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Abstract

In this thesis work, a statistical simulation-based framework is presented that is
capable of making sample size considerations prior to case-control association stud-
ies with biallelic single-SNP disease models. The numbers of cases and controls
to be simulated are speci�ed by the user, along with the allele frequency of the
disease SNP and the penetrances of its genotypes. Based on this, genotypes for
the disease SNP as well as a number of other SNPs are simulated for cases and
controls using the genomeSIM package, and disease status is assigned, producing
a case-control data set. In an example run of the framework, the MAX test is
applied and power performance in detecting the disease SNP is assessed for var-
ious sample sizes, demonstrating how the framework can be used for �nding an
appropriate sample size.

Multiple-SNP disease models are included in this thesis work for conceptual
overview, but are not implemented in the framework. Direct association methods
are used and not indirect association methods that utilise linkage disequilibrium.
The scope of the thesis is to provide the framework, which is shown to work and is a
�rst step towards more realistic analyses. With its modular structure, key modules
such as the simulation package and the statistical association method can be easily
replaced, and additional functionality such as multiple testing adjustments can be
added at a later time for a more advanced tool.
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Chapter 1

Introduction

Single nucleotide polymorphisms (SNPs, pronunciation: "snip") are sites in ge-
nomic DNA which are subject to single nucleotide pair variation between individ-
uals. The site is called a locus, and the genotype at the locus is called an allele of
the SNP. Since human chromosomes come in pairs, an individual can have either
zero, one or two copies of any given SNP allele. Being sites of genomic variation,
SNPs are interesting both as a physiologic phenomenon but also because of their
implications on susceptibility for complex hereditary diseases such as breast cancer
[Campbell and Heyer, 2007, 193] and multiple sclerosis [Ha�er et al., 2007]. One
has estimated the number of SNPs in the human genome to 3 million [Primrose
and Twyman, 2003]. The task of detecting SNPs that are associated with suscep-
tibility for diseases may require large-scale statistical methods such as screening
and genome-wide association scans [Hirschhorn and Daly, 2005], or investigation of
SNPs in narrower regions of the genome suggested by biologists or biomedical sci-
entists in a candidate gene approach. The methods may be divided into those that
use family-based (pedigree) data, including linkage analysis [Balding et al., 2003,
pg. 893-], and those that use population-based case-control data [Balding, 2006].
Case-control studies are known from non-genetic epidemiology. The methodol-
ogy of such studies were �rst studied in the 1950s [Breslow and Day, 1980]. They
can however be applied to genetic epidemiology as well [Cordell and Clayton, 2005].

A case-control association data set may contain recorded status of a binary
disease trait and recordings of genotypes at a large number of SNP loci for each
individual in a sample. The goal of the case-control association study is to detect
SNPs whose harmful genotypes are associated with positive disease status [Bald-
ing, 2006]. This can be done by assuming a biologically plausible statistical model
for how the SNP genotypes in the data a�ect susceptibility for the disease, deriv-
ing a statistic and then, for each SNP (or SNPs, if multiple-SNP disease models
are considered) in question, examining the statistic's value according to its dis-
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tribution under the null hypothesis of H0: no association. Improbable values of
the statistic, and hence small p-values, indicate detected associated SNPs for the
assumed model. In cases with a large numbers of tests, multiple testing corrections
could be applied in order to adjust the number of false positive SNPs detected due
to chance [Balding, 2006].

The process of genotyping a large number of SNPs for multiple individuals
during data set construction contributes to the cost of a case-control association
study, as does time spent by the researcher on analysis after the data set is ob-
tained. With a given statistical model, analysis may fail to detect a number of
associated SNPs, for instance due to a too small sample size being used [Hattersley
and McCarthy, 2005]. Costs from failed studies can be reduced if, in advance of
decisions to order data sets and initiate study, power considerations are made in
order to weed out studies that are not likely to succeed. Power considerations can
be made analytically or, if the statistical method is too complex, estimated by
simulation.

Following this introduction, Chapter 2 contains biological background useful
for the later disease models and statistical methods. Chapter 3 reviews notation
and methods that can be used for single-SNP and multiple-SNP case-control as-
sociation, as well as multiple testing, sample size and statistical power. Chapter
4 introduces a statistical simulation-based framework for power considerations,
starting with a description of the simulation algorithm of the genomeSIM package,
followed by a structural presentation of the framework and a suggested application
including a conceptual test run. The results of the test run are presented in Chap-
ter 5 and discussed along with the framework's potential for immediate and future
results in Chapter 6, which concludes the thesis. The R-code of the framework is
given in the appendix.
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Chapter 2

Biological background

The human genome consists of the 23 chromosome pairs, of which 22 are autosomal
pairs and one is the sex chromosome pair. Scattered among genes and intergenic
DNA, SNPs are found all throughout the genome. In this thesis the following
de�nitions will be used:

• SNP: A site (locus) on a chromosome whose allele is subject to signi�cant
variation across the human population (i.e. the most common allele is present
in no more than 95% or 99% of the population, depending on the de�nition
used [Lesk, 2007], [Campbell and Heyer, 2007]).

• locus: A clearly de�ned DNA site in the genome. Genes are located at loci,
as are SNPs.

• allele: The genotype at a locus is called its allele. An allele of a locus can be
analogous to a realisation of a random variable in statistics or to the value
of a variable in a computer program. Here, it is assumed that the allele of
a SNP is a nucleotide pair (A-T, T-A, G-C or C-G), which is denoted by a
single letter (e.g. an M allele).

• biallelic SNP: A SNP whose allele can be one of two possibilities (e.g. M or
N). Any other remaining possibilities are seldom or never found.

• two-chromosome vs. one-chromosome SNP genotype: On autosomal chromo-
some pairs, every SNP is present on both chromosomes. The two-chromosome
SNP genotype is the resulting allele pair, e.g. NM (heterozygous genotype)
or NN or MM (homozygous genotypes) for a biallelic SNP. This is con-
trasted to the one-chromosome SNP genotype, which for biallelic SNPs is
single a M or N .
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• risk allele: A SNP allele which is associated with increased risk for some
disease.

• causal/noncausal SNP: A causal SNP is a SNP whose risk allele(s) is causing
a disease (rather than for instance being correlated with it due to linkage
disequilibrium (LD) with another causal SNP.) Noncausal SNPs do not cause
disease.

• phased/unphased genotypes: 2-chromosome genotypes for which the haplo-
type phase is known, i.e. for each allele pair it is known which chromosomes
the alleles reside on. Expression (2.1) shows the di�erence between phased
and unphased genotypes, where i.s.o. means 'in some orientation':


N1N1

M2N2

N3M3

N4N4

 (phased),


Two N1 alleles
One N2, one M2 allele i.s.o.
One N3, one M3 allele i.s.o.
Two N4 alleles

 (unphased) (2.1)

• haplotype: A combined one-chromosome genotype of two or more SNPs (on a
single chromosome). Combined two-chromosome genotypes of multiple SNPs
consist of two haplotypes, of which one originates from the mother and the
other from the father. In the phased genotype in (2.1), the two haplotypes
are N1M2N3N4 and N1N2M3N4, respectively.

• allele frequency: The frequency with which a given allele is found at a the
locus of its SNP

• Hardy-Weinberg equilibrium: The Hardy-Weinberg principle states that un-
der a set of idealised population conditions [Hartl and Jones, 2006], allele
frequencies remain constant from generation to generation, which is referred
to as the Hardy-Weinberg equilibrium.

In the remainder of this thesis, the genotype of a SNP is treated as its two-
chromosome SNP genotype.
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Chapter 3

Statistical theory

3.1 Notation: Single-SNP analyses

Consider a biallelic SNP with two possible alleles denoted M and N respectively.
This allows for four possible phased genotypes for that SNP at the two chromo-
somes: (N, N), (N, M), (M, N) and (M, M). Assume that M is the allele that
is suspected to cause increased disease risk. If we assume that the allele causes
risk independently of which chromosome it resides on, then we can treat the two
phased heterozygous genotypes as one, leaving (N, N), (N, M) and (M, M) as
the three possible unphased genotypes. A hypothetical unphased case-control data
set for associations between a disease and a biallelic SNP is portrayed in Table 3.1.

In order to analyse such a data set the following notation can be adapted from
Zheng and Gastwirth [2006]. Notation of counts of cases and controls by genotype
can be found in Table 3.2.

Here, the index i in the number of cases ri, controls si, and total ni, i = 0, 1, 2,
equals the number of copies of allele M in the corresponding genotype. Next,
notation for risk of disease by genotype can be summarized as in Table 3.3.

Here, (p0, p1, p2), (p0, p1, p2), and (q0, q1, q2) are the frequencies of genotypes

Disease status 0 1 1 0 1 0 0 0 1 0
No. of M alleles 2 1 1 1 2 1 0 1 2 0

Table 3.1: A hypothetical case-control association data set with one SNP and 10
individuals. For each individual we know if the individual is a case or a control.
Row 1 indicates case/control and row 2 indicates the number of copies of alleleM .
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NN NM MM Total
Case r0 r1 r2 r
Control s0 s1 s2 s
Total n0 n1 n2 n

Table 3.2: Counts of cases and controls by genotype

Symbol Description
(g0, g1, g2) Probability of genotype (NN , NM and MM) in population
(p0, p1, p2) Probability of genotype (NN , NM and MM) in cases
(q0, q1, q2) Probability of genotype (NN , NM and MM) in controls
(f0, f1, f2) Penetrance, P (case | genotype)

K =
∑2

i=0 gifi Prevalence of disease, P (case)
g Frequency of allele M

Table 3.3: Notation for risk of disease by genotype

NN , NM , andMM in the population, in cases, and in controls, respectively. Fur-
ther, (f0, f1, f2) are the penetrances: fi = P (case | i copies of allele M in SNP genotype).
The prevalence of disease in the population is K = P (case).

