dc.contributor.advisor | Langaas, Mette | nb_NO |
dc.contributor.advisor | Anderssen, Endre | nb_NO |
dc.contributor.author | Edsberg, Erik | nb_NO |
dc.date.accessioned | 2014-12-19T13:58:00Z | |
dc.date.available | 2014-12-19T13:58:00Z | |
dc.date.created | 2010-09-04 | nb_NO |
dc.date.issued | 2008 | nb_NO |
dc.identifier | 348683 | nb_NO |
dc.identifier | ntnudaim:4307 | nb_NO |
dc.identifier.uri | http://hdl.handle.net/11250/258448 | |
dc.description.abstract | In the thesis, a statistical simulation-based framework is presented that is intended for making sample size and power considerations prior to case-control association studies. It reviews biological background and biallelic single- and multiple-SNP disease models, with a focus on single-SNP models. Odds ratios, multiple testing, sample size, statistical power and the genomeSIM package are also reviewed. The framework is tested with the MAX stat method on a dominant disease model, demonstrating that it can be used for assessing whether different sample sizes are sufficient for detecting a causal SNP. | nb_NO |
dc.language | eng | nb_NO |
dc.publisher | Institutt for matematiske fag | nb_NO |
dc.subject | ntnudaim | no_NO |
dc.subject | SIF3 fysikk og matematikk | no_NO |
dc.subject | Industriell matematikk | no_NO |
dc.title | A statistical simulation-based framework for sample size considerations in case-control SNP association studies | nb_NO |
dc.type | Master thesis | nb_NO |
dc.source.pagenumber | 85 | nb_NO |
dc.contributor.department | Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for matematiske fag | nb_NO |