Computing Metrics on Riemannian Shape Manifolds: Geometric shape analysis made practical
Master thesis
Permanent lenke
http://hdl.handle.net/11250/258493Utgivelsesdato
2009Metadata
Vis full innførselSamlinger
Sammendrag
Shape analysis and recognition is a field ripe with creative solutions and innovative algorithms. We give a quick introduction to several different approaches, before basing our work on a representation introduced by Klassen et. al., considering shapes as equivalence classes of closed curves in the plane under reparametrization, and invariant under translation, rotation and scaling. We extend this to a definition for nonclosed curves, and prove a number of results, mostly concerning under which conditions on these curves the set of shapes become manifolds. We then motivate the study of geodesics on these manifolds as a means to compute a shape metric, and present two methods for computing such geodesics: the shooting method from Klassen et. al. and the ``direct'' method, new to this paper. Some numerical experiments are performed, which indicate that the direct method performs better for realistically chosen parameters, albeit not asymptotically.