Using the theorem of total probability, K =
∑2

i=0 gifi. It can be found from
the de�nition of conditional probabilities that

pi =P (i copies of M | case) =
P (case | i copies of M)P (i copies ofM)

P (case)

=
figi

K
, i = 0, 1, 2

Similarly,

qi =
(1− fi)gi

1−K

Let g be the allele frequency of M , i.e. the probability that a given allele
of the SNP in question is an M . If the Hardy-Weinberg equilibrium holds, the
relationship between (g0, g1, g2) and g is

g0 = (1− g)2, g1 = 2(1− g)g, g2 = g2 (3.1)

In fact, the hypothetical data set displayed in Table 3.1 was simulated in R
using a value of g = 0.5, then using (3.1) to calculate (g0, g1, g2) = (0.25, 0.5, 0.25)
which was used to simulate the number of M alleles for each individual, and then
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�nally assuming values for penetrances, (f0, f1, f2) = (0.1, 0.5, 0.8), to determine
disease status.

Genetic models for how phenotypes are expressed based on genotypes in�uence
the penetrances. If the simplistic assumption is made that there is just one SNP
and that the disease risk depends only on the genetic component of that SNP, then
there are several ways to model that genetic dependence statistically (see Figure
3.1):

• The additive model, in which each additional M allele in the genotype in-
creases the disease risk, resulting in a penetrance relationship which increases
in some incremental pattern of f0 < f1 < f2.

• The dominant model, in which the one M allele in the heterozygous pheno-
type, MN , is su�cient to cause an e�ect similar to the two M alleles in the
homozygous MM genotype, resulting in a penetrance relationship tendency
towards f0 < f1 ≈ f2. This suggests a natural dichotomization of the NM
and MM genotypes versus the NN genotype.

• The recessive model, in which the penetrance relationship tendency is f0 ≈
f1 < f2.

• The overdominant model, in which the heterozygous genotype has the largest
e�ect on disease risk (f1 > f0, f2).
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Figure 3.1: Genetic models that in�uence penetrances, illustrated using hypothet-
ical penetrance values. From the upper left: Additive, dominant, recessive and
overdominant model.
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Model Term for xTβ
intercept only β0

additive e�ect of
allele

β0 + β1x1, x1 ∈ {−1, 0, 1}

additive e�ect of
allele, dominance

β0 + β1x1 + β2x2, x1 ∈ {−1, 0, 1}, x2 ∈ {−0.5, 0.5,−0.5}

general INNβ0 + INMβ1 + IMMβ2

additive e�ect of
allele

(INN + 1
2
INM)β0 + (1

2
INM + IMM)β2

dominance INNβ0 + (INM + IMM)β2

Table 3.4: Examples of models for unphased single-SNP logistic regression

3.2 Single-SNP direct association methods

Here, the application of two classes of statistical case-control methods for single-
SNP direct association will be discussed. Indirect association is also very important
in genetic epidemiology because most SNPs are not causal [Palmer and Cardon,
2005], but the theory of linkage disequilibrium that indirect association methods
rest upon is beyond the scope of this thesis. However, the computer framework
that is the focus of this thesis, and that will be described in a later section, has a
modular structure that allows for indirect methods functionality to be included at
a later time if needed.

The �rst of the two direct association methods that is described here is lo-
gistic regression. This will motivate the concept of odds ratios. Then, a class
of contingency-table-based methods that include Pearson's test for independence,
Cochran-Armitage's test for trend, and the MAX test, will be described.

3.2.1 Single-SNP logistic regression

Logistic regression can be used for modelling the relationship between the probabil-
ity of an individual to obtain disease and the individual's SNP genotype [Balding,
2006]. The logistic regression model applied is

logit(π) = ln

(
π

1− π

)
= xTβ (3.2)

where the left-hand term is denoted as the 'log odds' of obtaining disease, π is
the prospective1 probability that the individual will obtain the disease given the

1Since π is assumed to be a prospective random response variable and the covariates x are
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genotype, and xTβ de�nes the genetic model through which the SNP genotype is
assumed to a�ect disease risk.

Since the quantity π to which we want to �t a regression model is a probability,
it is desirable to make sure that 0 ≤ π ≤ 1. The logit transform in (3.2) ensures
this property [Dobson, 2002, pg. 116,118].

The choice of xTβ de�nes the genetic model used. Here, two approaches for
application of logistic regression in unphased single-SNP case-control association
will be considered. Cordell and Clayton [2002] de�ne three single-SNP models
as a part of their larger generalised linear model (GLM) multiple-SNP logistic
regression framework. Balding [2006] provides three di�erent single-SNP models.
The six models are listed in Table 3.4. We start by looking at the simplest model,

xTβ = β1

x = 1, β = β1

(3.3)

This model features only an intercept term and does not take into account
genotypes. The next model, given unphased genotypes (N, N), (N, M) and
(M, M), takes into account the additive e�ect of alleleM by coding the genotypes
as -1, 0 and 1, respectively, and adding a parameter β1, resulting in the model

xTβ = β1x1 + β2x2, x1 = 1, x2 ∈ {−1, 0, 1}

x =

[
x1

x2

]
∈

{[
1
−1

]
,

[
1
0

]
,

[
1
1

]}
, β =

[
β1

β2

]
(3.4)

This models an additive allele e�ect because each copy of allele M in the
genotype adds a value β2 to the log odds. If in addition it is desirable to model
genetic dominance of alleleM over N , then the e�ect of the heterozygous genotype
must be increased. Another parameter β3 with an appropriately coded covariate,
for instance x3 ∈ {−0.5, 0.5,−0.5}, achieves this, resulting in a dominant model,

assumed to be �xed, the logistic regression model for disease probabilities is well suited for
cohort studies [Breslow and Day, 1980]. But it is important to be aware that case-control
studies are often retrospective rather than prospective, i.e. the cases and controls are selected in
retrospect according to disease status. The possible equivalence [Balding, 2006] of prospective
and retrospective analysis in genetic edidemiological logistic regression is beyond the scope of
this thesis.
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xTβ = β1x1 + β2x2 + β3x3, x1 = 1, x2 ∈ {−1, 0, 1}, x3 ∈ {−0.5, 0.5,−0.5}

x =

 x1

x2

x3

 ∈


 1

−1
−0.5

 ,
 1

0
0.5

 ,
 1

1
−0.5

 , β =

 β1

β2

β3


(3.5)

The �rst of the three models of Balding [2006] can be represented as follows:

xTβ = INNβ1 + INMβ2 + IMMβ3

x =

 x1

x2

x3

 ∈


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 , β =

 β1

β2

β3

 (3.6)

where I are indicator functions taking values 1 if an individual has the corre-
sponding genotype and 0 if not. Additive e�ects of allele M can then be modelled
by setting β2 = 1

2
(β1 + β3), such that the heterozygous genotype's contribution to

the log odds becomes the middle value of the two homozygous ones. Dominance
can be achieved by setting β2 = β3, so that the two genotypes that contain the
dominant allele contribute equally to disease risk. The additive and dominant
models resulting from this modi�cation of (3.6) are displayed in Table 3.4.

The logistic regression model (3.2) can be formulated in the generalized linear
model framework (GLM), which enables maximum likelihood parameter estima-
tion and hypothesis testing based on χ2-distributed goodness-of-�t statistics, such
as the log-likelihood ratio statistic, for comparisons of di�erent nested models
[Dobson, 2002, pg. 115-18]. For instance, (3.3) can be arrived at from (3.6) by
demanding β1 = β2 = β3, so models (3.3) and (3.6) are nested. The corresponding
log-likelihood ratio statistic has as χ2

2 distribution under the null hypothesis that
both models �t the data well, so if the computed statistic value does not have
an unlikely value, model (3.3) is preferred in place of (3.6) since it is the simpler
model. This is logically equivalent to testing the hypothesis H0 : β1 = β2 = β3.

3.2.2 Methods based on contingency tables

The Cochran-Armitage (CA) test for trend was presented independently by Cochran
[1954] and Armitage [1955]. Assume as a model that the numbers of cases ri,
i = 0, 1, 2, from the contingency table, Table 3.2, are independent binomial vari-
ables with
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R0, ..., R2 independent

Ri ∼ binom(ni, πi)
(3.7)

where πi is the corresponding risk of obtaining disease for an individual in
group i. Assume further that there is a linear trend in the πis on the form

πi = α+ βxi (3.8)

Why would we want to assume such a linear trend? This corresponds to as-
suming what Balding [2006] refers to as additive risk, meaning that multiple alleles
of the risk SNP contribute in an additive sense to the susceptibility of disease. To
quote Balding [2006]:

'For complex traits, it is widely thought that contributions to disease
risk from individual SNPs will often be roughly additive'

Given the model de�ned in (3.7) and (3.8), then the CA test for trend is based
[Agresti, 2002, pg. 181-2] on the hypothesis

H0 : β = 0 vs. H1 : β 6= 0 (3.9)

The corresponding CA statistic can be derived by obtaining weighted least
squares-estimates for α and β in equation (3.8), then using these estimates in a
partitioning of the Pearson goodness-of-�t χ2-statistic for model (3.7) into two new
χ2-terms [Agresti, 2002, pg. 181-2]. One of these two terms is the CA statistic.
Next, it will be explained what the numbers xi are, how the least-squares estimates
for α and β are obtained, what the Pearson goodness-of-�t statistic is for this model
and its partitioning into the CA statistic will be listed.

