fu(N,∆) = N22 +N21∆ (I −N11∆)−1N12 (2.44)

The instability caused by the system perturbations, is represented by the term (I −
N11∆)−1. Hence the element N11 is of especially interest. In the literature this element
is referred as M , and the M∆ structure in Figure 2.4 is considered in robust stability
analysis.

M = N11 (2.45)

Now Nominal Stability (NS), Nominal Performance, Robust Stability (RS) and Ro-
bust Performance (RP) can be de�ned in terms of the system representations above.



2.7. OVERALL STABILITY CRITERIA FOR DECENTRALIZED CONTROL 17

Figure 2.4: M representation of the system with perturbation block ∆.

NS ⇔ N is internally stable (2.46)

NP ⇔ ‖N22‖∞ < 1, and NS (2.47)

RS ⇔ F = Fu(N,∆) is internally stable ∀∆, ‖∆‖∞ ≤ 1 and NS (2.48)

RP ⇔ ‖F‖∞ < 1, is internally stable ∀∆, ‖∆‖∞ ≤ 1 and NS (2.49)

2.7 Overall stability criteria for decentralized control

First the generalized Nyquist theorem is stated. This theorem applies for all MIMO
systems, and is de�ned in [39] at page 152.

Theorem 2. Generalized (MIMO) Nyquist theorem Let Pol denote the number

of open-loop unstable poles in L(s). The closed-loop system with open transfer function

L(s) and negative feedback is stable if and only if the Nyquist plot of det(I − L(s))

1. makes Pol anti-clockwise encirclements of the orign, and

2. does not pass through the orign.

Some interaction criteria that need to be satis�ed to guarantee nominal stability
of the overall system with decentralized control are stated in this section. Note that
these criteria can be used in all the design methods, but are especially important in the
independent design.

Theorem 3. With assumptions that the plant G is stable and each individual loop is

stable by itself (S̃ and H̃ are stable), the overall system is stable (S is stable):

1. if and only if
(
I + E H̃

)−1
is stable, where E is de�ned as in (2.11)

2. if and only if det
(
I + E H̃

)
does not encircle the origin as s traverses the Nyquist

D-contour.
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3. if

ρ(EH̃(jω)) < 1, ∀ω (2.50)

4. (and (2.50) is satis�ed) if

σ̄(H̃) = max
i

∣∣∣h̃i

∣∣∣ < µ−1(E) ∀ω (2.51)

The structured singular value µ(E) is computed with respect to a diagonal structure

of H̃

A similar theorem is stated in [39] at page 438, only that H̃ is swapped with S̃ and
E is swapped with ES = (G− G̃)G−1.

The Structure Singular Value Interaction Measure in (2.51) was �rst introduced in
[35]. There it is stated that this is the tightest norm bound. The de�nition of µ is stated
in (2.29). Failure tolerance is usually obtained. In [8] it is pointed out that (2.51) is
conservative because the phase information of H̃ is not utilized.

To derive less conservative bounds than the overall stability condition in (2.51), H̃ is
split into a �xed part H̃B and a design part H̃M .

H̃ = H̃B

(
I + H̃M

)
(2.52)

Assume that H̃B = 1
2H̃ and Ĥ = 1

2H̃
(
I + H̃M

)
, then the stability conditions in Theorem

4 are presented in [26]

Theorem 4. Assume that G(s) and G̃(s) have the same number of Right Half Plane

(RHP) poles and that H̃ and Ĥ are stable. Then the closed-loop system H(s, Ĥ) is stable
if

Nn

{
0,det

(
I +

1
2
EH̃

)}
= 0 (2.53)

where Nn is the number of encirclements of the Nyquist curve, and∣∣∣∣∣ ĥi(jω)
h̃i(jω)

− 1
2

∣∣∣∣∣ < µ−1

([
I +

1
2
E(jω)H̃(jω)

]−1

E(jω)H̃(jω)

)
∀ω ∈ [0,∞〉 , i = 1, 2, ..N

(2.54)

The condition (2.51) for nominal stability of decentralized control, can be general-
ized to include robust stability and robust performance. The complimentary sensitivity
function H doses not include the uncertainty and performance weights. The transfer
function matrix N in Theorem 5, stated in [40], is used to include these uncertainties
into the interconnection matrix M shown in Figure 2.5. Note that the N in Theorem 5
is independent of the controller, and is a di�erent matrix than the N in (2.43).

Theorem 5. Let the µ interconnection matrix M be written as lower linear fractional

transformation (LFT) of the transfer matrix H

M = Fl(N,H) = N11 +N12H(I −N22H)−1N21 (2.55)
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assume µ∆(N11) < 1 and det(I −N22H) 6= 0, then

µ∆(M) ≤ 1 if σ̄(H) ≤ cH (2.56)

where cH solves

µ∆̂

[
N11 N12

cHN21 cHN22

]
= 1 (2.57)

and ∆̂ = diag(∆,H)

Using Theorem 5 and H = GG̃−1H̃
(
I + EH̃

)−1
with the assumption that N22 = 0

a robust performance condition in terms of H̃ is outlined in [41] as

RP-condition in terms of H̃ Let M = N11 +N12GG̃
−1H̃

(
I + EH̃

)−1
N21. Then at

any frequency
µ∆(M) ≤ 1 if σ̄(H̃) ≤ cH̃ (2.58)

where cH̃ solves

µ∆̂

[
N11 N12GG̃

−1

cH̃N21 −cH̃N22

]
= 1 (2.59)

and ∆̂ = diag(∆,K) The structure of K is block-diagonal and equal to that of H̃.

An equivalent robust performance condition to (2.58) using S̃ and ES = (G− G̃)G−1

is stated in [41].

Figure 2.5: The interconnection matrix M expressed as an LFT of H. N is independent of the
controller K

Alternatively to Theorem 3 is to use Greshgorgin bounds de�ned in [13, 21] and in
[39] at page 439. Consider the Nyquist curve of giiki, and superimpose the circle of
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radius
∑n

i=1,k 6=i |gki(jω)ki(jω)|. This circle is the Greshgorin circle. The band composed
by Greshgorin circles for all frequencies is called the Greshgorin band. Theorem 6 is
stated in [8], where derivations in [35] are used.

Theorem 6. Assume that G(s) and G̃(s) have the same number of RHP poles and H̃(s)
is stable. Then the closed loop system H(s) is stable if∣∣∣h̃i(jω)

∣∣∣ < |gii(jω)|∑n
k=1,k 6=i |gki(jω)|

∀i, ω (2.60)

or equivalent
|gii(jω)ki(jω)| >

∑n
k=1,k 6=i |gki(jω)ki(jω)| ∀i, ω (2.61)

This ensures diagonal column dominance.

An equivalent theorem can be stated for diagonal row dominance. The smallest value
of the upper bounds in (2.60) is always more restrictive than (2.51). However (2.51)
imposes the same bound on |h̃(jω)| for each loop, whereas (2.60) give individual bounds.
Hence some of the Greshgorin bounds may be less restrictive than the Structure Singular
Value Interaction Measure[39].



Chapter 3

A survey of SISO and MIMO tuning

methods

3.1 SISO tuning methods

Since the main concern of this thesis is multi-loop PID tuning, only some of the most
important SISO tuning methods are presented. This is done because some of the multi-
loop methods are modi�cations of the SISO tuning rules.

3.1.1 Ziegler-Nichols tuning method

To use this method for tuning the parameters in (2.15), the open loop system must be
stable, and the magnitude- and phase characteristic have to fall monotonous when the
frequency is increased. In [45] at page 334, the tuning method is presented in depth.

First τI ≈ ∞ and τ = 0. The controller gain is increased until the output has
undamped oscillations. This gain Ku, called the ultimate controller gain, and the period
of the oscillations Pu are used further in the tuning process. Ku and Pu can be found
analytically by

Ku =
1

|G(jωu)|
, Pu =

2π
ωu

(3.1)

where ωu is de�ned by ∠G(jωu) = −180◦. The tuning parameters are di�erent for P, PI
and PID controllers.

P controller

Kc =
1
2
Ku (3.2)

PI controller
Kc = 0.45Ku, τI = 0.85Pu (3.3)

21



22 CHAPTER 3. A SURVEY OF SISO AND MIMO TUNING METHODS

PID controller

Kc = 0.6Ku τI = 0.5Pu τD = 0.12Pu (3.4)

3.1.2 Tyreus-Luyben tuning

A method as simple as the Ziegler Nichols approach is the Tyreus and Luyben (TL)
method, presented in [47]. Consider the ultimate gain Ku and frequency Pu in (3.1).
Then the TL settings for a PI controller can be calculated as

KTL =
Ku

3.2
, τITL

= 2.2Pu (3.5)

This is a more conservative approach than Ziegler Nichols. Hence it gives better perfor-
mance with small values of deadtime, but very sluggish performance when dead times
are large.

3.1.3 IMC and SIMC

IMC

The Internal Model Control (IMC) strategy is detailed explained in [39] at page 54. The
plant G is factorized as

G(s) = GmGa (3.6)

Ga(s) = e−θs
∏

i

−s+ zi
s+ zi

, R(zi) > 0, θ > 0 (3.7)

where Gm is the invertible minimum phase part, and Ga is the non-invertible all-pass
part. (The time delay and Right Half Plane (RHP) zeros cannot be inverted.) Specify
the desired complimentary sensitivity function H. Choose a �lter f(s) such that

H(s) = f(s)Ga(s) = G(s)K(s) (1 +G(s)K(s))−1 (3.8)

f(s) =
1

(τc s+ 1)n
(3.9)

⇒ K = G−1 H

1−H
= G−1

m

1
f−1 −Ga

(3.10)

The controller inverts the minimum phase part of G. The time delay e−θs is realized by
Padé approximation de�ned in (2.30). A small value on τc makes the loop fast, and a
big value makes it robust due to problems at higher frequencies.
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SIMC

It is common for process control purposes to approximate the plant as a �rst order model
with time delay. Then the plant G and the desired closed loop function H is de�ned as

G(s) =
k

τ s+ 1
e−θ s (3.11)

H(s) =
1

τc s+ 1
e−θ s (3.12)

With (3.11) and (3.12) as basis, a PI controller can be designed with the IMC strategy.
In [39] at page 57 it is purposed some tuning rules for this PI-IMC controller, called
Skogestad IMC or Simple IMC (SIMC) settings

K̃c =
1
k

τ

τc + θ
(3.13)

τ̃I = min(τ, 4(τc + θ)) (3.14)

The closed loop system will oscillate with a τ̃I too small, but it has to be small enough
to contradict ramp like e�ects on the output from disturbances. The system will be
sensitive to such disturbances for large τ , typically τ ≥ 8θ.

If G is a dominant second order process (τ2 > θ), a PID-IMC structure is obtained,
with the following recommended SIMC settings.

G(s) =
k

(τ1 s+ 1)(τ2 s+ 1)
e−θ s (3.15)

K̃c =
1
k

τ1
τc + θ

(3.16)

τ̃I = min(τ1, 4(τc + θ)) (3.17)

τ̃D = τ2 (3.18)

With these rules the only tuning parameter is τc. Small τc gives good output perfor-
mance, and large τc gives robustness and input usage. For robust and fast control, it is
recommended that τc = θ.

3.1.4 Iterative continuous cycling tuning

In [26] the Iterative continuous cycling (ICC) tuning for SISO systems is explained. This
method does not depend on a process model.

1. Set τI ≈ ∞ and τD = 0. Then increase the gain until continuous cycles occurs
at the output. The ultimate gain and frequency in (3.1) is then reached. Sett
kc = 0.5 ku.

2. Decrease the integral time τI until continuous cycles occur. Set the integral time
three times this value.
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3. Increase the derivate time until continuous cycles occur. Set the derivative time at
one-third of this value.

Since the controller must initially be turned o� to make use of the method, it can only
be applied at open stable systems.

3.1.5 Relay-feedback approach

Figure 3.1: (A) Block diagram for a relay feedback system and (B) relay feedback test for a
system with positive steady state gain

In Ziegler-Nichols or Tyereus and Luyben, the ultimate gain and frequency are used to
determine the PI/PID settings for SISO systems. To estimate these ultimate parameters
the relay feedback approach, which outlined in [6] and [12], are used. The estimation
works as follows: When the output lags behind the input by −π radians, the closed loop
system may oscillate with a period Pu. Figure 3.1 shows how the block structure and
the output y(t) and input u(t) relates to each other. Initially raze u(t) with amplitude
h. When y(t) starts rising, change the sign of u(t). Change the sign of u(t) each time y
is crossing its bias.

The output will oscillate with an amplitude a and a period Pu. Then the ultimate
gain Ku and ultimate frequency ωu can be determined by
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ku =
4h
πa

(3.19)

ωu =
2π
pu

(3.20)

Hence a mathematical model of G(s) is not necessary. But estimates of the transfer
functions can be obtained form Ku and ωu if desired, outlined in Chapter 3 in [6] and
[12]. A structure of G(s) has then to be assumed. Then a model based tuning method
based at the estimated model G(s) can be done, outlined in [12].

The information obtained by this method is the same as for the continuous cycling
method, but the oscillations can be obtained in a controlled manner.

3.2 MIMO tuning for decentralized PI and PID controllers

In this section the control matrix has N SISO PI or PID controllers at the diagonal. The
controllers have the same structure as (2.15).