The numbers xi

If we assume (3.8), then we also assume a natural ordering of the πis. If β is
positive, then we would expect that π0 ≤ π1 ≤ π2. In the application of the CA
test for trend, the numbers xi are to be chosen in order to re�ect this ordering.
There are many possible choices for xi. For example, in our situation with 0, 1
or 2 copies of a risk allele of a given SNP, the following choices for (x0, x1, x2)
all re�ect an additive model: (0, 1, 2), (1, 2, 3), and (−1, 0, 1). Other choices such
as (0, 1, 1) and (0, 0, 1) do not re�ect a linear trend but instead, dominant and
recessive models, respectively. These other types of models will be utilised by the
MAX test at the end of this section.
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Weighted least-squares estimates of α and β

In this passage, Agresti [2002, pg. 181-2] is used as a reference for investigating the
CA test for trend observator. Some details will provided here that were omitted
in that reference. The expressions obtained in Agresti [2002, pg. 181-2] for the
weighted least-squares estimates a and b of α and β from (3.8), are2

a = p− bx̄

b =

∑I
i=1 ni(pi − p)(xi − x̄)∑I

i=1 ni(xi − x̄)2

(3.10)

where we use as a notation pi = yi

ni
, p = 1

n

∑I
i=1 yi, and x̄ = 1

n

∑I
i=1 nixi. It will

now be shown how these expressions can be obtained. One way to obtain (3.10)
is by starting with a weighted sum of squared errors with unspeci�ed weights ωi

[Wood, 1978]:

I∑
i=1

ωi(πi − α− βxi)
2 ≈

I∑
i=1

ωi(pi − α− βxi)
2 (3.11)

In Agresti [2002, pg. 181-2], the weights used are ωi = ni. This may be mo-
tivated by the following: Denote the binomial random variable for the number
of cases in group i by Yi. In (3.11), the random variable of which we are tak-
ing the sum of squares is Yi

ni
. Its expected value is niπi

ni
= πi and its variance is

1
n2

i
niπi(1 − πi) = πi(1−πi)

ni
, which depends on ni. Thus small nis yield small terms

in the sum (3.11). The choice of ωi = ni can be viewed as a counterweight of this.

Inserting ωi = ni into (3.11), the equations for minimizing the sum of squares
are

2In (3.8), xi ranges from 0 to 2, which should be substituted for i=1 to I in (3.8) for use in
this thesis. This applies to all expressions in this section with sums ranging from i=1 to I.
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0 =
∂

∂α

I∑
i=1

ni(pi − α− βxi)
2 = −2

I∑
i=1

ni(pi − α− βxi)

⇓

α

I∑
i=1

ni =
I∑

i=1

ni(pi − βxi)

⇓

α =

∑I
i=1 nipi∑I
i=1 ni

− β

∑I
i=1 nixi∑I
i=1 ni

= p− βx̄

and

0 =
∂

∂β

I∑
i=1

ni(pi − α− βxi)
2 = −2

I∑
i=1

nixi(pi − α− βxi) (3.12)

Thus the least squares estimate of α becomes a = p − bx̄. It remains to
determine b, the least squares estimate of β. By inserting α = a = p − βx̄ into
(3.12), the expression for b in (3.10) can be obtained in the following way:

0 = −2
I∑

i=1

nixi(pi − p+ βx̄− βxi)

⇓

β =

∑I
i=1 nixi(pi − p)∑I
i=1 nixi(xi − x̄)

=

∑I
i=1 nixipi − p

∑I
i=1 nixi + px̄n− px̄n∑I

i=1 nix2
i − 2x̄

∑I
i=1 nixi + x̄

∑I
i=1 nixi

=

∑I
i=1 nixipi − p

∑I
i=1 nixi + px̄n− x̄

∑I
i=1 nipi∑I

i=1 nix2
i − 2x̄

∑I
i=1 nixi + x̄2n

=

∑I
i=1 ni(pixi − pix̄− pxi + px̄)∑I

i=1 ni(x2
i − 2xix̄+ x̄2)

=

∑I
i=1(pi − p)(xi − x̄)∑I

i=1 ni(xi − x̄)2
≡ b
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Pearson Goodness-of-�t statistic for this model

As a part of the derivation of the CA statistic in Agresti [2002, pg. 181-2], the
expression

1

p(1− p)

I∑
j=1

nj(pj − p)2

is given as the 'Pearson statistic for testing independence'. Here, it will be
explained how this expression can be obtained. Consider Table 3.2. Assuming
model (3.7), the Pearson Goodness-of-�t [Walpole et al., 2002] for that model is

X2(I) =
2∑

i=1

I∑
j=1

(oij − eij)
2

eij

∼ χ2
I−1

where oij and eij are the observed and expected frequencies of the cell in the
ith row and jth column of Table 3.2 under (3.7). The observed frequencies are

oij =

{
rj, i = 1

nj − rj, i = 2

Under (3.7), the expected frequency of cell ij is n×P (person is assigned to cell ij).
If we de�ne the events

Aij : Person is assigned to cell ij

Bi : Person is assigned to row i

Cj : Person is assigned to column j

then under (3.7),

P (Aij) = P (Bi ∩ Cj) = P (Bi)P (Cj)

=

{PI
s=1 rs

n
× nj

n
=

nj(
PI

s=1 rs)

n2 , i = 1PI
s=1(ns−rs)

n
× nj

n
=

nj
PI

s=1(ns−rs)

n2 , i = 2

such that

eij =

{
nj

PI
s=1 rs

n
, i = 1

nj
PI

s=1(ns−rs)

n
, i = 2

Hence,
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v2(I) =
2∑

i=1

I∑
j=1

(oij − eij)
2

eij

=
I∑

j=1


(
rj − nj(

PI
s=1 rs)

n

)2

nj(
PI

s=1 rs)

n

+

(
nj − rj − nj(

PI
s=1(ns−rs))

n

)2

nj(
PI

s=1(ns−rs))

n

 (3.13)

By inserting ri = nipi and utilizing the notation p = 1
n

∑I
s=1 rs, this expression

can be simpli�ed in the following way:

v2(I) =
I∑

j=1


(
rj − nj(

PI
s=1 rs)

n

)2

nj(
PI

s=1 rs)

n

+

(
nj − rj − nj(

PI
s=1(ns−rs))

n

)2

nj(
PI

s=1(ns−rs))

n


=

I∑
j=1

[
(rj − njp)

2

njp
+

(nj − rj − nj(1− p))2

nj(1− p)

]

=
I∑

j=1

[
(1− p)(r2

j − 2rjnjp+ n2
jp

2)

p(1− p)nj

+
p(njp− rj)

2

p(1− p)nj

]

=
1

p(1− p)

I∑
j=1

[
r2
j − 2rjnjp+ n2

jp
2

nj

]

=
1

p(1− p)

I∑
j=1

[
n2

jp
2
j − 2n2

jpjp+ n2
jp

2

nj

]
=

1

p(1− p)

I∑
j=1

nj(pj − p)2

(3.14)

which is the same expression as in Agresti [2002, pg. 181-2].

Partitioning of Pearson Goodness-of-�t statistic into CA statistic

The quantity (3.14) can be partitioned as follows [Agresti, 2002, pg. 181-2]:

X2 ≡ X2(I) = z2 +X2(L)

where

16



z2 =
b2

p(1− p)

I∑
i=1

ni(xi − x̄)2 =

 ∑I
i=1(xi − x̄)ri√

p(1− p)
∑I

i=1 ni(xi − x̄)2

2

X2(L) =
1

p(1− p)

I∑
i=1

ni(pi − π̂i)
2

π̂i = p+ b(xi − x̄)

The CA statistic for testing H0 : β = 0 in 3.8 is z2, and it is asymptotically
chi-square-distributed on 1 degree of freedom [Armitage, 1955].

The MAX test

One procedure which is related to the CA test for trend is the MAX test [Freidlin
et al., 2002]. The MAX test aims at considering three of the four genetic mod-
els that were presented in Figure 3.1: The additive, recessive and the dominant
model. These models can be re�ected in a choice of weights in the CA test for
trend. For instance, {−1, 0, 1}, {0, 0, 1} and {0, 1, 1} are three possible choices
that correspond to the additive, recessive and the dominant model, respectively.
These choices de�ne three distinct CA tests, and it is true in every situation that
at least one will be the most powerful of the three, depending on which genetic
model is the correct one in that situation. However, the true genetic model is of-
ten unknown, so if the CA test for trend is used with one particular set of weights
there is a risk that the weights corresponding to the true genetic model are not
chosen. The consequential loss of power is addressed by Freidlin et al. [2002]. This
motivates consideration of the MAX test because it is robust to the underlying
true genetic model.

Denoting by ZADD, ZREC and ZDOM the CA statistics with weights corre-
sponding to the three genetic models, the MAX test statistic is the maximum of
the three statistics,

MAX = max(ZADD, ZREC , ZDOM) (3.15)

However, the asymptotic distribution of the maximum of the three CA χ2-
distributed test statistics is a di�cult matter and the distribution is not known.
However, the power the MAX test can be investigated by simulation [Freidlin et al.,
2002].
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In a master thesis which is related to the work of this thesis, the MAX test
has been explored in the context of SNPs and multiple testing [Risberg, 2008].
In the remainder of this thesis, an R implementation will be used that is a slight
modi�cation of the MAX test, called maxstat [Gonzalez et al., 2008].
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3.3 Odds ratios

The odds ratio is a common measure of e�ect size in genetic association studies. In
Section 4.3, odds ratios will be used for obtaining penetrance values for simulations.

In a case-control setting, assume that association between disease and one
risk factor is studied in a sample of individuals which is divided into two groups
according to exposure of the risk factor. The �rst group contains individuals
(including both cases and controls) exposed to the risk factor and the second group
contains unexposed individuals (also cases and controls). For an individual, de�ne
P1 = P (obtaining disease | exposed) and P2 = P (obtaining disease | unexposed).
Then the odds ratio ψ can be written as follows:

ψ =
P1

1−P1

P2

1−P2

(3.16)

where the quantities P1

1−P1
and P2

1−P2
are known as the 'odds of disease' in the

exposed and unexposed groups, respectively, hence the name 'odds ratio'.

When one biallelic SNP is used as a risk factor, then the quantities P1 and P2

in (3.16) are related to the penetrances f0, f1 and f2. In order to express the odds
ratio in terms of penetrances one must dichotomise the data by de�ning which of
the genotypes, NN , NM and MM , that correspond to the exposed group and
which that correspond to the unexposed group. For an odds ratio of the MM
genotype (exposed) versus the NN genotype (unexposed) for instance, P1 = f2

and P2 = f0, so the odds ratio is

ψ =

f2

1−f2

f0

1−f0

(3.17)

If the genotypes are counted according to Table 3.2, then an estimate of a
penetrance fi is f̂i = ri

ni
, so an estimate of the odds ratio of the MM genotype

versus NN can be calculated as

ψ̂MM,NN =

r2
n2

1− r2
n2

r0
n0

1− r0
n0

(3.18)

Similarly, one could compute the odds ratios ofMN versus NN orMM versus
NM . If the dominant model is assumed, one could dichotomise by combining the
MM and NM genotypes as the exposed group and calculating their odds ratio
versus NN as the unexposed group. The odds ratio for the dominant model can be
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derived as follows: Since NN is the unexposed group, P2 = f0 as before. Denote
by D the event that an individual obtains disease, and denote by A and B the
events that an individual has the genotypes NM and MM , respectively. Then,

P1 = P (D | A ∪B) =
P (D ∩ (A ∪B))

P (A ∪B)
=
P (D ∩ (A ∪B))

P (A) + P (B)
(3.19)

since A and B are disjoint. Further, by applying DeMorgan's law,

P (D ∩ (A ∪B)) = P ((D ∩ A) ∪ (D ∩B))

= P (D ∩ A) + P (D ∩B)− 0

= P (D | A)P (A) + P (D | B)P (B)

(3.20)

So

P1 =
P (D | A)P (A) + P (D | B)P (B)

P (A) + P (B)
=
f1g1 + f2g2

g1 + g2
(3.21)

and the odds ratio is

ψMM+NM,NN =

f1g1+f2g2
g1+g2

1− f1g1+f2g2
g1+g2

f0

1−f0

(3.22)

Inserting estimates f̂i = ri

ni
and ĝi = ni

n
, an estimate of (3.22) is

ψ̂MM+NM,NN =

r2+r1
n2+n1

1− r2+r1
n2+n1
r0
n0

1− r0
n0

(3.23)

There is a connection between the odds ratio and the logistic regression model
(3.2), because the left-hand side of Equation (3.2) is the log of the odds that
appear in the odds ratio. The odds ratio is also related to the quantity known as
the relative risk. The picture can be outlined as follows:

logistic regression↔ odds↔ odds ratio↔ relative risk

Breslow and Day [1980, pg. 57,70-71] describes the relationship between odds
ratio and the relative risk. Given the situation with one disease and one risk factor,
the relative risk r is

r =
P1

P2

(3.24)
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that is, the ratio of incidence of exposed individuals versus unexposed individ-
uals. When the probabilities P1 and P0 are small, the odds ratio (3.16) can be used
for approximating the relative risk (3.24) due to the following argument [Breslow
and Day, 1980]:

P1, P0 small⇒ 1− P1 ≈ 1− P0 ≈ 1

⇒ ψ =
P1

1−P1

P0

1−P0

≈ P1

P0

= r

Thus in the situation of one SNP with genotypes NN , NM and MM , the
corresponding odds ratio-estimates of the relative disease risk of MM versus NN
is expression (3.18). For the dominant model, the estimate of the relative risk of
dominant genotypes MM and NM versus NN is expression (3.23).

A convenient property of this estimate of the relative risk using the odds ratio
is that it is valid [Breslow and Day, 1980, pg. 71] both for prospective studies and
for retrospective studies such as the case-control studies that are the focus of this
thesis.
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Figure 3.2: A multiple-SNP case-control data set, created by genomeSIM. Each
row corresponds to one individual. The �rst column indicates disease status and
the subsequent columns indicates the genotype, i.e. the number of copies of M
alleles, at each SNP.

3.4 Notation: Multiple-SNP analyses

Previously in this section, notation and case-control methods for detecting associ-
ations between disease and one SNP was discussed. The notation for multi-locus
data is similar to that of the one-SNP case in Table 3.1 . For multiple SNPs, Table
3.1 can be expanded into that shown in Figure 3.2, which shows a multiple-SNP
data set created by the genomeSIM genomic simulation package. See Section 4.1
for details on the genomeSIM package. The di�erence from Table 3.1 is that there
are additional columns corresponding to additional SNPs.

Assuming direct association, the step from single causal SNPs to multiple
causal SNPs increase the genetic model options that can be incorporated into the
multiple-SNP statistical methods. Some of these additional genetic model options
will now be discussed.

Parent-of-origin, haplotype, main and epistasis e�ects

Consider two biallelic SNP loci on a chromosome. Let the possible alleles of the �rst
alleles be {M1, N1} and {M2, N2}, respectively. In the following, the approach of
Cordell and Clayton [2002] will be used to explain the concepts of parent-of-origin
e�ects, haplotype e�ects, main e�ects and epistasis e�ects in terms of genotypes
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[
N1N1

N2N2

] [
N1N1

N2M2

] [
N1M1

N2N2

] [
N1M1

N2M2

]
[
N1N1

M2N2

] [
N1N1

M2M2

] [
N1M1

M2N2

] [
N1M1

M2M2

]
[
M1N1

N2N2

] [
M1N1

N2M2

] [
M1M1

N2N2

] [
M1M1

N2M2

]
[
M1N1

M2N2

] [
M1N1

M2M2

] [
M1M1

M2N2

] [
M1M1

M2M2

]
Table 3.5: Complete set of genotypes for 2 biallelic SNPs

for a situation of two bialellic SNPs. For an individual, the possible genotypes of
the two SNPs on the two chromosomes is displayed in Table 3.5.

From the de�nition of haplotypes in Chapter 2, we know that each genotype
in Table 3.5 consists of two haplotypes of which one originates from each parent.
A possible assumption one can make is no parent-of-origin e�ects, which means
that a haplotype has equal e�ect on disease risk independently of which parent it
originated from. Under this assumption, the following two genotypes are assumed
to have an equal e�ect on disease risk, which means that they can be treated as
one: [

N1N1

N2M2

]
and

[
N1N1

M2N2

]
Merging all genotypes that have equal e�ects under the assumption of no

parent-of-origin e�ects, Table 3.5 reduces to Table 3.6.

If in addition one is willing to assume that there are no haplotype e�ects,
then one additional genotype can be removed from Table 3.6. Consider the two
genotypes [

N1M1

N2M2

]
and

[
N1M1

M2N2

]
These genotypes contain the same number of N and M alleles on both SNPs,

but they have di�erent haplotypes. If there was a haplotype e�ect, then one could
suspect that the genotypes had di�erent disease risks. Otherwise, only the presence
of alleles would count and one would assume the risks to be equal. Merging the
two genotypes, Table 3.6 reduces to Table 3.7.
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[
N1N1

N2N2

] [
N1N1

N2M2

]∗ [
N1M1

N2N2

]∗ [
N1M1

N2M2

]∗
[
N1N1

M2M2

] [
N1M1

M2N2

]∗ [
N1M1

M2M2

]∗
[
M1M1

N2N2

] [
M1M1

N2M2

]∗
[
M1M1

M2M2

]
Table 3.6: Set of genotypes for 2 biallelic SNPs, under assumption of no parent-of-
origin e�ects. * indicates that the genotype is merged with and contains another
genotype.

[
N1N1

N2N2

] [
N1N1

N2M2

]∗ [
N1M1

N2N2

]∗ [
N1M1

N2M2

]∗∗
[
N1N1

M2M2

] [
N1M1

M2M2

]∗
[
M1M1

N2N2

] [
M1M1

N2M2

]∗
[
M1M1

M2M2

]
Table 3.7: Set of genotypes for 2 biallelic SNPs, under assumption of no parent-of-
origin e�ects and no haplotype e�ects. *(**) indicates that the genotype is merged
with and contains another (two) genotype(s).
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The assumption of no haplotype e�ects has the bene�t that one can use geno-
type data for which the phase is unknown, so-called unphased data. The assump-
tion is reasonable [Cordell and Clayton, 2002] if one suspects that the SNPs in
question are causal SNPs that are directly associated with the disease. If on the
other hand the SNPs are noncausal and indirectly associated with the disease
through (i.e. in linkage disequilibrium with) some other unknown causal SNP, the
assumption can not be expected to hold. Since this thesis assumes direct associ-
ation using unphased data, Table 3.7 will be used in the following, reducing the
number of distinct 2-SNP genotypes from 16 to 9.