First it is desired that the system is paired properly to active good performance and
avoid instability caused by interactions, using the pairing rules in [39] at page 449:

1. Prefer pairings such that the rearranged system has a RGA matrix close
to identity at frequencies around the closed loop bandwidth.
This is to ensure diagonal dominance. To ensure stability, the rearranged plant
must be triangular at crossover frequencies. This is not guaranteed by this rule.
Since all triangular plants have RGA = I and there is at most one choice of pairings
with RGA = I, diagonal dominance can be checked by the condition µ(ES) =
µ(PRGA− I) < 1 at crossover frequencies.

2. For a stable plant, avoid pairings that correspond to negative steady state
RGA elements, λij < 0.
The rule follows since integrity (DIC) is required for independent design, and to
avoid introduction of RHP-zeros with sequential design.

3. Prefer pairing ij, where gij puts minimal restrictions on the achievable
bandwidth. Speci�cally the e�ective delay φij should be small.
This rule favors the variable physically to each other, which makes it easier to use
high-gain feedback so good performance is achieved.

Second, a design of each PID controller has to be performed. Some of the known
tuning rules for decentralized PID controllers are presented in this section. The pairing
should be considered regardless of which tuning method that is used, since the interac-
tions are made as small as possible.
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3.2.1 Independent design methods

Each controller element ki is designed based on the corresponding diagonal element gii

at the transfer function matrix, while satisfying some process interactions criteria. This
design guarantee integrity, so failure tolerance is obtained. Due to the assumption of
independent design, which does not exploit the information about other control loops,
the independent design is somewhat conservative in general.

To obtain the pairing rules at the beginning of Section 3.2 are important in the
independent design. Note that it is not always possible to achieve all the rules presented
above. In such cases, the independent design method may fail.

After the appropriate pairing has been chosen, a controllability analysis should be
preformed as in [39] at page 450, to see if it is possible to control the plant G and the
disturbance model Gd with the decentralized controller K.

1. Plot the PRGA matrix Γ(jω) and the Closed Loop Disturbance Gain matrix
Γ(jω)Gd, where Gd(jω) is the disturbance transfer function. The following cri-
teria needs to be satis�ed for each loop i.

|1 + Li| > max
k,j

{|g̃d ik|, |γij |} (3.21)

To achieve stability, gii has to be analyzed to see if the bandwidth requirements
imposed by (3.21) is achievable.

2. To avoid input constraints, plot |gii| and ensure that

|gii| > |g̃d ik|, ∀k (3.22)

for frequencies where |g̃d ik| > 1

If the chosen pairings is controllable, the analysis based on (3.21) tells how large the loop
gain |Li| must be. This can be used as a basis for designing the independent controllers
ki(s). If the plant is not controllable, another choice of pairings must be considered,
which most likely will not help. Another control design method than the independent
procedure must then be considered.

The overall stability criteria in Section 2.7 can be used to derive bounds on PID
settings for the independent design.

Robust independent design

An IMC independent design procedure is outlined in [29]. Assume the �lter f in (3.9).
After �nding the parameter n which makes gm ii realizable, the tuning parameter τc i for
each loop has to be determined. The parameter τc i has to be bounded due the interactions
in the system G. Consider the RP-condition (2.58). The interconnection matrix M can
be expressed as an LFT with the �lter f shown in Figure 3.2. The uncertainties in τc i

are applied as

τc i =
τ∗c i

2
(1 + ∆τc i), |∆τc i| ≤ 1 (3.23)
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for the �rst order case. For higher order cases see [29].
To derive an upper bound at the �lter, de�ne

ti =
1
τc i

(3.24)

with the uncertainty

ti =
t∗i
2

(1 + ∆ti), |∆ti | ≤ 1 (3.25)

The structure to the right in Figure 3.2 can be applied to Theorem 5. Note that ε in
Figure 3.2 corresponds to τc.

Figure 3.2: The interconnection matrix M expressed as an LFT of the IMC �lter F and of the
uncertainty associated with the �lter time constraints. ε corresponds to τc

The procedure of the robust independent design, in [29], is as follows:

1. De�ne and �nd the structures in Figure 3.2. Di�erent structures for Nτc and Nt

should be applied.

2. Consider Theorem 5. The condition

µ∆(M) ≤ 1 (3.26)

is satis�ed if
0 ≤ τc i ≤ τ∗c s ∀i (3.27)
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where τ∗c s solves:

µ∆̂(Nτc) = 1 where ∆̂ = diag {∆,∆τc} (3.28)

Similarly, let t∗s solve µ∆̂(Nt) = 1, giving the bound

τc i ≥
1
t∗s

∀i (3.29)

3. Find the range of values of τc i so either (3.27) or (3.29) is satis�ed for all frequen-
cies.

4. Choose a value of τc i within a range of values found in Step 3, and verify the
stability of M for this choice of τc i.

E�ective open-loop process

To handle the interaction problems an estimate of the interactions form the other loops
are designed in [16]. The resulting system is called an E�ective Open-loop Process (EOP).
An independent design of each EOP can then be performed. The concept of the method
is here presented for a Two Input Two Output (TITO) system. The method can be
extended systems with more loops, but is then more complex to use. Hence this method
is not recommended for systems with 4 or more loops. The EOP's for a TITO system is
de�ned as

g1 = g11

{
1
λ

+
g12g21
g11g22

(
1− h̃2

)}
(3.30)

g2 = g22

{
1
λ

+
g12g21
g11g22

(
1− h̃1

)}
(3.31)

where λ = g11g22

g11g22−g12g21
and h̃i are the complementary sensitivity functions for loop

number i = 1, 2.
In general the SISO open loop function l(s) = k(s) g(s), having integration in k(s),

can be written as

l(s) =
κ(s)e−θ s

s
(3.32)

so for each loop, h̃i can be written

h̃i =
κi

e−θi s

s

1 + κi
e−θi s

s

(3.33)

In [17] the function κ(s) has been found as
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Figure 3.3: The interactions form other loops are lumped into an E�ective Open-loop Process
gi for each loop number i. The controller gc i corresponds to the controller ki in
this thesis.

κ(s) =
ko(1 + aθ s)

θ
(3.34)

Small value for ko gives robust performance, and large values give better performance. It
was found in [16] that a = 0.4 is appropriate. Then the estimate h̃∗i of h̃i can be derived
as

h̃∗i (s) ≈
ko i(1+0.4θi s)

θi s

1 + ko i(1+0.4θi s)
θi s

(3.35)

The parameter ko can be used to assign the importance of each loop. Using ko = 0.6,
the loops are weighted equal. Estimates of the EOP can be derived if (3.35) is applied
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into (3.30) and (3.31)

g1
* = g11

{
1
λ

+
g12g21
g11g22

(
1− h̃∗2

)}
(3.36)

g2
* = g22

{
1
λ

+
g12g21
g11g22

(
1− h̃∗1

)}
(3.37)

The equations (3.36) and (3.37) can be used to design the controller in the open loop
system ki gi

* independently.
De�ne the deviation from the real system as a multiplicative modeling error and the

closed loop system in terms of the estimated EOP's

δg1
* =

g1 − g1
*

g1
*

(3.38)

δg2
* =

g2 − g2
*

g2
*

(3.39)

h̃o
i =

kigi
*

1 + kigi
*

(3.40)

Then, if the system has integrity with integral action, overall stability is ensured if the
conditions in Theorem 7 are ful�lled.

Theorem 7. A TITO system resulted from the earlier direct design procedure will be

stable, if the controllers meet the following conditions.

1. k1 stabilizes g11 and k2 stabilizes g2, or

2. k2 stabilizes g22 and k1 stabilizes g1

3. ki satis�es

|ki gii(jωp i)| < 1, i = 1, 2 (3.41)

where ωp i is the phase crossover frequency of ki gii(s)

4. h̃o
i satis�es ∣∣∣h̃o

i

∣∣∣ < min
ω

{
1∣∣δgi*∣∣

}
, ∀ω ∈ [0,∞〉 , i = 1, 2 (3.42)

The SISO methods in Section 3.1 can be used directly at ḡi*. Alternatively, a tuning
approach purposed in [16] can be used. Representations of gi* as a �rst or second order
transfer function can be deriven. The parameters must then be identi�ed.
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PI/PID settings for EOP as �rst order dynamics
Represent gi* as ḡ*

ḡ* =
kp e

−θ s

τ s+ 1
(3.43)

Use this representation to apply the following settings for the PID controller de�ned
in (2.16)

k̃c =
koτ

kpθ

τ̃I = τ (3.44)

τ̃D = 0.4 θ

For PI controllers, just ignore the derivate time constant τ̃D

PI/PID settings for EOP as second order dynamics
Represent gi* as ḡ*

ḡ* =
kp(τ3 s+ 1) e−θ s

τ2
2 s

2 + 2τ2
2 ζ + 1

(3.45)

Use this representation to apply the following settings for the PID controller de�ned
in (2.16)

k̃c =
2koτ2ζ

kpθ

τ̃I = 2τ2ζ (3.46)

τ̃D =
τ2
2ζ

3.2.2 Detuning methods

Biggest log modulus for PI and PID controllers

The detuning method presented below for PI controllers were �rst presented in [50]. An
extension to this method, including derivative action and tuning based at the importance
of the di�erent loop performances, is presented in [34].

In terms of (2.3), the closed loop log modulus for SISO systems is de�ned in [50] as

Lc = 20 log
∣∣∣∣ GK

1 +GK

∣∣∣∣ , (3.47)

If Lmax
c = maxω Lc > 2 dB, then the GK contour is far enough away from the point

(−1, 0) in the Nyquist plot de�ned in [45] at page 195, and the SISO tuning is acceptable.
In order to use the Nyquist method for MIMO systems, W is de�ned as

W (s) = −1 + det(I +GK)(s), (3.48)
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and applied in a Nyquist plot. The multivariable closed-loop log modulus Lcm is de�ned
as

Lcm = 20 log
∣∣∣∣ W

1 +W

∣∣∣∣ , (3.49)

For a N ×N system, the criteria

Lmax
cm = 2NdB, (3.50)

is proposed. This is de�ned as the �Biggest Log modulus Tuning� (BLT), and gives a
reasonable compromise between stability and performance. It is important to apply the
Nyquist plot of W , because Lcm (and Lc) merely denotes nearness to the critical point
(−1, 0). Hence an unstable system could be tuned even if Lmax

cm = 2N dB. To achieve
the criteria in (3.50), the procedure below is proposed in [50] for PI controllers.

PI BLT tuning

1. The settings for each individual loop is found using some SISO-tuning rule as
Ziegler-Nichols, SIMC or Tyreus and Luyben presented in 3.1.

2. The control gain kci and τIi is de�ned as

kci =
kSISOi

F
, for i = 1, 2...N (3.51)

τIi = F τI−SISOi , for i = 1, 2...N (3.52)

where kSISOi and τI−SISOi is the SISO-loop settings for loop number i. Assume
factor F , that typically vary form 2 to 5.

3. When a factor F is found so (3.50) is satis�ed, the tuning settings are acceptable.

In [50] the Ziegler-Nichols settings are used as the SISO settings. The system will be
more stable and more sluggish if F is large. The same �detuning� factor F can be applied
in all loops, but if some variables need tighter control, di�erent weighting factors Fi can
be used in the individual loops. This procedure guarantees that the system is stable with
all controllers in automatic, and also that each loop is stable if all others are in manual.
Hence integrity is not guaranteed for this procedure.

PID BLT tuning

This method, presented in [34], incorporates derivative action as follows;

1. Choose a detuning factor FD ≥ 1

2. Compute τDi for loop number i as

τDi =
τD−SISOi

FD
(3.53)

where τD−SISOi
is the Ziegler-Nichols value for τDi .
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3. Calculate W as (3.48) and Lmax
cm

4. Change FD until Lmax
cm is minimized, maintaining FD ≥ 1.

5. Reduce F , and calculate kci, τIi,W and Lmax
cm until Lmax

cm = 2N

6. Repeat step 4 and 5 until no further reduction in F is possible.

By this procedure the derivative term is tuned so they have the greatest e�ect near the
closed-loop resonant frequency. This recursive procedure converged for all cases studied.

BLT loop weighting

The Integral Total Error (ITE) for the i'th controlled variable ui can be computed as∫ ∞

0
ei(t) dt =

ui(∞)τI i

Kc i
(3.54)

The steady state value of u(∞) drives y(∞) to r can be expressed as

u(∞) = G−1(0)y(∞) where y(∞) = [0, ..., 0, 1, 0..., 0] (3.55)

Then [34] propose a way of computing the absolute ITE's for disturbance in each set-point
and for a load disturbance as

Ji = abs
(
τI i

Kc i

) N∑
j=1

{
abs

[
g−1
ij (0)
N

]}
(3.56)

It is desirable that the absolute ITE's of each loop are equal. The individual detuning
factor Fi for each loop is then

Fi = F

√
Jmax

Ji
(3.57)

where Jmax = maxi Ji. The PI controller settings are then computed as

kci =
kSISOi

Fi
, (3.58)

τIi = Fi τSISOi , (3.59)

For a 2 × 2 system, it is shown that this procedure result in a tighter y2 loop, and a
looser y1 loop than the tuning in [50]

Combination of PID BLT and loop weighting tuning

This procedure is presented in [34].

1. The weighting factor
√

Jmax
Ji

is found for each loop.
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2. The PID BLT tuning approach is used with individual FD i factors for each loop

FD i = FD

√
Jmax

Ji
(3.60)

This method has proved to provide an improvement over the method in [50].
The Nyquist contour must be checked every time F is changed, since the DIC or

RDD property is not guaranteed.