Main e�ects are e�ects on disease risk due to single loci [Hoh and Ott, 2003].

The last type of e�ect that will be considered here is that of epistasis, interac-
tion between di�erent SNPs. Though any detection of epistasis may reveal only
little about the true underlying biological process, inclusion of epistasis in the sta-
tistical analysis can nevertheless improve power to detect genetic e�ects [Cordell,
2002]. In terms of the genotypes in Table 3.7, assume that the alleles M1 and M2

are the alleles that are assumed to carry increased risk for disease. Cordell and
Clayton [2002] consider four epistasis e�ects due to the four 2-SNP genotypes in
Table 3.7 that contain at least one risk allele of each type:[

N1M1

N2M2

]∗∗
,

[
N1M1

M2M2

]∗
,

[
M1M1

N2M2

]∗
, and

[
M1M1

M2M2

]
In this case, any increased epistasis e�ect on disease risk would be due to

interaction between the two SNPs in these four 2-SNP risk genotypes. This is con-
trasted to a situation where only the main e�ects of the two SNPs are considered,
in which no such interactions would be assumed to increase disease risk.

In the remainder of this thesis it is assumed that parent-of-origin e�ects and
haplotype e�ects can be ignored. Hence, only the genotypes in Table 3.7 will be
considered.
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3.5 Multiple-SNP direct association methods

The previous subsections dealt with case-control methods for direct association
between one SNP and a disease. Assuming a data set such as the one displayed
in Figure 3.2, there might be more than one single SNP that is associated with
the disease. In such a data set, one has the option to apply a single-SNP method
to every single one of the m SNPs in the set. The result is a list of m p-values,
some of which could be signi�cantly small. But since there could be false positives
due to chance, the issue of multiple testing has to be taken into account. Multiple
testing will be handled in a later subsection. This procedure can be labelled as
'single-locus search' Hoh and Ott [2003] and it is capable of detecting a number
of potentially causal SNPs. But since it considers only main e�ects, it can ne-
glect information about joint e�ects of the SNPs [Balding, 2006]. Therefore, other
methods have been developed that model the combined e�ect of multiple SNPs
rather than multiple testing corrections of single-SNP search. These multi-locus
methods and are still in an early phase of development [Cordell and Clayton, 2005].

Two possible adaptation of the logistic regression model to the setting of
multiple-SNP case-control genetic epidemiology will now be explained.

3.5.1 Multiple-SNP logistic regression

Multiple-SNP logistic regression can be viewed as an expansion to the single-SNP
logistic regression model that was discussed in Section 3.2. Like in Equation (3.2),
π is still going to be the disease risk, i.e. the probability of obtaining disease
given genotype, but the right-hand term, xTβ, will change to incorporate multiple
SNPs. To make use of what was established for single-SNP logistic regression, the
multiple-SNP models of Cordell and Clayton [2002] will now be presented, follow-
ing by the multiple-SNP models of Balding [2006].

Multiple-SNP regression models, example 1

Proceeding from their single-SNP model that was presented earlier in this section,
additional SNPs can be included in the regression model of Cordell and Clayton
[2002]. Assume that there are three SNPs under study. The additive model for
one SNP (3.5) can be duplicated for the three SNPs, resulting in the model

ln

(
π

1− π

)
= β0 +

6∑
i=1

βixi (3.25)
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Here the pairs (x1, x2), (x3, x4), and (x5, x6) correspond to SNP 1, 2 and 3.
The pairs follow the same coding as the variables x2 and x3 in (3.5) for each SNP,
resulting in a model that accounts for the additive e�ect of each allele as well as
dominance. The three β1x1-terms from (3.5), which are constants, are replaced by
a single β0 term in (3.25). This model can then be compared to a model in which
the third SNP is excluded from the model:

ln

(
π

1− π

)
= β0 +

4∑
i=1

βixi (3.26)

which is the same model under the constraint that β5 = β6 = 0. The models
(3.25) and (3.26) are thus nested and can be compared using the same GLM
procedure as was described for the single-SNP case earlier in this section, yielding
a 2df test.

Multiple-SNP regression models, example 2

Let there be I SNPs. Introducing similar three indicator variables and βs for each
SNP in the same fashion as in Equation (3.6), the model becomes

ln

(
π

1− π

)
= xTβ

= IN1N1β11 + IN1M1β12 + IM1M1β13

+ IN2N2β21 + IN2M2β22 + IM2M2β23

+ · · ·+ ININI
βI1 + INIMI

βI2 + IMIMI
βI3

=
I∑

i=1

INiNi
βi1 + INiNi

βi2 + INiNi
βi3

(3.27)

Like in the single-SNP case, restrictions can be put on the βs to test addi-
tive, recessive or dominant models which can then be compared to the full model,
(3.27) in a GLM framework. For instance, for the additive model, Balding [2006]
proposes requiring that every H0 : βi2 = 1

2
(βi1 + βi3), similar in spirit to what was

done in the single-SNP case.

27



Number of Number not rejected Number rejected
True null hypotheses U V m0

Non-true null hypotheses T S m1

total m−R R m

Table 3.8: Notation of quantities associated with null hypotheses

3.6 Multiple testing

In population-based SNP/disease association, the problem of multiple testing oc-
curs when one performs a large number of hypothesis tests for association between
single SNPs and the disease. The problem is that while each individual hypothesis
test controls its own type I error rate, which is the probability for a false posi-
tive SNP/disease association, a large number of hypothesis tests there will induce
with a high probability one or more false positives. This is because each of the
numerous individual tests has a small chance of resulting in a false positive. If
post-association analyses are expensive, false positive SNPs can increase the costs
of identifying the true positive disease-causing SNPs which was the object of the
association study in the �rst place.

In multiple testing we focus on controlling various new versions of the type I
error rate for multiple hypothesis tests [Dudoit et al., 2003]. These are related to
the familiar type I error for a single hypothesis, which is the probability of a false
positive, but apply to multiple tests instead of only one. The most popular type I
error rate is the False Discovery Rate (FDR). Another version is the Family-wise
Error Rate (FWER). There are various procedures for controlling a given error
rate version. Dudoit et al. [2003] introduce these topics in the context of multi-
array data resulting from the simultaneous measured expressions of a vast number
of genes.

False Discovery Rate (FDR)

The False Discovery Rate (FDR) can be introduced in the following way [Dudoit
et al., 2003]: There are m individual SNPs under study. For each SNP, we apply
a hypothesis test (for instance, CA test for trend) for association of risk alleles
of SNP with the disease. Notation for the situation can be found in Table 3.8
[Benjamini and Hochberg, 1995]. In Table 3.8, m and R are the total number of
null hypotheses tested and the total number of observed rejections, respectively.
Here m is a �xed number from the start of the experiment, while R is a random
variable of which we observe a realisation. These are the only quantities in Ta-
ble 3.8 that are known to us in the situation. The numbers m0 and m1 are the
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number of true null hypotheses and false null hypotheses, respectively. These are
unknown numbers that can also be viewed as �xed from the start of the experi-
ment. The explanation of the last four quantities, S, T , U and V , is given in Table
3.8. Like R, these are random variables, but unlike R we do not observe any re-
alisations of them. They remain unobserved and unknown to us in the experiment.

Table 3.8 can be related to the context of SNPs. If the hypothesis tests use the
CA tests for trend statistic for single SNPs with H0: β = 0 against H1: β 6= 0 ac-
cording to Subsection 3.2, thenm0 are those of the SNPs under study that actually
have β = 0, which means they are unassociated with the disease. Likewise, m1 are
all those SNPs in the experiment that actually have β 6= 0 and are associated with
the disease. These numbers are unknown to us. The only quantity that is known
to us in addition to m is R, which is the observed number of CA tests that is
actually rejected in this experiment, that is, SNPs that we suspect are associated
with the disease.

Although not all of the quantities in Table 3.8 are observed or known, they can
still be utilised by us in order to de�ne relevant measures for the experiment. In
particular, the quantity V appears interesting, since it is the unknown number of
rejected true null hypotheses. It reminds us of the familiar type I error for a single
hypothesis test, and it is also a part of the expression which is known as the False
Discovery Rate (FDR):

FDR = E(Q), Q =

{
V
R
, R > 0

0, R = 0

The usage of the term 'type I error rate' can be motivated by the fact that V
is the total number of type I errors, and V

R
is the proportion of this number to

the total number of actual rejections. One advantage of the FDR compared to
the other type I error rates mentioned in Dudoit et al. [2003] is that it enables a
resulting list of candidate SNPs of which the expected proportion of false positives
is know. This proportion is known, but not the identity of the false positives. As
a simple example in the context of SNPs: Suppose a list of 105 candidate SNPs
was produced, and by test design, a FDR of 0.05 was achieved. Then we would
know that 5 false positive SNPs and 100 true positive SNPs would be expected.
We would know nothing about the identity of the false positive SNPs, though.

Next, a procedure for controlling of the FDR will be considered.
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Benjamini/Hochberg step-up procedure for strong controlling of FDR

Now assume that we have chosen the FDR as our measure of type I error rate.
In the situation of m individual SNPs under study, resulting in m simultaneous
hypothesis tests, we now want a procedure that can control the FDR, for instance
keep it below a certain level α. The level α could be set to 0.05 or to another
number. The Benjamini/Hochberg step-up procedure by Benjamini and Hochberg
[1995] is one such procedure, for strong controlling of the FDR. The 'strong' refers
to strong and weak control of type I rates in multiple testing, a concept which
is discussed in detail by Dudoit et al. [2003]. I will now describe the procedure,
based on the review by Dudoit et al. [2003]. The term 'step-up' procedure is
used because the procedure starts with the smallest p-value, which is the p-value
corresponding to the hypothesis that we would like the most to reject, and then
includes successively larger p-values until a certain criterion is no longer ful�lled.
We end up with a set of included p-values, and we reject the set of hypotheses that
corresponds to that set of included p-values. By doing this, we achieve the desired
value of FDR. In the words of Dudoit et al. [2003]:

"Let pr1 ≤ pr2 ≤ · · · ≤ prm be the observed ordered (...) p-values. For
control of the FDR at level α de�ne j∗ = max{j : prj

≤
(

j
m

)
α} and

reject hypotheses Hrj
for j = 1, ..., j∗. If no such j∗ exists, reject no

hypothesis."

The required conditions and the proof for the Benjamini-Hochberg procedure
are beyond the scope of this project.

Example of use of the algorithm

Assume that we desire for our experiment a FDR no greater than α. We observe
all the p-values and order them. At �rst, j = 1, so we check if pr1 , the smallest
p-value, is less than 1

m
α. If not, then we can reject no hypotheses at this FDR

level. If it is, then we consider the next p-value and check if pr2 ≤ 2
m
α. We see that

the term on the right side of the inequality increases by α
m
each time j increases

by 1. If say pr5 is the �rst p-value that fails to ful�ll the inequality, then we reject
the hypotheses corresponding to {pr1 , pr2 , pr3 , pr4} and no more.
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3.7 Sample size and power

The statistical power of a test is associated with its probability to reject a null hy-
pothesis, H0, when the null hypothesis is false. In the context of SNP case-control
association, the null hypothesis is that one or more SNPs are not associated with a
disease. Therefore, power in this case is associated with the probability of detecting
disease SNPs, depending on the null hypothesis used and given the assumptions
from which the hypothesis test observator distribution was derived.

If only one SNP is examined and only one hypothesis test is made for that
SNP, if the type II error for the hypothesis test, denoted by β is known, then the
power of the test is 1−β. If β is not known, then a possible way of assessing power
in this case is the following: Assume that there has been obtained by a biologist a
real case-control data set of SNP genotypes and disease status, with r cases and
s controls, for instance on the form of Figure 3.2. Assume that previous studies
have identi�ed a disease SNP in the data set. Power for a speci�c hypothesis test
for one SNP can be assessed empirically by simulating a number of data sets which
mimic the real data set as closely as possible, then applying the hypothesis test
once for each data set and recording whether the disease SNP was detected. If
there are nS data sets, then an empirical assessment of power is

No. of times disease SNP was detected

nS

(3.28)

Other empirical assessments of power can include recording how often the p-
value of the target SNP is smaller than a number, for instance 0.05. If there are
also other SNPs that have signi�cantly small p-values, one can examine how well
the target SNP ranks among all those SNPs. Or, one may ask how often the p-
value of the target SNP is among the lowest N p-values. If the parameters of the
simulation and disease model are varied, such as the number of cases and controls,
then these power considerations can provide indications about properties real data
sets should have in order to increase power in the statistical analysis. This can
provide a guide for assessing which expensive studies that should be considered
not undertaken due to reduced probability of detecting SNPs.

Recalling the concerns about multiple testing from Section 3.6, if there are more
than one SNP under examination for disease associations there will consequently
be more than one hypothesis test performed. Then, using the notation of Table
3.8, a measure of a generalised power for multiple hypothesis tests is the expected
value of non-true null hypotheses not rejected, divided by the total number of
non-true null hypotheses: E[S]

m1
.
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Chapter 4

Methods

4.1 Simulation using genomeSIM

The genomeSIM computer package is a tool that can simulate large-scale genomic
data sets through forward-time population simulation [Dudek et al., 2006]. The
user speci�es the SNP allele frequencies of an initial population, which is subse-
quently crossed for a number of generations to produce a �nal population. Disease
a�ection status is then assigned to the individuals of the �nal generation by check-
ing their genotypes against the risk alleles of a prespeci�ed disease model. A few
lines of a genomeSIM data set is shown in Figure 3.2. Each row corresponds to an
individual of the population. The �rst columns indicate disease a�ection status
with the numbers 1 and 0. The other columns correspond to di�erent SNP loci
and indicate the number (2, 1 or 0) of copies of the disease allele in the genotype
at each locus.

The genomeSIM forward-time simulation algorithm can be divided into three
main steps. The steps and some of the input parameters are summarized in Table
4.1.

The genomeSIM algorithm

Step 1. Establishment of initial population

The initial population is established by choosing a population size and determining
the SNP genotype at every SNP for all individuals in that population. The genome
of each individual is represented by two chromosomes containing all the speci�ed
total number of genes (NUMGENS). Each gene is assigned a number of biallelic
SNPs, randomly generated for each gene within a speci�ed common minimum/-
maximum gene count threshold parameter (MINSNP, MAXSNP). Each SNP is
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Step Important input parameters

1. Establishment of initial
population

POPSIZE: Population size
NUMGENS: Number of genes
MINSNP/MAXSNP: Threshold for ran-

dom numbers of
SNPs on each gene

ALLELELIMITS: Minor allele frequen-
cies for unspeci�ed
SNPs

ALLELEFREQS: Minor allele frequen-
cies for speci�ed
SNPs

2. Random crossing of pop-
ulation for a number of gen-
erations

NUMGENS: Number of genera-
tions

MINRECOMB/
MAXRECOMB:

Threshold for ran-
dom recombination
frequencies for SNPs

3. Assignment of disease af-
fection status to �nal popu-
lation

MODELFILES: Speci�es disease
model

Table 4.1: Main steps in genomeSIM algorithm
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assigned an allele frequency number for its minor allele, also randomly generated
within a speci�ed common minimum/maximum threshold parameter, this time
for allele frequencies (ALLELELIMITS). The user has the option to override the
ALLELELIMITES parameter by specifying individual allele frequencies for cho-
sen SNPs using the ALLELEFREQS parameter. Similarly, each SNP is assigned
a recombination fraction number for recombination between itself and the next
adjacent SNP in that gene, randomly generated according to the common min-
imum/maximum recombination frequency threshold parameter (MINRECOMB,
MAXRECOMB). To quote Dudek et al. [2006],

Thus, all recombination fractions are random and independent. SNPs
are unlinked across genes.

The concept in genomeSIM of SNPs being unlinked across genes is a simpli�ed
recombination approach because in real life, loci can be linked, for instance, but
not always, due to correlation of recombination frequencies with physical distance
between the loci [Hartl and Jones, 2006, pg. 132]. Recombination is not relevant
for the initial population, but becomes relevant in Step 2. Once the allele frequen-
cies are determined, the genotype is randomly generated for each SNP. Adding
genotypes from the two chromosomes, this results in either 0, 1 or 2 copies of
minor alleles for every SNP.

Step 2. Random crossing for a number of generations

Once the initial population is established, the simulator proceeds to advance that
population the prespeci�ed number of generations ahead in time. A new generation
is formed by producing a total number of new individuals equal to the size of
the parental population. After a new generation is formed, the old generation
is forgotten and never considered again. Hence, the population size is constant
throughout time. When a new individual is to be formed, two parents are drawn
with replacement from the parental population and produce one gamete each which
are then joined to form the new individual. In genomeSIM, a parent produces a
haploid gamete by crossing over his two chromosomes and passing one of the
resulting altered chromosomes to the gamete. In Step 1, each SNP was assigned a
random recombination fraction number using the minimum/maximum threshold
parameters (MINRECOMB, MAXRECOMB). Quoting Dudek et al. [2006],

A crossover is conducted as follows. genomeSIM selects one chromo-
some to be the start chromosome and begins copying allele values from
that chromosome into the new chromosome. At every interval between
SNPs, the simulator checks the recombination fraction against a ran-
domly generated number. When the number is less than or equal to the

35



fraction, the simulator switches chromosomes (assuming independent
assortment) and begins taking allele values from the second chromo-
some. The simulator continues to check each interval and copies the
allele values for the current chromosome until it reaches the end of the
genome or another crossover takes place.

Step 3. Assignment of disease a�ection status to �nal population

When the �nal generation is reached, the simulator assigns disease a�ection status
to the individuals in that generation by comparing their risk SNP genotypes with
a penetrance table. If there is only one risk SNP, then the penetrance table is the
vector [f0, f1, f2] of penetrances from Table 3.3. If there are two risk SNPs, then the
penetrance table becomes a matrix [fij], i, j = 0, 1, 2. The penetrance table must
be provided at the start of the simulation in the MODELFILE parameter. One
has the option of not providing a penetrance table and instead have the simulator
assign disease a�ection completely at random.

4.2 Framework in R for pre-study sample size and

power considerations using genomeSIM simu-

lation

Simulation programs such as the genomeSIM package enable the construction of
simulating arti�cial genomic SNP data sets. We may use such simulated data as
the starting point for performing statistical analyses and assessing power and sam-
ple size issues. It is hoped that insights will result from this analysis of arti�cial
data sets, which in turn can be applied to the analysis of real data. For instance, a
biologist may request assessments on whether a given number of cases and controls
are enough for detecting a suspected disease SNP with a given method. By varying
the sample size in the simulated data, something which is not as easily achieved
with real data, statistical power can be estimated as a function of sample size. The
validity of any application of framework results to real data depends on how well
the simulated data mimic real data and on the assumptions of the analysis. In this
section a framework is presented which combines genomeSIM and R functions into
a single �exible tool that can be used for genomic simulated case-control analyses.