Detuning factor based on a diagonal dominance index

De�ne

gki(jω) = aki(ω) + jbki(ω) = rki(ω) ejφki(ω) (3.61)

Ri(ω) =
n∑

i=1,k 6=i

|gki(jω)| (3.62)

When the relations in (3.61) and (3.62) are applied into the squared of (2.61), the inter-
action criteria that needs to be satis�ed to guarantee closed loop stability, according to
Theorem 6, is

k2
c i

(
r2ii(ω)−R2

i (ω)
)

+ k2
I i

r2ii(ω)−R2
i (ω)

ω2
+ 2

(
kc iaii(ω) + (kI i

bii(ω)
ω

)
+ 1 > 0 (3.63)

The equation (3.63) is used to derive regions for the parameters kc i and kI i = kc i
τI i

so
closed loop stability is ensured.

To guarantee stability for H̃(s), bounds for the individual SISO systems gii has been
derived in [44] as

kc i = −aii(ω)
r2ii(ω)

(3.64)

kI i = −ωbii(ω)
r2ii(ω)

(3.65)

where the de�nition in (3.61) have been used.
The performance may vary signi�cantly within the stability region. The tuning pro-

cedure purposed in [8] is as follows:

1. Calculate the stability region for each PI controller by obtaining the intersection of
(3.63), (3.64) and (3.65). The ultimate gain kui and the ultimate frequency ωui lies
at the stability boundary shown in Figure 3.4 when the integral gain kI i is �xed
to zero. Due to process interactions, the ultimate gain and frequency is di�erent
when only a SISO loop with gii is considered.
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Figure 3.4: Stability region found by (3.63), (3.64) and (3.65).

2. A detuning factor Fi is calculated for each loop. Use the column diagonal dominance

index at the ultimate frequency φui, de�ned as

φui = φi(ωul) (3.66)

φi(ω) =
|Gii(jω| −

∑n
i=1,k 6=i |Gki(jω)|

|Gii(jω|
= 1− Ri(ω)

rii(ω)
(3.67)

to determine which Fi to use.

Fi =


0.75 if φui ≤ −1.5

0.375− 0.25φui if − 1.5 < φui ≤ −0.5
0.5 if − 0.5 < φui ≤ −0

0.5− 0.25φui if 0 < φui ≤ 1

(3.68)

The regions of Fi are based at empirical studies of simulation results of 14 cases
outlined in [8].

3. The controller settings applied are

kci = kuiFi (3.69)

kIi = k∗IiFi (3.70)

where the gain k∗Ii is the integral gain that gives marginal stability with the cor-
responding kci calculated in (3.69). In Figure 3.4 it is shown that this is at the
stability boundary in the (kc i, kI i) plot. The resulting stability gains are located
inside the stability bound, since Fi is always less than one.
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The overall stability region for (kc i, kI i) for the ith PI controller is the intersection of
(3.63) and the region bounded by (3.64) and (3.65). Hence this tuning procedure could
be categorized in the Independent design methods. But due to the fact that a detuning
factor is used to guarantee that the parameters are within the overall stability region, it
has been grouped under the Detuning methods.

When di�erent control settings were tested in [48] this procedure was suitable due to
reference tracking and disturbance rejection of control of a four tank system.

A simpli�cation of this method, only valid for diagonal dominant systems, is presented
in [9]. To �nd the ultimate gain for each loop, ku i, use the boundary values of (3.63)
with proportional controller only. Hence �x kI i = 0.

k2
c i

(
r2ii(ω)−R2

i (ω)
)

+ 2kc iaii(ω) + 1 = 0 (3.71)

Since only a real-valued solution of kc i is valid, the ultimate gain and ultimate frequency
for the ith Greshgorin band can be expressed as

ωu i = {ω |min |kc i| ∀kc i ∈ real valued solutions of (3.71)} (3.72)

ku i = kc i(ωu i), kc i ∈ real valued solutions of (3.71) (3.73)

When the ωu i and ku i are determined the Ziegler-Nichols or Tyreus-Luyben, presented
in Section 3.1, with a detuning factor F can be applied.

3.2.3 Optimization methods

If the control parameters can be optimized, the controller will give superior performance
due to handling of all the interactions in the MIMO systems. It can also be used to
stabilize an unstable plant. Unfortunately, the optimization problem may be both hard to
design and hard to solve due to non-convexity. Few of the normal bene�ts of decentralized
control mentioned in Section 1.1.1 is o�ered. Hence, as pointed out in [39] at page 429,
full multivariable controllers, which lead to better performance, should be considered
instead. Exceptions are when centralized control can not be used, e.g. for geographical
reasons or when the existing decentralized control con�guration is required for some other
reason. Hence this approach is not common in practice. This method can only be used
for o�-line tuning, because of the time consuming computation load. A process model
and simulator tests may therefore be required.

Genetic optimization

In [20] a detailed overview of Genetic Algorithms is outlined. Figure 3.5 shows the pseudo
code for the Genetic Algorithm.

In [49] a genetic approach for PI tuning for a decentralized controller is proposed. The
objective function can be based on some speci�ed performance objectives or constraints.
The response could be compared to a desired shape of H(s) in (2.5) to some speci�ed
input. Peak overshoot, settling time, rise time, steady-state o�set, velocity lag etc. may
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t=0;
i n i t i a l i z e P( t ) ; % P( t ) i s the populat ion at time t
eva luate P( t ) ;
whi l e ( te rminat ion c on t i t i o n not s a t i s f i e d ) do

t = t+1;
s e l e c t P( t ) ;
recombine P( t ) ;
eva luate P( t ) ;

end ;

Figure 3.5: Psedocode of a Genetic Algorithm.

be used to evaluate the performance. For an input reference at the jth input, de�ne
upper and lower performance objectives, f l

ij and f
u
ij , for the ith output. In [32] these are

called zone objectives. The objective function to be minimized is

J0(KP , TI) = max
1≤j≤n

{
n∑

i=1

wijJij(KP , TI)

}
(3.74)

where wij is a weighting factor to distinguish the importance of the di�erent output
patterns, and

Jij(KP , TI) =
∫ tmax

0

[
max

{
f l

ij(t)− yi(t), 0
}

+ max
{
yi(t)− fu

ij(t), 0
}]

dt (3.75)

is the objective function for the ith process output and the jth set point pattern. This
makes the objective function �exible.

Due to the fact that the control structure is �xed, the existence of a general solution
for arbitrary performance objectives is not guaranteed.

H∞ optimal robust PID controller

A robust multi-loop PID controller design is outlined in [2].
An output multiplicative uncertainty model, shown in (2.38), is considered. The ma-

trix ∆(s) is all possible complex perturbations. It is assumed that the system wO(s)∆(s)
is stable, and ‖∆‖∞.

Then the H∞ problem can be stated as

min
K∈KPID

−γ (3.76)
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subject to (3.77)

‖Hcl(s)‖∞ =
∥∥∥∥ wO(s)H(s)
γwP (s)S(s)

∥∥∥∥
∞
< 1 (3.78)

Hcl(s) ∈ RH∞ (3.79)

where wO(s)H(s) ensures Robust Stability, and γwP (s)S(s) ensures the best nominal
performance possible according to the performance weight wP selected. The optimal
level of γ indicates the level of performance achieved. If γ > 1, better performance is
obtained while γ < 1, it is not possible to meet the performance speci�cation. Equation
(3.79) ensures that Hcl(s) is analytic in the RHP, and is therefore stable.

The H∞ problem in (3.76) is converted into a state space realization using the
Bounded Real Lemma outlined in [2]. The optimization problem is then

min
x
−γ (3.80)

subject to (3.81)

 AT
cl(x)X(x) +X(x)Acl(x) X(x)Bcl(x) CT

cl

BT
cl(x)X(x) −I DT

cl

Ccl Dcl −I

 < 0 (3.82)

X = XT (3.83)

X > 0 (3.84)

where Acl, Bcl, Ccl and Dcl are the state space realization of the closed loop system. The
matrix X is a symmetric positive de�nite optimization variable.

A method called Successive Semide�nite Programming is used to iterate to a solution
of (3.80). The optimization problem in (3.80) is not convex, hence the purposed algorithm
only guarantees to �nd a local optimum. Several starting points have be used to aim for
a global solution. This tuning method works only for time continuous systems, and any
time delays have to be approximated by a Padé approximation shown in (2.30).

3.2.4 Sequential loop closing methods

Sequential design involves closing and tuning one loop at a time with the previously
designed controllers implemented. Initially all loops are open, so the system must be
open stable. A new transfer function has to be derived after each closing, where the
control information of the closed loops are included. The method is suited for on-line
tuning using a relay, presented in Section 3.2.6. The pairing rules in the beginning of
this chapter are still desirable, but may be violated. Then the interactions are used



3.2. MIMO TUNING FOR DECENTRALIZED PI AND PID CONTROLLERS 39

to achieve desired performance. Some advantages and disadvantages of the sequential
design procedure are presented in [30].

Advantages of sequential design

1. Each step in the design procedure involves designing only one SISO controller.

2. If stability has been achieved after the design of each loop, then the system will
remain stable if loops fail or are taken out of service in the reverse order of how
they were designed.

3. Stability is ensured during startup if the loops are brought into service in the same
order as they have been designed.

Disadvantages of sequential design and solutions

1. The quality of the �nal controller may depend on the order of the individual SISO
loop design. Hence, the fast loops are closed �rst, because the loop gain and phase
in the bandwidth region of the fast loops is insensitive to the tuning of the lower
loops. The response in a fast loop may still be sensitive to the tuning of a slower
loop, if the interactions between the slow and fast loop is severe.

2. The closing of subsequent loops may alter the response of previously designed loops,
and thus make iteration necessary. Hence estimates of how the undesign loops will
a�ect the output of the loops to be design can be made. How to include these
estimates in the sequential design process is found in [30] and outlined below.

3. The transfer function gii(s), which is used to design the i'th SISO loop, may contain
RHP zeros that do not correspond to RHP transmission zeros in G(s). Hence this
will a�ect the order of the closing, since RHP zero induce bandwidth limitation
outlined in [39] at page 45. However the RHP zeros of the individual gii(s) may
disappear when other loops are closed. Hence it may be possible to neglect these
limitations if the loop are included in the design at a later stage.

4. Due the nature of the tuning procedure, failure tolerance is not guaranteed if the
inner loops fail.

While the independent design presented in Section 3.2.1 is suited for loops that are
decoupled in space (the interactions are small), the sequential design is suited for loops
that are decoupled in time. If the previous loops are considerably faster than the one to
be designed, then perfect control may be assumed for the inner loops. Then the previous
controllers can be set to in�nity when the transfer function for the loop to be designed
is derived. This is explained in [39] at page 430.
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Sequential design with estimates of undesigned loops

To evaluate the e�ect of undesigned loops, the following functions are de�ned when the
k'th loop is to be closed. The system matrix (·)k is the upper left subsystem of (·) with
dimension k × k. Then

Kk , diag(k1, k2...kk) (3.85)

Sk , (I +GkKk)−1 (3.86)

Hk , GkKk(I +GkKk)−1 (3.87)

Ĝk , diag(Gk, Gii) i = k + 1, k + 2...N (3.88)

Ŝk , diag(Sk, S̃i) i = k + 1, k + 2...N (3.89)

Ĥk , diag(Hk,Hi) i = k + 1, k + 2...N (3.90)

Êk , (G− Ĝk)Ĝ−1
k (3.91)

Then

S = Ŝk(I + EkĤk)−1 (3.92)

(3.93)

where (I +EkĤk)−1 is the estimated interactions from the undesigned loops. In [30] the
SISO controllers have been design so that the objective function

min
ki

‖WPSWD‖ (3.94)

is minimized where WP and WD are some weighting functions. This could be done by a
H2- or H∞-norm. If (3.92) is inserted in (3.94), then

‖WPSWD‖ =
∥∥∥WP Ŝk(I + EkĤk)−1WD

∥∥∥ =
∥∥∥WP ŜkŴD

∥∥∥ (3.95)

where
ŴD = (I + EkĤk)−1WD (3.96)

The method outlined in [30] can be summarized as follows.

1. Determine the order of the closing by estimating the required bandwidth in each
loop. Estimate the individual loop design in terms of their complementary sensi-
tivity H̃. If the system is scaled, as in Section 2.1.3, it is required that for ri < 1

|[Sij ]| < 1 (3.97)

respectively. The following applies for frequencies lower than the bandwidth;

Γ ≈ (I + EH̃)−1 ω < ωB (3.98)

S̃ = (G̃K)−1 (3.99)

e = y − r = −S̃Γr (3.100)
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where Γ = {γij} is the PRGA in (2.9). The performance requirement in (3.97) can
be rewritten as bounds on the individual loop gains Giiki as∣∣∣∣ γij

Giiki

∣∣∣∣ < 1 ⇔ |Giiki| > |γij | ω < ωB (3.101)

This requirement is very helpful when the bandwidth estimation is needed.

2. Design the controller k1 by considering output 1 only. Use the objective

min
k1

∥∥∥Wnp×1
P S1Ŵ

1×nD
D

∥∥∥ (3.102)

analogous to (3.95), where Ĥk = H̃. The function S1 needs to be stable.

3. Design controller kk by considering outputs 1 to k. Use

min
kk

∥∥∥Wnp×k
P SkŴ

k×nD
D

∥∥∥ (3.103)

where Ĥk = diag(Hk−1), H̃i for i = k, k + 1...N . Hk−1 is used instead of Hk, since
it is independent of kk. The function Sk needs to be stable.

4. Design the last controller kn. This is done by considering the overall problem in
(3.94). The function S needs to be stable.

Other functions than S could be used to evaluate closed loop performance. Since Sk

needs to be stable at each step, a limited degree of failure tolerance is guaranteed. Since
the system is required to be stable after closing each loop, it is not possible in general to
obtain the optimal decentralized controller with this approach.