An overview of the framework and its components is presented in Figure 4.1.
Broadly, the framework consists of �ve steps:

1. Given a requested number of cases and controls, estimate the required pop-
ulation size for obtaining the desired number (of cases and controls) for a
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Figure 4.1: Diagram showing assumed �ow of work within framework
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given disease model.

2. Invoke genomeSIM, using the population size that was estimated in the pre-
vious step. Simulate population data set of genomes without disease assign-
ment. (The native genomeSIM disease assignment is removed from the data
set.)

3. Identify one (or several) SNP in the population genomes which matches a
desired allele frequency

4. On the basis of the one dataset SNP genotypes and the identi�ed SNP,
assign disease status a number of times, producing multiple case-control
datasets. Apply one or more SNP/disease association methods on each of
these datasets, aiming on detecting the speci�ed SNP.

5. Apply one or more performance measures on the outcome. This could include
comparing the resulting p-values of the speci�ed SNP with the p-values of
the other SNPs.

The framework is structured as a set of R functions which can be used inde-
pendently of each other. In 'script mode', a script is delivered with the framework
that performs the �ve steps automatically based on default values which can be
edited in the script. However, because of the modular structure with separate R
functions, one has an alternative option of '�exible mode' where one can try out
each of the R functions in the framework manually, trying out di�erent values in
each step before advancing to the next. This allows for greater �exibility.

Step 1: Estimating required population size

The number of cases and controls in the �nal generation of the simulated data
set will be a random variable which depends on the penetrance table and the
population size used in the simulation. In a genomeSIM simulation, given a pen-
etrance table and the allele frequencies of one or more risk SNPs that one wants
to simulate, it may be desirable to estimate a lower limit n of the population size
required for obtaining at least r cases and/or at least s controls. In a one-SNP
example, this may be done as follows: From Table 3.3, the prevalence of dis-
ease is K =

∑2
i=0 gifi so, assuming n independent Bernoulli trials, the expected

number of cases is r = nK = n
∑2

i=0 gifi. The expected number of controls is
s = n(1 − K) = n(1 −

∑2
i=0 gifi). Hence, the lower limit of the population size

required is
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n =


rP2

i=0 gifi
for at least r cases

s
1−

P2
i=0 gifi

for at least s controls

max{ rP2
i=0 gifi

, s
1−

P2
i=0 gifi

} The maximum, for at least r cases and s controls

(4.1)
If the Hardy-Weinberg equilibrum holds, then the SNP genotype frequencies

gi in (4.1) can be replaced by the SNP allele frequency expressions from Equation
(3.1).

Step 2: Invoke genomeSIM

From R, genomeSIM is invoked. For convenience, the con�guration �le that must
be used with genomeSIM is automatically edited by the framework, based on the
values that are passed by the user into the R function. In the current version
of the R function, only the population size parameter is edited in this way. All
the remaining simulation parameters in the con�guration �le have default values.
However, the framework allows for the user to provide a pre-edited genomeSIM
con�guration �le and use that one instead.

In the current version, every SNP in the framework is simulated based on
predetermined random initial allele frequencies ranging between g = 0.05 and 0.5.
(Recall from Section 4.1 the ALLELELIMITES parameter.) The outcomes of the
initial allele frequency assignments are stored in a �le. However, as the simulated
population is randomly crossed ahead in time, the SNP allele frequencies may
change, so it is not guaranteed that the allele frequencies of the ultimate data set
matches those that were set as initial frequencies. This becomes relevant in the
next step.

Step 3: Identify target SNP

With the completion of Step 2, a data set of SNP genotypes is obtained. The
next step is to identify a SNP as the disease SNP on which later disease status
assignment will be based. In order to obtain the expected number of cases and
controls that was calculated in Step 1, one has to make sure that the target SNP
has the right allele frequency, g. The target SNP is identi�ed in the following way.
Since one does not know the �nal g for the simulated SNPs, one must instead
estimate g0, g1 and g2 based on allele counts. For a given SNP,

ĝi =
No. of individuals with i copies of M allele in genotype of that SNP

Total no. of individuals
(4.2)
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Then, since the genomeSIM simulation is performed assuming Hardy-Weinberg
equilibrium, three di�erent estimates of g can be obtained based on g0, g1 and g2

from (3.1). The three estimates, denoted by ĝ(0), ĝ(1), and ĝ(2), are:

g0 = (1− g)2 ⇒ ĝ(0) = 1−
√
ĝ0

g1 = 2g(1− g) ⇒ ĝ(1) =
1

2
− 1

2

√
1− 2ĝ1

g2 = g2 ⇒ ĝ(2) =
√
ĝ2

(4.3)

In (4.3), the solutions ĝ(0) = 1 +
√
ĝ0 and ĝ(2) = −

√
ĝ2 are rejected because

ĝ must be a probability, 0 ≤ ĝ(1), ĝ(2) ≤ 1. The solution ĝ(1) = 1
2

+ 1
2

√
1− 2ĝ1 is

rejected because it was assumed in the simulation that g was the allele frequency
of the least common allele, so that 0 ≤ g ≤ 1

2
.

Based on the three estimates1 in (4.3) for each SNP, the framework must decide
which SNP that has the allele frequency closest to the desired g. In the framework,
this is currently done by minimising the di�erence between g and the mean of the
estimates in absolute values. If there are m SNPs, and g(ij) is the ith estimate of
g for the jth SNP, then the chosen estimate ĝ is

ĝ = argminj

[
g − 1

3

3∑
i=1

|ĝ(ij)|

]
, i = 0, 1, 2, j = 1, ...,m (4.4)

That however is only one of many possible choices for such a decision method.
Perhaps the estimates could be weighted if some of the estimates were assumed to
be more accurate than the others.

Step 4: Disease assignment and association method application

In this step, given a simulated genomeSIM data set and a target SNP, disease sta-
tus is assigned to all the individuals in the data set multiple times based on their
genotype for the target SNP. The penetrances f0, f1 and f2 (see Section 3.1) are
used for determining disease status for an individual based on the genotype. If the
genotype of the individual is NM , for example, then a random number from the
uniform[0,1] distribution is created and disease assigned if the number is less than

1The estimate ĝ(1) in (4.3) becomes imaginary if ĝ1 > 1
2 . In (4.3), the derivative dg1

dg is

negative for g > 1
2 and positive for g < 1

2 . The maximum of g1 is reached in g = 1
2 with g1 = 1

2
as the maximum value. But although g1 never exceeds 1

2 , its estimate ĝ1 from (4.2) could, which

would produce imaginary values for ĝ(1).
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f2. As a result, several di�erent case-control data sets are obtained based on the
single initial population genomes data set. These case-control data sets can then
be analysed in R with SNP/disease association methods. If disease is assigned
nS times, the result will be nS sets of p-values for all the SNPs. Currently, the
framework uses the maxstat method from the SNPassoc R package (See Gonzalez
et al. [2008] for details). This choice of method can be changed at a later time
according to the needs of the users of the framework.

In the current version of the framework, although the numbers of cases and
controls are speci�ed by the user, the resulting ratio of cases of controls is not
controlled, because the framework simulates cases and controls in order to provide
at least that many cases and at least that many controls. Thus, there could be too
many of either cases or controls.

Step 5: Performance measurement

In the �nal step, the p-values and other performance measurements of interest
resulting from the previous step will be evaluated.

4.3 Suggested application example and conceptual

test

Here an application of the framework is presented. Assume the following:

• One disease SNP under study has an allele frequency g and there are a total
of m SNPs.

• There is a dominant disease model and the odds ratio for the dominant case,
Equation (3.22), has a known value, for instance ψ = 2.

• There is available a method for detecting SNP/disease associations under a
dominant model. (e.g. the maxstat method.)

• The prevalence of the disease is K.

Assuming direct association, how many cases and controls are needed on av-
erage to achieve with probability β = 0.9 that the target SNP will appear among
the N lowest p-values that have signi�cant low values?

This is an example of a �rst-step empirical analysis on a path towards a more
realistic model, using the framework that has been presented in this thesis.
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Example Step 1: Estimating required population size

We know g and need to �nd penetrances f0, f1 and f2 so that we can estimate the
required population size for obtaining the desired number of cases and controls.
We utilise the odds ratio given in Equation (3.22) to �nd the penetrances. If we
assume that for the dominant model f1 = f2 ≡ fD, then Equation (3.22) reduces
to

ψ =

fD

1−fD

f0

1−f0

(4.5)

This is an equation with two unknowns, fD and f0, so we need more information
in order to arrive at a unique solution. We assume that the prevalence K =∑2

i=0 gifi of disease is known and provides the equation needed. Applying the
Hardy-Weinberg expressions for gi (3.1) and f1 = f2 ≡ fD, the prevalence becomes

K = (1− g)2f0 + [2g(1− g) + g2]fD = (1− g)2f0 + (2g − g2)fD (4.6)

Equations (4.5) and (4.6) are solved to yield the penetrances. The solution is

fD =

√
b2 − 4ac

2a

f0 =
K − (2g − g2)fD

1− g2

(4.7)

with a = (2g − g2)(ψ − 1), b = [ψ(g2 − 2g −K)− (1− g2 −K)] and c = ψK.