Robust sequential design

A sequential design procedure presented in [28], that ensures robustness for systems with
input multiplicative uncertainty. The complementary sensitivity function H are de�ned
with LFT as

H = Nhh
11 +Nhh

12 T
h
(
I −Nhh

22 T
h
)−1

Nhh
21 (3.104)

where Nhh and T h consists of estimates of the sensitivity and the complimentary sensi-
tivity functions of the undesigned loops shown in [28]. In [18] it is shown how the M in
(2.45) are represented as a LFT with the complementary sensitivity H. Then (3.105) is
put into this representation, and M is expressed as the LFT

M = Nh
11 +Nh

12T
h
(
I −Nh

22T
h
)−1

Nh
21 (3.105)
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The elements Nh
ij contain the elements Nhh

ij . Then the robust conditions can be stated
analogous to (2.58).

σ̄(h̃i) < ψk
h ∀i = k + 1, ..., N, ω ∈ [0,∞〉 (3.106)

where ψk
h solves

µ{∆I ,∆P ,H̄k}

[
Nh

11 Nh
12

ψk
h N

h
21 ψk

h N
h
22

]
= 1 (3.107)

where h̃i is the elements in (2.13). Note that H̄k is not the same as the estimate Ĥk in
(3.90). Equal bounds can be derived for S̃i.

The fastest loop is still closed �rst. This design ensures robust performance, and due
the nature of sequential design, the possibility of less conservative design than the robust
independent design is present. But still, integrity is not guaranteed.

3.2.5 Iterative or trial-and-error methods

Iterative methods are much like sequential loop tuning, since all loops start open, and
each loop are tuned sequentially. The tuning of each loop is then redone with all the
other loops closed. This is repeated until the controller settings converge. This method
is also called trial- and- error methods.

Multi-loop iterative continuous cycling method

In [26] a trial and error method uses a multi-loop version of the ICC in Section 3.1.4
is presented. The multi-loop ICC method for PI controllers rede�nes the Nyquist array
method to provide less conservative stability conditions. It is pointed out in [8] that
this method does not guarantee closed loop stability due to the nature of the continuous
cycling method.

Assume that the decentralized controller K(s) has the form

K(s) = Kc(I +
1
s
KI) (3.108)

whereKc = diag{kc1, kc1...kcN} is the proportional gain matrix, andKI = diag
{

1
τI1 ,

1
τI2 , ...

1
τIN

}
.

The method presented in [26] is as follows:

1. Set KI = 0 and use the condition in (2.51) to design the proportional gain matrix
Kc. Improve this gain once by applying (2.54) using H̃ with the previous calculated
proportional controllers. Set the Kc to the half of the gains calculated also.

2. The characteristic equation for the system with PI control is

det(I +GK) = det {I +GKc}det
{
I + (I +GKc)

−1GKcKI
1
s

}
= 0 (3.109)
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Then K0I can be design by applying the rearranged process

[I +GKc]
−1GKc

1
s

(3.110)

to (2.51) with Kc from Step 1. Set KI = 0.4K0I .

3. To ensure a gain margin of 2, Kc is adjusted again. Condition (2.54) is used at the
process with integral action

G

(
I +KI

1
s

)
(3.111)

with H̃ designed in step 1 and 2. Condition (2.54) is applied two times iteratively.

This method is less conservative, but more complex to use than the method outlined
in 3.2.2. Due to the iterations, the integrity is not ensured with this method.

3.2.6 Multi-loop relay feedback approaches

To use the tuning methods presented above, the transfer matrix G(s) must be known.
The transfer matrix can be obtained by mathematical modeling of the system, or by
using system identi�cation techniques.

In [6] at page 99, it is stated that for multivariable systems, a relay feedback test can
be preformed while having the rest of the controllers turned o�. Then the parameters
for each individual element in the corresponding column can be identi�ed. For a N ×
N system, all the transfer functions gij are found after N tests. In principle all the
identi�cation techniques for SISO systems described in [12] can be applied. When G(s)
is obtained, all the tuning methods presented above can be used, such as the independent
design method or the detuning methods.

In MIMO systems, due to system interactions, there are in�nite numbers of ultimate
points (ku 1, ku 2...ku N , ωu) consisting of the ultimate gain in each loop and the corre-
sponding frequency. Hence simple rules based at the ultimate points can not be used
directly as pointed out in [11]. Tuning based at di�erent critical points leads to di�erent
performance. The ultimate parameters must be obtained by sequential relay tests, or
replacing all the controllers with relays.

If a sequential or iterative approach is used, it is not necessary to �nd all the gij

elements. A sequential design is presented in [27], and a iterative design is presented in
[43] and [6] at page 123. The iterative method using relay feedback, presented in [43]
and [6], is here restated.

1. Close the loops after how fast they are. Start with the fastest loop

2. Perform the relay feedback test on loop 1 and design the corresponding controller
using Ziegler-Nichols. Close the loop.

3. Perform the relay feedback test at loop k, while loop 1 to k−1 is closed and design
the corresponding controller using Ziegler-Nichols. Repeat this until all loops are
closed.
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4. Perform the relay feedback test at each loop again, starting with the fastest one,
while every other loop are closed. Re-tune the corresponding controller using
Ziegler-Nichols. Repeat this step until the parameters converge.

It is pointed out that it is typically needed 2N − 1 relay tests for this method. The
method in [27] is basically the same, only the controllers are not retuned.

In [11], all controllers are replaced with relays at the identi�cation phase, and limited
cycles with the same period in all loops are generated. Each loop is weighted by impor-
tance. A method that converge to a desired ultimate point (ku 1, ku 2...ku N , ωu) based
at the weighting is obtained. Based on this ultimate point, Ziegler-Nichols settings are
applied for each controller.

3.3 Discussion and conclusion of the MIMO tuning survey

Ideally, all the tuning methods should have been tested with high interactive test benches
with model uncertainty, and compared to each other. This would have revealed the
strengths and weaknesses clearly. In [48] some tuning methods have been tested to a high
interactive plant. The BLT method with Ziegler-Nichols and Tyerus and Luyben settings,
the sequential relay method with Ziegler-Nichols and Tyerus and Luyben settings, ideal
relay method with BLT1, the simultaneous relay method and the Gershgorgin band
method using Ziegler-Nichols settings were compared. The Gershgorgin band method
presented last in Section 3.2.2 and the ideal relay method showed the best performance
in the case study of a high interactive plant. Such a comparison is not done here. The
methods presented above are discussed based at the presentation above.

As mentioned in the introduction, it is desired to have robust controllers with distur-
bance rejections and failure tolerance. Almost every publications dealing with PI/PID
tuning treats set-point reaching. Hence, which procedure that handles disturbance re-
jection best, cannot be determined. Interaction handling and integrity can be discussed
independently whether the examples deal with set-point tracking or disturbance rejec-
tions.

Most of the methods rely on a mathematical model of the system. But not all
tuning methods need a detailed model. Sometimes the model includes uncertainty and
performance weighs to take account for model errors, and ensure a speci�c performance.
But of course, model errors could also occur in the weighting functions, and the robust
stability and performance properties rely on good model descriptions.

Independent design methods

The main advantage of independent design is that integrity is automatically obtained.
To use this method, the system must be open stable and pairings of inputs and outputs

1It is not clear in [48] �Ideal Relay tuning� is, but based at literature such as [6] it is probably a
rely feedback test performed in each SISO- loop while the others are open. From the diagonal model
achieved, the BLT settings are used.
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must be chosen so the controllability test in Section 3.2.1 is satis�ed. The method is
conservative, because only necessary overall stability conditions are taken into account
and it does not exploit information in other loops. Hence it is suited for plants where
interactions are low, but di�cult for strongly interactive plants. The EOP design method
uses an estimate of interactions to include these e�ects in the independent loop design
to utilize better performance. But this method is very complex for systems with four or
more loops. The robust independent approach ensures that the system is RDD. Here the
uncertainty and performance weights in Section 2.4 and Section 2.5 are included in the
design. This method relies on a mathematical model.

Detuning methods

Detuning procedures are simple to use. Open stable systems are considered. By detun-
ing the controllers, the interactions from the other loops are reduced. Hence a trade
o� between performance versus stability is made. The BLT method is often used as
comparison for performance of newer methods. A drawback is that it often leads to
a too conservative design. This design only ensures stability when every controller is
intact or when only one controller is intact. Consequently, integrity is not guaranteed.
Uncertainty and performance weights are not used. Hence robustness and performance
properties are not quanti�ed. But it is clear that if the detuning factor is high, the tuning
is conservative, but more robust, since the in�uence of the other loops is reduced.

Sequential closing methods

The sequential closing method is simple, but may result in too conservative tuning. The
system must be open stable. It can be used for interactive plants where the system can
be decoupled in time. Hence, the method is suited when response time di�erences in
the closed loops are acceptable. Desired robustness and performance can be achieved for
the overall system, and for the sub-systems generated in the closing procedure. Failure
tolerance is not guaranteed when the inner loops fail, but stability and performance are
guaranteed when the loops are brought in and out in the design order. It is suited for
on-line tuning.

Iterative or trial and error methods

Iterative or trial and error methods are similar to the sequential loop closing method.
Several of the advantages and disadvantages for the sequential closing method also applies
for this method. Since retuning of the loops are done until the parameters converge,
this gives generally less conservative settings than the sequential tuning. But since the
settings are altered after all loops are closed, this implies that performance and stability
are not guaranteed when the loops are brought in and out of service in the design order.
Overall stability is not guaranteed with the multi-loop ICC method.
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Optimization methods

Optimization methods o�er superior interaction handling, but is time consuming. Prefer-
ably, accurate models of the process and the uncertainty descriptions are needed. With
decent uncertainty weights, the plant model is not restricted to be accurate. But mod-
eling error could occur in the uncertainty weights, and the obtained settings should be
tested with a plant simulator if such exists. Hence these procedures are suited for o�-line
tuning. Due to non-convexity, the optimization problems may be hard to solve. Since this
is a full coordinated design, all the interactions are taken into account when the settings
are found. Consequently integrity is most likely not obtained. It is well suited for �nding
settings that stabilize the plant. With a H∞- control framework the robust stability and
nominal performance with respect to some weighting functions can be found.

Relay feedback approaches

With the auto-tuning approach, a process model is not needed. The system must be
open stable. This is a very practical method, since no modeling is required. The integrity
property is not mentioned in any of the publications dealing with this tuning method.
When the ultimate points are found sequentially, this method should have the same
properties as the sequential loop closing method. In general the ultimate points are
related to the various interactions. If some loops are shut down, the ultimate points may
be di�erent, and the settings obtained may also di�er. Hence it can be argued that the
settings do not give integrity. It is stressed that this is an assumption, and has not been
proved.

Overall conclusion and further work

The only method where failure tolerance is guaranteed is the independent method. But
this method is not suited for high interactive plants, and may lead to a conservative
design. With an appropriate model of the system and the weighting functions, the H∞
optimization method in [2] handles interactions superiorly and guarantee robust stability
and nominal performance. Since all the interactions are considered at once, integrity is
not guaranteed. It could be interesting to �nd a similar optimization problem that gives
settings so the remaining system is stable while some loops are shut down. If integrity
with integral control is possible, such an optimization algorithm should give the optimal
performance, integrity and robust stability at the same time. This is of course under the
assumption that suitable uncertainty weights are chosen. Then all the requirements of
the PI/PID multi-loop control system in Section 1.3 are achieved. Hence, the procedure
in [2] is investigated to see if so improvements can be made such that failure tolerance
can be guaranteed.
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H∞ optimal multi-loop tuning

Conventional H∞ methods outlined in [39], leads to a full MIMO controller with several
states. A full multivariable PID controller can be obtained if model reduction are per-
formed on the conventional H∞ design, shown in [46]. In [33] and [7], the H∞ norm of the
weighted sensitivity function and the complementary sensitivity function is minimized to
derive the PID settings for SISO systems. These SISO designs are extended to handle
multi-loop control design, outlined in [2]. This optimization algorithm can be used to
achieve nominal performance and robust stability with superior interaction handling.

In this chapter, it is explained how to use the H∞ multi-loop tuning approach, pre-
sented in [2], so failure tolerance is guaranteed. This method should guarantee a system
with integrity if such a property is possible with integral control. First a detailed survey
of the method is presented to get the proper insight of the method.

4.1 Detailed survey of H∞ optimal PID tuning approach

4.1.1 De�ning the optimization problem

In this procedure, an output multiplicative uncertainty model with a performance weight
at the sensitivity function S is considered as shown in Figure 4.1. The matrix ∆(s) is a
full complex matrix, restricted by

‖(∆)‖∞ < 1 (4.1)

The system wO(s)∆(s) is assumed to be stable.
Any system can be written with the PK∆ representation in Figure 2.2. If the plant

is nominal, ∆ = 0. Conventional H∞ problems �nd a controller K so the lower LFT of
the PK system is minimized, as shown in [39] at page 357.

min
K
‖F (P,K)‖∞ = min

K
‖N‖∞ (4.2)

The system N is derived in (2.43), and is shown in Figure 2.3. This leads to full MIMO
controllers with several of states.

47
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Figure 4.1: System block diagram of output multiplicative uncertainty

In (2.46) to (2.49) nominal stability, nominal performance, robust stability and robust
performance are de�ned. Theorem 8 de�nes robust stability when the perturbation ∆ is
a full matrix. The M ∆ structure in Figure 2.4 is assumed, where M is de�ned in (2.45).

Theorem 8. RS for unstructured perturbations. Assume that the nominal system
M(s) is stable (NS) and that the perturbations ∆(s) are stable. Then the M∆- system

is stable for all perturbations satisfying ‖∆‖∞ < 1 (i.e. RS) if and only if

‖M‖∞ < 1 (4.3)

Hence NS, NP and RS can be stated as

NS ⇔ N is internally stable (4.4)

NP ⇔ ‖N22‖∞ < 1, and NS (4.5)

RS ⇔ ‖N11‖∞ < 1 ∀∆, ‖∆‖∞ ≤ 1 and NS (4.6)

If the system in Figure 4.1 is converted to a PK structure shown in Figure 4.2, the
N matrix can be derived as

N(s) =
[
wO(s)H(s) wO(s)H(s)
wP (s)S(s) wP (s)S(s)

]
(4.7)

Then the nominal performance and robust stability conditions can be de�ned as

NP ⇔ ‖wP (s)S(s)‖∞ < 1, and NS (4.8)

RS ⇔ ‖wO(s)H(s)‖∞ < 1 ∀∆, ‖∆‖∞ ≤ 1 and NS (4.9)

Let KPID be the set of all possible stabilizing decentralized PID controllers. If only
the output z1 in Figure 4.2 is considered and if the controller K is restricted to be in the
set KPID, then (4.2) can be de�ned as

min
K∈KPID

‖wP (s)S(s)‖∞ (4.10)
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Figure 4.2: General P-K control con�guration. K denotes the controller and P denotes the
plant.

subject to

‖wO(s)H(s)‖∞ < 1 (4.11)

Note that the robust stability condition is stated as a constraint. The minimization
problem in (4.10) analogous to

min
K∈KPID

−γ (4.12)

subject to

‖wO(s)H(s)‖∞ < 1 (4.13)

‖γwP (s)S(s)‖∞ < 1 (4.14)

By introducing the minimization variable γ, the best nominal performance related to the
weighting wP will be achieved. The robust stability will never be better than necessary,
but the condition must be achieved if the problem is feasible. If γ < 1 the performance
condition related to the weighting wP can not be achieved. If γ = 1 the performance is
achieved and better performance is achieved if γ > 1.

To simplify the calculations, Hcl(s) is de�ned as

Hcl(s) =
[
WO(s)H(s)
γwP (s)S(s)

]
(4.15)

Then the minimization problem is stated as

min
K∈KPID

−γ (4.16)
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subject to

‖Hcl(s)‖∞ =
∥∥∥∥ wO(s)H(s)
γwP (s)S(s)

∥∥∥∥
∞
< 1 (4.17)

This is a more conservative minimization problem than (4.12), since

‖Hcl(s)‖∞ ≥ max {‖wO(s)H(s)‖∞ , ‖γwP (s)S(s)‖∞} (4.18)

If the plant can be represented as (4.7), then

σ̄

[
wO(s)H(s)
γwP (s)S(s)

]
≤ µ∆̂(N) ≤

√
2σ̄
[
wO(s)H(s)
γwP (s)S(s)

]
(4.19)

This relation is stated in [39] at page 327.
In [39] at page 319 the robust performance condition is expressed with the structure

singular value as

RP ⇔ µ∆̂(N) < 1 ∀ω, ∆̂ = diag{∆,∆P } and NS (4.20)

where ∆P is the perturbation in the feedback as shown in Figure 4.3.

Figure 4.3: A N∆̂ representation of the system for a robust performance withcondition.

By combining (4.19) and (4.20), robust performance is achieved with respect to the
performance weight γwP if

RP ⇔ ‖Hcl‖∞ ≤ 1√
2
and NS (4.21)

Note that robust performance with respect to wP is only achieved if γ ≥ 1. This is of
course a more conservative requirement than (4.20). Hence, if robust performance must
be achieved, (4.21) can be used as a condition in (4.16) instead of (4.17). In this thesis
only the nominal performance requirement in (4.16) is considered.
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4.1.2 Representing the optimization problem with linear matrix in-

equalities

Control tuning problems can be framed in terms of matrix inequality constraints as shown
in [4]. To solve the problem in (4.16), equation (4.17) is converted into a Linear Matrix
Inequality by the Bounded Real Lemma (BRL) de�ned in [2] and in [4] at page 26.

Lemma 1. Consider a continuous-time transfer function H(s) of (not necessarily min-

imal) realization H(s) = D + C(sI −A)−1B. The following statements are equivalent.

1.
∥∥D + C(sI −A)−1B

∥∥
∞ < γB and H(s) is stable Re {λi(A)} < 0

2. There exists a real symmetric positive de�nite solution X to the LMI ATX +XA XB CT

BT −γBI DT

C D −γBI

 < 0 (4.22)

where the matrix inequality represents a partial ordering and indicates negative de�nite-

ness (<), negative semide�niteness (≤), positive de�niteness (>) or positive semide�-

niteness (≥).

The minimization problem in (4.16) with matrix inequalities is then

min
x
−γ (4.23)

subject to

 AT
cl(x)X(x) +X(x)Acl(x) X(x)Bcl(x) CT

cl

BT
cl(x)X(x) −I DT

cl

Ccl Dcl −I

 < 0 (4.24)

X = XT (4.25)

X > 0 (4.26)

where
Hcl(s) = Dcl + Ccl (sI −Acl)

−1Bcl (4.27)

and the notation (·)(x) is used to point out that the matrix depends of the decision
variables. The PID control parameters and the elements of the symmetric positive de�nite
matrix X are the decision variables in x. The LMI constraints ensure that the system
is stable. The matrices Acl, Bcl, Ccl and Dcl has to be de�ned with the state space
realizations of G, WO, WP and K. The relations between the transfer functions and the
state-space realization for the given systems are
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G(s) = Dg + Cg (sI −Ag)
−1Bg (4.28)

WO(s) = Dwo + Cwo (sI −Awo)
−1Bwo (4.29)

WP (s) = Dwp + Cwp (sI −Awp)
−1Bwp (4.30)

K(s) = Dk + Ck (sI −Ak)
−1Bk (4.31)

where WO = wOI and WP = wP I. First a state-space representation of the P matrix in
Figure 4.2 is derived. If x(t) is the state space vector, the state-space of P (s) is

ẋ = Ax+B1w +B2 u (4.32)

z = C1 x+D11w +D12 u (4.33)

v = C2 x+D12w +D22 u (4.34)

where z = [z1 z2]T . Hence, it is desired to represent

z1(s) = γWP (s)w(s)− γWP (s)G(s)u(s) (4.35)

z2(s) = WO(s)G(s)u(s) (4.36)

v(s) = w(s)−G(s)u(s) (4.37)

as the Laplace transformation of (4.33) and (4.33)

z = (C1(sI −A)−1B1 +D11)w + (C1(sI −A)−1B2 +D12)u (4.38)

v = (C2(sI −A)−1B1 +D21)w + (C2(sI −A)−1B2 +D22)u (4.39)

The equations (4.28), (4.29) and (4.30) are used in (4.35), (4.36) and (4.37).

z1(s) = γ(Dwp + Cwp (sI −Awp)
−1Bwp)w(s)

−γ(Dwp + Cwp (sI −Awp)
−1Bwp)(Dg + Cg (sI −Ag)

−1Bg))u(s)
(4.40)

z2(s) = (Dwo + Cwo (sI −Awo)
−1Bwo)(Dg + Cg (sI −Ag)

−1Bg)u(s) (4.41)

v(s) = w(s)− (Dg + Cg (sI −Ag)
−1Bg)u(s) (4.42)

These system equations are rearranged so

C1 =
[
γDwpCg γCp 0
DwoCg 0 Cwo

]
C2 =

[
−Cg 0 0

]
(4.43)

(sI −A)−1 =

 (sI −Ag)−1 0 0
(sI −Awp)−1BwpCg(sI −Ag)−1 (sI −Awp)−1 0
(sI −Awo)−1BwoCg(sI −Ag)−1 0 (sI −Awo)−1


(4.44)
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B1 =

 Bg

−BwpDg

BwoDg

 B2 =

 0
Bwp

0

 (4.45)

D11 =
[
γDwp

0

]
D12 =

[
−DwpDg

DwoDg

]
(4.46)

D12 = I D22 = −Dg (4.47)

To obtain the A matrix form (4.44), a Gauss-Jordan operation is performed at (sI −Ag)−1 0 0
(sI −Awp)−1BwpCg(sI −Ag)−1 (sI −Awp)−1 0
(sI −Awo)−1BwoCg(sI −Ag)−1 0 (sI −Awo)−1

...

...

...

I 0 0
0 I 0
0 0 I


then

(sI −A) =

 (sI −Ag) 0 0
BwpCg (sI −Awp) 0
−BwoCg 0 (sI −Awo)

 (4.48)

Hence

A =

 Ag 0 0
−BwpCg Awp 0
BwoCg 0 Awo

 (4.49)

It is here assumed that G(s) are strictly proper, and Dg = 0. Then D22 = D12 = 0.
Then by using (2.43), [2] represents the state-space matrices in (4.27) as

Acl =
[
A+B2DkC2 B2Ck

BkC2 Ak

]
(4.50)

Bcl =
[
B1 +B2DkD21

−B2D21

]
(4.51)

Ccl =
[
C1 0

]
Dcl = D11 (4.52)

Then Acl, Bcl, Ccl, and Dcl can be represented with the system matrices of G, WO, WP

and K as

Acl(x) =


Ag −BgDk(x)Cg 0 0 BgCk(x)

−BwpCg Awp 0 0
BwoCg 0 Awo 0
−BkCg 0 0 Ak(x)

 (4.53)

Bcl(x) =


BgDk(x)
−Bwp

0
Bk(x)

 (4.54)
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Ccl =
[
γDwpCg γCp 0 0
DwoCg 0 Cwo 0

]
Dcl =

[
γDwp

0

]
(4.55)

In [2] the element c1 11 = γDwpDg instead of γDwpCg as shown in (4.43). The result
in [2] is also repeated when Ccl is written. When Dg = 0 for strictly proper systems,
ccl 11 = 0.

The controller K can be any controller, but is here restricted to be a PI or a PID.
For sate-space representation, the PID controller has to be proper, so (2.21) is used. If
ki is the PID controller in loop i, x is the state vector, e is the controller input and u is
the controller output, the state-space of the PID controller is

ẋ = Aki x+Bki e
u = Cki x+Dki e

(4.56)

The controller can be represented in the canonical form presented in [45] at page 93 as

Aki =
[

0 1
−α1 −α2

]
Bki =

[
0
1

]
(4.57)

Cki =
[
c1 c2

]
Dki = d (4.58)

If (2.21) is rewritten to

ki(s) =
kciτIiτDi s

2 + kciτIi s+ kci

s(τIiετDi s+ τIi)
(4.59)

it is seen that one of the two poles in the controller is restricted to be zero. This restrict
α1 ≡ 0. Then

Aki =
[

0 1
0 −ki,1

]
Bki =

[
0
1

]
(4.60)

Cki =
[
ki,2 ki,3

]
Dki = ki,4 (4.61)

For a multi-loop PID controller, this gives the following matrices

Ak =



[
0 1
0 −k1,1

]
0 · · · 0

0
[

0 1
0 −k1,2

]
0 0

... 0
. . . 0

0 · · · · · ·
[

0 1
0 −k1,N

]


(4.62)
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Bk =



[
0
1

]
0 · · · 0

0
[

0
1

]
0 0

... 0
. . . 0

0 · · · · · ·
[

0
1

]


(4.63)

Ck =


[
k2,1 k3,1

]
0 · · · 0

0
[
k2,2 k3,2

]
0 0

... 0
. . . 0

0 · · · · · ·
[
k2,N k3,N

]
 (4.64)

Dk =


k4,1 0 · · · 0
0 k4,2 0 0
... 0

. . . 0
0 · · · · · · k4,N

 (4.65)

where

k1,i =
1
ετD

(4.66)

k2,i =
Kc

τI ετD
(4.67)

k3,i =
Kc

ετD

(
1− τD

ετD

)
(4.68)

k4,i =
Kc τD
ετD

(4.69)

If Acl ∈ Rn×n and the control system has N loops, then the decision variables x =
x1...x4N+n(n+1)/2. The relationship between the decision variables x and the control
matrix variables are

k1,i = xi i = 1...N (4.70)

k2,i = xi+N i = 1...N (4.71)

k3,i = xi+2N i = 1...N (4.72)

k4,i = xi+3N i = 1...N (4.73)

(4.74)

Then the PID controller parameters can be deriven from (4.66)-(4.69). The last n(n+1)/2
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variables relates to the symmetric auxiliary matrix variable X as

X =



x4N+1 x4N+2 x4N+3 · · · x4N+n−1 x4N+n

x4N+2 x4N+n+1 x4N+n+2 · · · x4N+2n−3 x4N+2n−1

x4N+3 x4N+n+2 x4N+2n · · · x4N+3n−2 x4N+3n−3
...

...
...

. . .
...

...
x4N+n−1 x4N+2n−3 x4N+2n−2 · · · x4N+n(n+1)/2−2 x4N+n(n+1)/2−1

x4N+n x4N+2n−1 x4N+3n−3 · · · x4N+n(n+1)/2−1 x4N+n(n+1)/2


(4.75)

4.1.3 Successive Semide�nite Programing

The problem in (4.23) is non-convex, because x forms bilinear terms in (4.24), shown
in [23]. Hence conventional semide�nite programming approaches in e.g. [25] cannot be
used. A Successive Semide�nite Programing approach is presented in [2] to overcome
these problems.

If AT
cl(x)X(x) forms bilinear terms, and AT

cl(x) = AT
cl 0 and X(x) = X0 are feasible

solutions to (4.23), then AT
cl(x)X(x) is approximated as

AT
cl(x)X(x) = AT

cl 0X0 +AT
cl 0δX(x) + δAT

cl(x)X0 + δAT
cl(x)δX(x)

≈ AT
cl 0X0 +AT

cl 0δX(x) + δAT
cl(x)X0

(4.76)

where δAT
cl(x) = AT

cl(x)−AT
cl 0, δX(x) = X(x)−X0 and∥∥δAT

cl

∥∥ ≤ ε ‖δX‖ ≤ ε (4.77)

where ε is an arbitrary small positive number such that the approximated solution of
(4.76) holds. Then (4.23)

min
x
−γ (4.78)

subject to


AT

cl 0X0 +AT
cl 0δX + δAT

clX0+
X0Acl 0δXAcl 0 +X0δAcl

X0Bcl 0 +X0δBcl + δXBcl 0 CT
cl 0 + δCT

cl

Bcl 0X0 + δBclX0 +Bcl 0δX −I δDT
cl +DT

cl 0

δCcl + Ccl 0 δDcl +Dcl 0 −I

 < 0

(4.79)

δX = δXT (4.80)

X0 + δX > 0 (4.81)

where δAk, δBk, δDk and δX are functions of the decision variables x. The optimiza-
tion problem (4.78) is convex, and standard semide�nite programing techniques given in
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[25] can be used. It is shown in Appendix B how to represent (4.79) with the system
and control matrices. Note that (B.8) di�er from the result obtained in [2] due to the
di�erence in the element c1 11 in (4.43).

Then the Successive Semide�nite Programing procedure in [2] can be used to �nd a
local minimum to (4.23) as follows:

1. Choose initial values of Ak 0, Ck 0, and Dk 0. Fix Ak = Ak 0, Ck = Ck 0, and
Dk = Dk 0. Solve the resulting LMI problem (4.23) and use the solution (X̃, γ̃)
as initial value X0 = X̃ and γ0 = γ̃. Set the initial solution radius as ε0, the
maximum number of iterations as nmax, convergence tolerance as ζ, and preset
iteration counter k = 0.

2. Solve (4.78) with the initial values Ak 0, Ck 0, Dk 0, X0 and γ0. Assume at kth
iteration, the solutions δAk, δCk, δDk, δX and γk are obtained with their radii
restricted by

‖δAk‖ ≤ εk ‖δCk‖ ≤ εk ‖δDk‖ ≤ εk ‖δX‖ ≤ εk (4.82)

3. Compute Ãk = Ak 0 + δAk, C̃k = Ck 0 + δCk, D̃k = Dk 0 + δDk, X̃ = X0 + δX.

(a) If Ãk, C̃k, D̃k and X̃ are feasible solutions to (4.23)

i. If
∥∥γk − γk−1

∥∥ ≤ ζ, then acceptable solution is obtained. Proceed to 4.

ii. If
∥∥γk − γk−1

∥∥ > ζ, then Ãk, C̃k, D̃k and X̃ are used as the reference
values for the next approximated optimization problem. Let Ak 0 = Ãk,
Ck 0 = C̃k, Dk 0 = D̃k, X0 = X̃ , and εk+1 = αεk (where α is user-speci�ed
tuning parameter, typically α = 0.95), and go to step 2.

(b) If Ãk, C̃k, D̃k and X̃ are not feasible solutions to (4.23),

i. If k > n, then (4.23) is infeasible in the neighborhood of (Ak 0, Ck 0, Dk 0,
X0) and stop.

ii. If k ≤ n, then reject these solutions and choose εk+1 = βεk (where β is
another user-speci�ed tuning parameter, typically β = 1.05) and go to
step 2.

4. The state-space representation of the multi-loop PID controller is obtained as
K(s) = C̃k(sI − Ãk)−1B̃k + D̃k. Use (4.66)-(4.69) to obtain the controller pa-
rameters.

This tuning method works only for time continuous systems, and any time delays
have to be approximated by a Padé approximation shown in (2.30).

4.1.4 Discussion of the H∞ optimal tuning method

The optimization problem in (4.23) is not convex. Hence the purposed algorithm only
guarantees to �nd a local optimum. Further analysis in the literature must be done
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to extend the algorithm to guarantee a global optimum. A brute force solution is to
compare several local optimums when di�erent initial values is applied in Step 1.

The relations in (4.50), (4.51) and (4.52) are neither proved here nor in [2]. But the
reader is encouraged to prove these equations by using (2.43) and the matrix inversion
lemma shown in [24] page 364.

To verify the algebraic results, the distillation process in [2] was considered. The P
matrix was found in MATLAB using sysic. Then the function lft was performed at the
controller K and P . The transfer functions obtained where compared with the results
obtained using (4.50), (4.51) and (4.52) for the distillation process with a controller.
Some of the transfer functions calculated with sysic and lft had one extra order in the
numerator with a coe�cient of 10−11 or less. This di�erence is neglectable and may be
the result of some numerical operations in MATLAB. Hence, this indicates that (4.50),
(4.51) and (4.52) are correct.

When the plant P was obtained in MATLAB using sysic, the same result as the
calculations in this thesis was obtained. This indicates that the results in (4.43) is correct.
It is not known if c1 11 = γDwpDg is used in the simulation results presented in [2].

At algorithm step one in Section 4.1.3, the control matrices are �xed, so the con-
straints form no bilinear terms. Then (4.23) is convex, and starting values for X and γ
can be found.

4.2 H∞ optimal multi-loop tuning with failure tolerance

The tuning method presented in Section 4.1, may be used in the following way to guar-
antee integrity. Remember the mathematically description of integrity in Section 2.3,
where the controller is replaced by the matrix EK(s). Consider for simplicity a multi-
loop TITO system. Then the matrix E can take four forms.

1. E =
[

1 0
0 1

]
Both controllers are in function. (4.83)

2. E =
[

1 0
0 0

]
Only control loop 1 is in function. (4.84)

3. E =
[

0 0
0 1

]
Only control loop 2 is in function. (4.85)

4. E =
[

0 0
0 0

]
None of the controllers are in function. (4.86)

If the system possess the integrity property, the system must be stable for all the above
cases. Hence, case four requires that the system must be open stable, and is completely
independent of the controller. Consequently, only the three �rst cases are considered in
the control design, shown in Figure 4.4:

The weights WO1, WO2, WP1 and WP2 are user speci�ed weights when one of the
loops are turned o� or fail. Due to system interactions, it is reason to believe that the
performance requirement must be poorer when one of the loops fail. Then three H∞
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Figure 4.4: The combinations of controllers which are in or out of function.

optimization problems can be de�ned for each scenario. First where both the controllers
are running normally

min
K∈KPID

−γ (4.87)

subject to

‖Hcl(s)‖∞ =
∥∥∥∥ wO(s)H(s)
γwP (s)S(s)

∥∥∥∥
∞
< 1 (4.88)

then when loop two is turned o�

min
K∈KPID

−γ (4.89)

subject to

‖Hcl 1(s)‖∞ =
∥∥∥∥ wO1(s)H1(s)
γwP1(s)S1(s)

∥∥∥∥
∞
< 1 (4.90)

and �nally when loop one is turned o�.



60 CHAPTER 4. H∞ OPTIMAL MULTI-LOOP TUNING

min
K∈KPID

−γ (4.91)

subject to

‖Hcl 2(s)‖∞ =
∥∥∥∥ wO2(s)H2(s)
γwP2(s)S2(s)

∥∥∥∥
∞
< 1 (4.92)

Suppose a solution to (4.87), (4.89) and (4.91) exists, then the nominal performance
and robust stability for the chosen weights are satis�ed when loop 2 and loop 1 fails
respectively. If some control parameters exists such that all the conditions in (4.88),
(4.90) and (4.92) are ful�lled at the same time, then nominal performance and robust
stability requirement are obtained for all the three scenarios. Hence, the system has
integrity, if G(s) is stable.

A brute force solution to �nd these parameters is to stack requirement (4.87) (4.89)
and (4.91) into a matrix.

H̃cl =

 Hcl

Hcl 1

Hcl 2

 =



wO(s)H(s)
wO1(s)H1(s)
wO2(s)H2(s)
γwP (s)S(s)
γwP1(s)S1(s)
γwP2(s)S2(s)

 (4.93)

The optimization problem is then

min
Ktot∈Ktot PID

−γ (4.94)

subject to

∥∥∥H̃cl(s)
∥∥∥
∞
< 1 (4.95)

the optimization in (4.94) gives more conservative settings than (4.87), (4.89) and (4.91)
since ∥∥∥H̃cl(s)

∥∥∥
∞
≥ max {‖Hcl(s)‖∞ , ‖Hcl 1(s)‖∞ , ‖Hcl 2(s)‖∞} (4.96)

The three scenarios are lumped into a generalized P (s) matrix shown in Figure 4.5.
As seen from Figure 4.5 the system matrices can be de�ned as
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Figure 4.5: A PK representation of the system when both the controllers are turned on, and
when each controller in the two loops are turned o� one at the time.

G̃ =

 G 0 0
0 G 0
0 0 G

 (4.97)

W̃O =

 WO 0 0
0 WO1 0
0 0 WO2

 (4.98)

W̃P =

 WP 0 0
0 WP1 0
0 0 WP2

 (4.99)

Ktot =



[
k1 0
0 k2

]
0 0

0
[
k1 0
0 0

]
0

0 0
[

0 0
0 k2

]

 (4.100)
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Since G̃, K̃tot, W̃O and W̃P are block diagonal, the weighted sensitivity function S̃ and
the weighted complementary sensitivity function H̃ for the lumped system is

W̃P S̃ = W̃P (1 + G̃Ktot)−1 =

 WPS 0 0
0 WP 1S1 0
0 0 WP 2S2

 (4.101)

W̃OH̃ = W̃OG̃Ktot(1 + G̃Ktot)−1 =

 WOH 0 0
0 WO 1H1 0
0 0 WO 2H2

 (4.102)

Since (4.101) and (4.102) also are block diagonal, it can be shown by comparing the
in�nity norm of a vector and a matrix de�ned in (A.3) and (A.4) that

H̃cl =
∥∥∥∥ W̃OH̃

γW̃P S̃

∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥∥∥

wO(s)H(s)
wO1(s)H1(s)
wO2(s)H2(s)
γwP (s)S(s)
γwP1(s)S1(s)
γwP2(s)S2(s)

∥∥∥∥∥∥∥∥∥∥∥∥
∞

(4.103)

Hence, the BRL can be used at H̃cl in the same way as described in Section 4.1.2 to
represent the constraints in (4.95) as a LMI. Since the system matrices Since G̃, Ktot,
W̃O and W̃P are block diagonal, it is easy to obtain their state-space representation.

Ag̃ =

 Ag 0 0
0 Ag 0
0 0 Ag

 Cg̃ =

 Cg 0 0
0 Cg 0
0 0 Cg

 (4.104)

Bg̃ =

 Bg

Bg

Bg

 Dg̃ =

 Dg

Dg

Dg

 (4.105)

Aw̃O =

 AwO 0 0
0 AwO 1 0
0 0 AwO 2

 Cw̃O =

 CwO 0 0
0 CwO 1 0
0 0 CwO 2

 (4.106)

Bw̃O =

 BwO

BwO 1

BwO 2

 Dw̃O =

 DwO

DwO 1

DwO 2

 (4.107)

Aw̃P =

 AwP 0 0
0 AwP 1 0
0 0 AwP 2

 Cw̃P =

 CwP 0 0
0 CwP 1 0
0 0 CwP 2

 (4.108)

Bw̃P =

 BwP

BwP 1

BwP 2

 Dw̃P =

 DwP

DwP 1

DwP 2

 (4.109)
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The representation of the controller Ktot is also quite straight forward.

Ak tot =



[
0 1
0 −k1,1

]
0 0 0 0 0

0
[

0 1
0 −k1,2

]
0 0 0 0

0 0
[

0 1
0 −k1,1

]
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
[

0 1
0 −k1,2

]


(4.110)

Bk tot =



[
0
1

]
0 0 0 0 0

0
[

0
1

]
0 0 0 0

0 0
[

0
1

]
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
[

0
1

]


(4.111)

Ck tot =



[
k2,1 k3,1

]
0 0 0 0 0

0
[
k2,2 k3,2

]
0 0 0 0

0 0
[
k2,1 k3,1

]
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

[
k2,2 k3,2

]


(4.112)

Dk tot =



k4,1 0 0 0 0 0
0 k4,2 0 0 0 0
0 0 k4,1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 k4,2

 (4.113)

If H̃cl = C̃cl(Is− Ãcl)−1Bcl +Dcl, then the optimization can be stated as the same way
as (4.23)

min
x
−γ (4.114)
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subject to

 ÃT
cl(x)X(x) +X(x)Ãcl(x) X(x)B̃cl(x) C̃T

cl

B̃T
cl(x)X(x) −I D̃T

cl

C̃cl D̃cl −I

 < 0 (4.115)

X = XT (4.116)

X > 0 (4.117)

where

Ãcl(x) =


Ag̃ −Bg̃Dk tot(x)Cg̃ 0 0 Bg̃Ck tot(x)

−Bw̃pCg̃ Aw̃p 0 0
Bw̃oCg̃ 0 Aw̃o 0
−Bk totCg̃ 0 0 Ak tot(x)

 (4.118)

B̃cl(x) =


Bg̃Dk tot(x)
−Bw̃p

0
Bk tot(x)

 (4.119)

C̃cl =
[
γDw̃pCg̃ γCp 0 0
Dw̃oCg̃ 0 Cw̃o 0

]
D̃cl =

[
γDw̃p

0

]
(4.120)

Then the Successive Semide�nite Programming procedure presented in Section 4.1.3 can
be used to derive a local solution to (4.114).

The same technique can be used to systems with more loops. Then all the combi-
nations of the di�erent controllers must be placed at the block diagonal of Ktot. For N
loops, the number of combinations C becomes

C = 1 +
N !

(N − 1)!1!
+

N !
(N − 2)!2!

+
N !

(N − 3)!3!
+ ...+

N !
2!(N − 2)!

+
N !

1!(N − 1)!
(4.121)

This can be written as

C =

 1 + 2
(

N !
(N−1)!1! + ...+ N !

(N−k)!k!

)
k = N−1

2 , for odd N

1 + 2
(

N !
(N−1)!1! + ...+ N !

(N−k)!k!

)
+ N !

(N−N
2

)!N
2

!
k = N−2

2 , for even N
(4.122)

This in�icts the size of X but not the number of PID parameters. Nevertheless, the
number decision variables will increase rapidly with C.

If a solution to (4.114) exists and G(s) is stable, then this solution guarantees integrity
but not DIC and RDD.

When a solution to (4.23) exists, and no solution to (4.114) can be found, it indicates
that the stability weight is too tight, or that integrity with integral control is not possible.
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If the latter is the case, then some loops must be intact for the system to be stable. To
�nd these loops, the purposed procedure in this section may be used. Consider again a
TITO system. A solution to (4.23) is found, but no solution to (4.114). To determine if
one of the loops may be brought out of service, then the following optimization problems
may be compared. First, derive the optimization problem where both the controllers and
loop 1 are in service. Then, derive the optimization problem where both the controllers
and loop 2 are in service. If a solution to the �rst problem is found, and no solution to the
second one is found, then loop 1 is critical for the system functionality. The performance
weights for such tests should be as small as possible. Such comparison can atomized with
a computer program. The only inputs to the program is the plant model, the di�erent
weights and the SSP parameters presented in Section 4.1.3.

The purposed tuning method should be compared to the Independent method and the
regular H∞ method in [2]. The strengths of the purposed method are best exempli�ed if

1. the purposed method gives better performance than by the Independent design,
and integrity is simultaneously satis�ed.

2. the purposed tuning method gives integrity to a plant which is impossible to handle
with the Independent design.

3. integrity or failure tolerance is not achieved with the regular multi-loopH∞ method
in Section 4.1, while integrity or failure tolerance is obtained with the purposed
method.

To compare the methods, the optimization algorithm in Section 4.1.3 must be imple-
mented in a simulation program, such as MATLAB.



Chapter 5

Implementation of the H∞
optimization

5.1 SSP algorithm using MATLAB functions

The multi-loop H∞ method with integrity in Section 4.2 is based at the multi-loop
method presented in Section 4.1. Hence, the SSP algorithm in Section 4.1.3 must �rst
be implemented at a computer to compare the method in Section 4.2 with other meth-
ods. For this use, MATLAB R2007b is used. The Robust Toolbox in this MATLAB
version o�ers functions that solves convex LMI problems. Some modi�cations of the SSP
algorithm has been done so the prede�ned LMI-functions can be used.

5.1.1 How to �nd the optimal value of γ

In [2] it is not explained in detail how to �nd the optimum value of γ. The function
mincx solves the problem

min cT x (5.1)

subject to the LMI's

NTL(x)N ≤MTR(x)M (5.2)

where x a the vector of scalar decision variables. To use this function to solve (4.23), γ
is included in the vector of the decision variables.

x =
[
γ x1 x2 ... x4N+n(n+1)/2

]
(5.3)

where x1...x4N+n(n+1)/2 is de�ned in (4.70) to (4.75). If the matrix N = I, M(x) = 0,

c =
[
−1 0 0 ... 0

]T and

L(x) =

 AT
cl(x)X(x) +X(x)Acl(x) X(x)Bcl(x) CT

cl

BT
cl(x)X(x) −I DT

cl

Ccl Dcl −I


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then the optimization problem (4.23) can be stated as

min
x
cT x (5.4)

subject to

 AT
cl(x)X(x) +X(x)Acl(x) X(x)Bcl(x) CT

cl(x)
BT

cl(x)X(x) −I DT
cl(x)

Ccl(x) Dcl(x) −I

 < 0 (5.5)

X = XT (5.6)

X > 0 (5.7)

Note that this rede�nition forms no new bilinear terms. Hence, (5.4) can be used in Step
1 in the SSP procedure.

Alternately, an iterative line search algorithm, in e.g. [19], could be made using
feasp, which determines if the LMI problem is feasible and returns a value of the decision
variables in the feasible area.

5.1.2 Rede�nition of the magnitude of the step size ε

The solution to (5.9) is bounded by (4.82). The solution to mincx can only be bounded
by the euclidean norm of the vector x. But it is not desired to have a bound at the
optimal value of γ. To bound the magnitude of δAk, δBk, δDk and δX each decision
variable is bounded by

xi ≤ εk

xi ≥ −εk i = 1, 2..., 4N + n(n+ 1)/2 (5.8)

where N is the number of loops, and n is the row and column size of Acl. The bound εk

in (5.8) is not the same bound as in (4.82). The approximated semide�nite programming
problem (4.78), implemented in algorithm Step 2 is

min
x
cT x (5.9)

subject to


AT

cl 0X0 +AT
cl 0δX + δAT

clX0+
X0Acl 0δXAcl 0 +X0δAcl

X0Bcl 0 +X0δBcl + δXBcl 0 CT
cl 0 + δCT

cl

Bcl 0X0 + δBclX0 +Bcl 0δX −I δDT
cl +DT

cl 0

δCcl + Ccl 0 δDcl +Dcl 0 −I

 < 0

(5.10)
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δX = δXT (5.11)

X0 + δX > 0 (5.12)

xi ≤ εk

xi ≥ −εk i = 1, 2..., 4N + n(n+ 1)/2 (5.13)

where δCcl and δDcl is functions of γ.
The function feasp returns a value tmin ≤ 0 if the problem is feasible, tmin > 0 if the

problem is infeasible. If the problem is strictly feasible, then tmin < 0. If the problem is
feasible but not strictly feasible, tmin is positive and very small. Some post-analysis may
then be required to decide whether the solution is close enough to feasible. For simplicity,
the solution is treated as infeasible if it is not strictly feasible in algorithm Step 3. This
may lead to a bit more conservative parameters, or that the optimization problem (5.4)
is infeasible even if a solution exists.

5.1.3 Detailed explanation of the SSP algorithm with MATLAB func-

tions

The implemented SSP algorithm is as follows:

1. Choose initial values of Ak 0, Ck 0, and Dk 0. Fix Ak = Ak 0, Ck = Ck 0, and
Dk = Dk 0. Solve the resulting LMI problem (5.4) by using mincx, and use the
solution (X̃, γ̃) as initial value X0 = X̃ and γ0 = γ̃. Set the initial solution radius
as ε0, the maximum number of iterations as nmax, convergence tolerance as ζ, the
iteration counter k = 0, and the update coe�cients to the solution radius α = 0.95
and β = 1.05.

2. Calculate the LMI (5.10), using the matrices in Appendix B. Solve (5.9) by using
mincx with the initial values Ak 0, Ck 0, Dk 0, X0 and γ0.

(a) if the solutions δAk, δCk, δDk, δX and γk are obtained at k'th iteration,
proceed to Step 3.

(b) if (5.9) is infeasible. Exit the program.

3. Compute Ãk = Ak 0 + δAk, C̃k = Ck 0 + δCk, D̃k = Dk 0 + δDk, X̃ = X0 + δX.
Insert the updated values into (5.5) and check feasibility, using feasp.1

(a) If Ãk, C̃k, D̃k and X̃ are strictly feasible solutions

i. If
∥∥γk − γk−1

∥∥ ≤ ζ, then acceptable solution is obtained. Proceed to 4.

ii. If
∥∥γk − γk−1

∥∥ > ζ, then Ãk, C̃k, D̃k and X̃ are used as the reference
values for the next approximated optimization problem. Let Ak 0 = Ãk,
Ck 0 = C̃k, Dk 0 = D̃k, X0 = X̃ , εk+1 = αεk and k = k + 1.

1The only variable in this problem is γ. feasp returns a value of γ that gives feasibility, but this
value is not used further since it is not an optimal value.
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A. if k > nmax, the convergence tolerance ζ or the maximum iterations
nmax must be increased.

B. if k ≤ nmax, go to step 2.

(b) If Ãk, C̃k, D̃k and X̃ are not feasible solutions to (5.4),

i. If k > n, then (5.4) is infeasible in the neighborhood of (Ak 0, Ck 0, Dk 0,
X0). Exit the program and choose di�erent initial parameters.

ii. If k ≤ n, then reject these solutions and choose εk+1 = βεk, update
k = k + 1 and go to step 2.

4. The state-space representation of the multi-loop PID controller is obtained as
K(s) = C̃k(sI − Ãk)−1B̃k + D̃k. Use (4.66)-(4.69) to obtain the controller pa-
rameters.

The implemented SSP algorithm is found in the MATLAB script SSPalgoritm found
at the attached software.

5.2 SSP algorithm with a case study

In [2], it is presented a case study to illustrate the multi-loop H∞ optimization tun-
ing method. It is tried to recreate the results obtained. The system and its output
uncertainty and performance weights are here presented.

Figure 5.1: Distillation column used as a case study for the multi-loop H∞ tuning.
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Consider the distillation column shown in Figure 5.1. Tray temperatures are regulated
as inferential variables for composition, by manipulating the re�ux and boilup rates. The
transfer function is given as follows in [2]

Gc(s) =

[
−33.89

(98.02 s+1)(0.42 s+1)
32.63

(99.6 s+1)(0.35 s+1)
−18.85

(73.43 s+1)(0.30 s+1)
34.84

(110.5 s+1)(0.03 s+1)

]
(5.14)

It is assumed that a suitable con�guration has been found e.g. by the pairing rules
presented in Section 3.2.

The output uncertainty wO and performance weight wP is according to [2]

wO =
500 s+ 1000
3 s+ 5000

(5.15)

wP =
s+ 1000

1000 s+ 1
(5.16)

The SSP algorithm in Section 5.1 is tested at the system Gc. Since the case study
used in [2], the same PID parameters should be obtained. These settings are presented
in Table 5.1.

Table 5.1: Multi-loop PID parameters obtained in [2]

kc τI τD ετD
loop 1 −11.25 46571.70 8.2 · 10−10 1.00 · 10e− 5
loop 2 15.49 3.87 2.27 · 10−7 1.22·−5

The initial values to the SSP algorithm in Table 5.2 where applied.

Table 5.2: Initial parameters to the SSP algorithm

ε nmax ζ α β

1 · 10−3 100 1 · 10−4 0.95 1.05

Appropriate initial values for the control parameters must satisfy the constraint
‖wO(s)H(s)‖∞ < 1 in (4.11). To �nd such settings the individual diagonal elements
where tuned according to the SIMC rule in Section 3.1.3. This gave the parameters in
Table 5.3. These settings gave overall nominal stability and the σ̄(WOH(jω)) frequency
plot are shown in Figure 5.2. From (2.28) it is seen that the peak value of σ̄(WOH(jω))
corresponds to its in�nity norm. Hence, the SIMC settings satis�es (4.11) and should be
a feasible solution to (5.4).

When these values where applied to the SSP algorithm in Section 5.1.3, the updated
values of Ak, Ck, Dk and X in Step 3 never became feasible even if ε where increased
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Table 5.3: Multi-loop PID parameters obtained with SIMC rules at the diagonal elements gc ii

kc τI τD ετD
loop 1 −0.5785 20.0 0.4200 0.042
loop 2 0.6343 20.0 0.030 0.003

Figure 5.2: The maximum singular value of WOH(jω) over a frequency range when SIMC
tuning rules where applied at the gc ii elements.

nmax = 100 times. The feasibility where tested in the following way using the function
brlfeas:

1. Initialize LMI variable γ and construct the LMI using the uprated values for Ak,
Ck, Dk and X.

2. Use feasp at the resulting LMI, and return the value tmin and xfeas.

It could indicate that ε initially were set to a too large value, since the ε is increased
every time (5.4) is not feasible. First ε where set to 0.1, then 0.01 and �nally 0.001.
None of the di�erent initial values of ε gave feasible solutions to (5.4). If ε reached a too
large value, then (5.9) where found infeasible. The value of ε can not be too large, due
the approximated solution will be too far away from the accurate solution.
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The value of tmin became bigger after every step. This could indicate that the problem
went further away from a feasible solution, since a value of tmin less than zero mean that
the problem is feasible. The reason for this behavior is not known. Closer analysis of the
implemented algorithm must be done.

A di�erent initial starting point where tried to see if the SIMC initial values where too
far away from the settings in Table 5.1. Just a slight adjustment of the values presented
in Table 5.1 where applied. The values gave nominal stability, and are shown in Table
5.4. The σ̄(WOH(jω)) frequency plot for these settings are shown in Figure 5.3.

Table 5.4: Multi-loop PID parameters close to the ones obtained in [2]

kc τI τD ετD
loop 1 −12 4600 9 · 10−10 2.00 · 10e− 5
loop 2 14 4 3 · 10−7 2·−5

Figure 5.3: The maximum singular value of WOH(jω) over a frequency range.

The peak value of σ̄(WOH(jω)) is below one. Hence, constraint (4.11) is satis�ed,
and the problem in (5.4) should be feasible with these values. When ε = 0.001 where
applied, the approximated problem in (5.9) became infeasible after six steps. Also in
this case the value of tmax were increased in each step when the feasibility of (5.4) were
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checked in Step 3.
The state-space representation of Hcl could of course be wrong. But due to the com-

parison performed as mentioned in Section 4.1.4 the calculation of the system matrices
should be correct, and the error must be in the implementation of the SSP algorithm.
This comparison is done in the MATLAB script testSystemMatrix in the software at-
tached.

A better way of implementing the magnitude bound of the step values δAk, δCk, δDk

and δX can be investigated. The implementation presented here may be too simple.
As outlined in Section 4.1 the result presented in [2] has a di�erent value of c1 11

in (4.43). This di�erence could have been applied in the simulations in [2]. To see if
the parameters in Table 5.1 is obtained if c1 11 is changed to the value in [2] can be
investigated. If so occurs, the SSP algorithm may be incorrect. This is a strong claim.
Most likely an implementation error has been done.



Chapter 6

Further work

As mentioned, the di�erent multi-loop methods presented in Section 3.2 have di�erent
strengths and weaknesses. To reveal these strengths and weaknesses, they should all be
tested to a set of di�cult case studies with uncertainty and a high level of interactions. It
would then be clearer what improvements that must be done to achieve all the properties
of the PID settings presented in Section 1.3.

To evaluate the tuning procedure in Section 4.2 and make it user-friendly, the follow-
ing tasks should be addressed.

Debugging the implementation of the SSP algorithm Concerning the multi-loop
H∞ tuning method presented in this thesis, the implementation of the SSP algo-
rithm must be evaluated. The reason why the variable tmin were increased for each
step when feasibility of (5.4) were tested, must be found. Whether the extension
(5.13) of the LMI constraints is a correct way to bound the magnitude of δAk, δCk,
δDk and δX must also be investigated.

Evaluate the purposed multi-loop H∞ procedure The multi-loop H∞ procedure
in [2] should be tested to a system that introduce instability if one or several loops
fail. Then the proposed H∞ algorithm with failure tolerance in Section 4.2 should
be applied to the same system to see if the system remains stable if same loops
fail. The independent design gives integrity, but results in a conservative design.
If the plant is too interactive, the independent design is not suited. Hence, the
purposed method should also be compared to the independent design to see if
better performance is achieved, or applied to plants where the independent design
cannot be used.

Extend the multi-loop H∞ method to handle other uncertainty descriptions
The derivation of the method limited the system to be described with an output
uncertainty with complex perturbations. To �nd other optimization problems so
input uncertainty and structured perturbations are handled, may be desirable.

Design a user interface An interface should be made, so the procedure in Section 4.2
is easy to use. The user must choose the SSP parameters such as the convergence
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tolerance ζ, maximum iterations nmax, the initial solution radius ε and the update
values α and β. The nominal plant with uncertainty and performance weights
should be user de�ned. Simulation results should be presented in a well arranged
way. A list of which loops that may be brought out of service without introducing
instability is a property that this interface should possess.



Chapter 7

Conclusions

7.1 Literature survey

Some main points of Section 3.3 are here repeated.

Independent design A mathematical model is needed, but not an accurate one. The
system must be open stable and the loops must be somewhat decoupled to use
this method. Integrity is obtained. The design method does not consider the
information in the other loops. Hence it may lead to a conservative design.

Detuning This method is simple to use. The system must be open stable. The controller
settings obtained are conservative and do not guarantee integrity. The robust sta-
bility and performance is not quanti�ed since weighting functions are not included
in the design.

Sequential closing To use this method the system must be open stable. The method
is suited if response time di�erences in the closed loops are acceptable. Robust-
ness and performance requirements of the overall system can be achieved. Failure
tolerance is not guaranteed if the inner loops fail.

Iterative or trial and error The system must be open stable. Integrity is not guar-
anteed.

Optimization The method can be used to �nd stabilizing settings for an open unstable
plant. A mathematical model is required. This method is time consuming, and
the settings are recommended to be tested at a plant-simulator before applied at
the physical plant. This method handles interactions superiorly, and o�er robust
controller settings. Failure tolerance is not guaranteed.

Relay feedback A plant model is not needed, but can be obtained form the relay
feedback tests. The system must be open stable. Integrity is not guaranteed.
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7.2 Multi-loop H∞ optimal method

Based at the literature survey in Chapter 3, it was decided to work further with the
multi-loop H∞ optimal procedure in [2]. This tuning procedure gives superior interaction
handling and ensures robust stability and nominal performance property as well. It can
also be used to stabilize an open unstable plant. With the constraint Hcl <

√
2, robust

performance is also ensured. The multi-loop H∞ optimal method is outlined for a plant
with an output uncertainty model restricted to unstructured perturbations. Since the
optimization uses the interaction to achieve optimal performance, the loops are dependent
of each other. Hence integrity is most likely not obtained using this method.

In [2] the matrix C1 were found to be

C1 =
[
γDwpDg γCp 0
DwoCg 0 Cwo

]
(7.1)

This result has been repeated several times in the paper. The calculations in this thesis
showed that

C1 =
[
γDwpCg γCp 0
DwoCg 0 Cwo

]
(7.2)

The results in this thesis have been backed up by comparing results obtained by MATLAB
functions.

The constraints in the H∞ optimal problem is represented with some Linear Matrix
Inequaleties. The resulting non-convex optimization problem is solved by using Succes-
sive Semide�nite Programming, which iterates to a local optimum. Hence several initial
values must be considered to �nd the possible global optimum.

7.3 Multi-loop H∞ optimal method with failure tolerance

It is shown how to use the multi-loop H∞ optimal method so integrity is obtained if the
plant G(s) is open stable. If there exists a solution to the optimization problem, all the
desired properties of a PI/PID tuning approach, presented in Section 1.3, are achieved.
This method could be used to derive settings for unstable plants, and reveal which loops
that must be intact for the system to be overall stable.

Due to the complexity of the algorithm, this tuning approach is only suited for o�-line
tuning, and if a linear plant model is available. The obtained settings should be tested
to an accurate simulator of the plant before applied at the real plant.

7.4 Implementation

The SSP algorithm has been tried implemented in MATLAB. To use existing LMI func-
tions in MATLAB, some additional constraints have been applied to bound the solution
radii when the optimization problem in (5.4) is solved.
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It seems that the implemented algorithm iterates away from the feasible region, when
the optimal step results in an infeasible solution. This is most likely attributed to an
error in the implementation. This error has not been found.
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Appendix A

Some de�nitions

Positive de�nite and positive semide�nite matreces

The de�nition of a positive de�nite and positive semide�nite matrix is de�ned in Theorem
3.7 in [5] at page 74

Theorem 9. A symmetric n× n matrix M is positive de�nite (positive semide�nite) if

and only if any one of the following conditions holds

1. Every eigenvalue of M is positive (zero or positive)

2. All of the leading principal minors of M are positive (all of the leading principal

minors of M are zero or positive)

3. There exists an n×n nonsingular matrix N (n×n singular matrix N or an m×n
matrix N with m < n) such that M = NTN

The norm of a vector and a matrix

The induced p−norm for a vector x and matrix A is de�ned in [14] at page 647 and648
respectively.

‖x‖p = (|x1|p + ...+ |xn|p)1/p (A.1)

‖A‖p = sup
x 6=0

‖Ax‖p

‖x‖p

= max
‖x‖p=1

‖Ax‖p (A.2)

when p = ∞
‖x‖∞ = max

i
|xi| (A.3)

‖A‖∞ = max
i

n∑
j=1

|aij | (A.4)
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Appendix B

Approximated Linear Matrix

Inequalities

To show how the approximated LMI in (4.79) and (5.10) relates to the state-space rep-
resentation of the system and control matrices, the symmetric positive de�nite matrix
δX +X0 is divided into 16 submatrices as

δX +X0 =


δX11 +X110 δX12 +X120 δX13 +X130 δX14 +X140

δXT
12 +XT

120 δX22 +X220 δX23 +X230 δX24 +X240

δXT
13 +XT

130 δXT
23 +XT

230 δXT
33 +X330 δX34 +X340

δXT
14 +XT

140 δXT
24 +XT

240 δXT
34 +XT

340 δX44 +X440

 (B.1)

Equation (4.79) and (5.10) are also symmetric, and is represented as

A11 A12 A13 A14 A15 A16 A17

AT
12 A22 A23 A24 A25 A26 A27

AT
13 AT

23 A33 A34 A35 A36 A37

AT
14 AT

24 AT
34 A44 A45 A46 A47

AT
15 AT

25 AT
35 AT

45 A55 A56 A57

AT
16 AT

26 AT
36 AT

46 AT
56 A66 A67

AT
17 AT

27 AT
37 AT

47 AT
57 AT

67 A77


< 0 (B.2)

Note that the elements Aii is symmetric matrices. Then

A11 = (AT
g δX11 + δX11Ag) + (AT

g X110 +X110Ag)− (CT
g D

T
k0B

T
g δX11 + δX11BgDk0Cg)

−(CT
g δD

T
k B

T
g X110 +X110BgδDkCg)− (CT

g D
T
k0B

T
g X110 +X110BgDk0Cg)

−(CT
g B

T
wpX

T
120 +X120BwpCg)− (CT

g B
T
wpδX

T
12 + δX12BwpCg)

+(CT
g B

T
woX

T
130 +X130BwoCg) + (CT

g B
T
woδX

T
13 + δX13BwoCg)

−(CT
g B

T
k X

T
140 +X140BkCg)− (CT

g B
T
k δX

T
14 + δX14BkCg)

(B.3)
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A12 = (AT
g δX12 +AT

g X120)− (CT
g D

T
k0B

T
g δX12 + CT

g δD
T
k B

T
g X120 + CT

g D
T
k0B

T
g X120)

−(CT
g B

T
wpX

T
220 + CT

g B
T
wpδX22) + (CT

g B
T
woX

T
230 + CT

g B
T
woδX

T
23)

−(CT
g B

T
k X

T
240 + CT

g B
T
k δX

T
24) + (δX12Awp +X120Awp)

(B.4)

A13 = (AT
g δX13 +AT

g X130)− (CT
g D

T
k0B

T
g δX13 + CT

g δD
T
k B

T
g X130 + CT

g D
T
k0B

T
g X130)

−(CT
g B

T
wpX

T
230 + CT

g B
T
wpδX23) + (CT

g B
T
woX

T
330 + CT

g B
T
woδX

T
33)

−(CT
g B

T
k X

T
340 + CT

g B
T
k δX

T
34) + (δX13Awo +X130Awo)

(B.5)

A14 = (AT
g δX14 +AT

g X140)− (CT
g D

T
k0B

T
g δX14 + CT

g δD
T
k B

T
g X140 + CT

g D
T
k0B

T
g X140)

−(CT
g B

T
wpX

T
240 + CT

g B
T
wpδX24) + (CT

g B
T
woX

T
340 + CT

g B
T
woδX

T
34)

−(CT
g B

T
k X

T
440 + CT

g B
T
k δX

T
44) + (X110BgCk0 + δX110BgCk0 +X110BgδCk)

(δX14Ako +X140Ako +X130δAk)
(B.6)

A15 = (X110BgDk0+δX110BgDk0+X110BgδDk)+X120Bwp+δX12Bwp+X140Bk+δX14Bk

(B.7)

A16 = −CT
g D

T
wpγ (B.8)

A17 = CT
g D

T
wo (B.9)

A22 = AT
wpX220 +AT

wpδX22 +X220Awp + δX22Awp (B.10)

A23 = AT
wpX230 +AT

wpδX23 +X230Awo + δX23Awo (B.11)

A24 = AT
wpX240 +AT

wpδX24 +X240δAk + δX24Ak +X240Ak0

+X120BgδCk + δX12BgCk +X120BgCk0
(B.12)

A25 = XT
120BgδDk + δX12BgDk +X120BgDk0 +X220Bwp + δX22Bwp +X240Bk + δX24Bk

(B.13)

A26 = CT
p γ (B.14)

A27 = 0 (B.15)
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A33 = AT
woX330 +AT

woδX33 +X330Awo + δX33Awo (B.16)

A34 = AT
woX340 +AT

woδX34 +X340δAk + δX34Ak +X340Ak0 +X130BgδCk

+δX13BgCk +X130BgCk0
(B.17)

A35 = XT
130BgδDk + δX13BgDk +X130BgDk0 +X230Bwp + δX23Bwp +X340Bk + δX34Bk

(B.18)

A36 = 0 (B.19)

A37 = CT
wo (B.20)

A44 = CT
k0B

T
g X140 + δCT

k B
T
g X140 + CT

k0B
T
g δX14 +AT

k0X440 + δAT
kX440 +AT

k0δX44

+XT
140BgCk0 + δXT

14BgCk0 +XT
140BgδCk +X440Ak0 + δX44Ak0 +X440δAk

(B.21)

A45 = XT
140BgDk0 +δXT

14BgDk0 +XT
140BgδDk +XT

240Bwp +δXT
24Bwp +XT

440Bk +δXT
44Bk

(B.22)

A46 = 0 (B.23)

A47 = 0 (B.24)

A55 = −I dim(row number of XBcl, column number of BT
clX) (B.25)

A56 = DT
wpγ (B.26)

A57 = 0 (B.27)

A66 = −I dim(row number of Dwp, column number of DT
wp) (B.28)

A67 = 0 (B.29)

A77 = −I dim(row number of Cwo, column number of CT
g D

T
wo) (B.30)

All the matrices δ(·) are functions of x.



Appendix C

MATLAB code

The implementation of the Successive Semide�nite Programming procedure to solve the
multi-loop H∞ optimal problem can be found in a CD attached to the thesis. It is
recommended to read the text in readme.txt before examining the code.
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