With these solved values for fD and f0, the required lower limit to the sim-
ulation population size for obtaining any number of cases and controls can be
computed using Equation (4.1), which is implemented in one of the R functions in
the framework.

Example Step 2: Invoke genomeSIM

Here genomeSIM is evoked, producing the data set of SNP genotypes which is
expected to yield the desired number of cases and controls in Step 4.

Example Step 3: Detect target SNP

One of the R functions in the framework �nds a SNP in the population genomes
data set which will serve as the disease SNP in the next step. (See Equation 4.4.)
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Example Step 4: Disease assignment and association method application

Using one of the R functions in the framework, disease status is assigned to the
population based on their genotypes of the disease SNP. This is repeated n times
producing nS di�erent case-control dataset from the initial population genomes
data set, and it is expected that at least the desired number of cases and controls
is produced every time. In the same loop the dominant SNP/disease association
method is also applied, yielding nS sets of p-values, each set consisting of m p-
values since there are m SNPs.

Example Step 5: Performance measurement

The frequency β with which the disease SNP is found among the N lowest p-values
that are signi�cally low is computed by one of the R functions in the framework.
If β < 0.9, then the number of cases and controls will have to be increased, thus
requiring a new simulation starting with Step 1 to estimate the new required sim-
ulation population size.

The number of cases and controls can be increased incrementally using a looped
script until β reaches its desired value (0.9 in this case). The number of cases and
controls which was used in the last loop before β reached 0.9 can be taken as
an empirical indication of the number of cases and controls required for a similar
study using real data.

Test of framework

A conceptual test is made in order to determine whether the suggested application
could be achievable with the framework. Assuming a dominant disease model with
a set of dominant penetrances, and using the maxstat R function, the goal is to
determine whether successive simulations by the framework with increased sample
sizes (i.e. number of cases and controls) will deliver increased power of detecting
the disease SNP. Unlike in the application, the test does not use a speci�ed odds
ratio to calculate the penetrances. Instead, penetrance values are chosen speci�-
cally for the test. The test performs �ve instances of the scheme in Figure 4.1 with
�ve di�erent sample sizes ranging from (100 cases, 200 controls) to (2000 cases,
4000 controls). The parameters that were common for all �ve instances are shown
in Table 4.2.

Parameters that varied from instance to instance are shown in Table 4.3.

The choice of the common penetrance value of (f0, f1, f2) = (0.3, 0.35, 0.35)
re�ects a dominant disease model since the disease risk of genotypes NM and MM
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Parameter Value
f0, f1, f2 0.3, 0.35, 0.35

g 0.4
No. of genes 20
SNPs per gene 5

Total no. of SNPs 100

Table 4.2: Parameters that were common for all �ve instances

Instance Parameter values
1 100 cases, 200 controls, nS = 100, set.seed(121)
2 300 cases, 600 controls, nS = 50, set.seed(122)
3 500 cases, 1000 controls, nS = 100, set.seed(123)
4 1000 cases, 2000 controls, nS = 100, set.seed(121)
5 2000 cases, 4000 controls, nS = 100, set.seed(519)

Table 4.3: Parameters that varied for all �ve instances

are similar and higher than the disease risk of genotype NN. The choice was also
motivated by the desire for a 1:2 ratio between cases and controls. (See discussion
of this ratio in Step 4 in Section 4.2.) The choice of penetrances in the test pro-
vides approximately a 1:2 ratio between cases and controls.

The seeds set by R allow for reproduction of the simulation results since the
computer's pseudorandom sequence starting point is identi�ed. The seeds are dif-
ferent for some of the �ve instances due to an unstability in the chosen association
method, the maxstat R function, when used with this framework. The reported
seeds are seeds that were found to work with the �ve instances. There were other
seeds that caused the maxstat method to crash. Also, the probability of crash
increases with nS because the maxstat R function is called nS × 100 times for each
instance. In particular, the sample size used instance 2 was unstable. A number
of seeds were tried in instance 2 with nS = 100 disease assignments, without suc-
cess. The seed reported in Table 4.3 worked when nS was reduced to 50, hence
the reduced nS. We will report the instability to the maintainers of the SNPassoc
package so that they can determine if it is a bug. In the meantime, this temporary
problem can be remedied in the framework by replacing the maxstat function with
another or by reducing nS.
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Chapter 5

Results

Figures 5.1, 5.2, 5.3, 5.4, and 5.5 show the results from the �ve simulated scenarios
with parameters described in Tables 4.2 and 4.3.

For each scenario there are three pairs of plots. The �rst pair corresponds to
the disease SNP that was identi�ed in the framework's Step 3, the two other pairs
correspond to random SNPs from the simulated data set that are used as refer-
ence SNPs. The left plot of every pair are histograms that show the frequencies of
p-values in ranges from 0 to 1 with intervals of 0.05. In scenario 1, with the lowest
sample size, 12 out of 100 p-values fall within the range of 0-0.05. The number of
p-values in this range increases steadily as the the number of cases and controls
are increased in scenarios 2-5, with scenario 5 yielding more than 80 out of 100
p-values in this range.

Likewise, the plot to the right of every pair displays the rate at which the SNP
has a p-value which is among the N lowest p-values for that scenario. The upper
right plot in Figure 5.1, for example, indicates that with 100 cases and 200 controls,
the disease SNP has a rate of occurrence among the 40 lowest p-values of about 0.6.

For N = 40, the rate was calculated as follows: In each of the n = 100 disease
assignments and applications of the maxstat method, every SNP in the simulated
data set produced a p-value. An indicator variable Ii took the value 1 if the disease
SNP was among the 40 lowest p-values and 0 otherwise, i = 1, ..., 100. The rate
of occurrence is the mean of the n = 100 indicator values, 1

100

∑100
i=1 Ii. The rate is

calculated similarly for every other N , resulting in the plotted values.

In Figures 5.1 to 5.5 we see that the random reference SNPs have rates that
are approximately linear. This suggests that they have uniform[0,1] p-value distri-
butions. The rate of the disease SNPs deviate increasingly from the straight line
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Figure 5.1: Results, scenario 1 (On avg. 99.57 cases, 202.43 controls)
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Figure 5.2: Results, scenario 2 (On avg. 303.08 cases, 600.92 controls)
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Figure 5.3: Results, scenario 3 (On avg. 498.82 cases, 1008.18 controls)
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Figure 5.4: Results, scenario 4 (On avg. 997.34 cases, 2015.66 controls)
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Figure 5.5: Results, scenario 5 (On avg. 2002.37 cases, 4022.63 controls)
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as the sample size increases. As sample size increases, the rate reaches high val-
ues sooner, which indicates that the p-values of the disease SNPs are increasingly
found among the lowest p-values. This is also indicated by the histograms.

In the spirit of the suggested application example in Section 4.3, if a hypothet-
ical request had been made for an assessment of the sample size needed to ensure
with probability β = 0.9 that the p-value of the disease SNP was found among
the lowest y=10 p-values, then Figures 5.1-5.5 can be used to assess the needed
sample size. It appears from Figure 5.4 that by �nding N = 10 on the x axis, the
rate is between 0.7 and 0.8, which indicates that 1000 cases and 2000 controls are
not su�cient. In Figure 5.5, the rate is well above 0.9, which indicates that 2000
cases and 4000 controls may be too much. The su�cient sample size appears to
be somewhere between 1000-2000 cases and 2000-4000 controls.

The simulation time for one scenario simulation was about 10 minutes on a
computer with an Intel(R) Xeon(TM) CPU 3.20 GHz Mhz processor and 2 GB
RAM.
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Chapter 6

Discussion

The conceptual test of Section 4.3 revealed that in its current state, our simulation-
based framework can be used according to its intention of making simulation-based
sample size and power considerations for SNP case-control association studies. The
immediate usage potential of the framework and its limitations will be discussed,
as well as proposals for results that can be obtained with the framework if further
adjustments are made.

On applying the simulation-based framework in its current state

By acquiring the R-code of its current state, anyone can make use of the frame-
work to produce immediate results, given that their computer supports R and
the genomeSIM program. It may be useful to biologists, who would provide the
parameters relevant for their studies (e.g. assumed penetrances f0, f1, f2, and an
allele frequency g) and retrieve a recommended number of cases and controls, or
the probability of their one disease SNP to be among a top speci�ed number of
detected SNPs. This may be done without modi�cations to the code. However,
biologists should bear in mind the limitations of the framework in its current un-
modi�ed form and judge for themselves if the limitations are too severe for their
application. Currently, only a single biallelic SNP is supported. In addition, re-
sults provided by the framework could be erranous if the simulated genomic data
does not mimic the real genomic data well. In the framework, due to its mod-
ular structure the means of obtaining the simulated genomic data (genomeSIM)
can be replaced easily by another simulation program, if a better one is available.
The genomeSIM package also allows for more realistic simulations if the biolo-
gists specify more parameters beyond the defaults speci�ed in the framework. The
cost and e�ort of obtaining a better simulation program, such as the successor of
genomeSIM, genomeSIMLA, could be weighted against the bene�t on results of
more realistic simulations. Even if a more realistic simulation program was ob-
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tained, the results are not guaranteed to improve. In any case, the current state
of the framework represents the �rst step towards more realistic analyses.

Another component of the framework that is easily replaced with little labor
due to its modular structure is the chosen R statistical association analysis method,
maxstat. Any R function that accepts data on the form of Figure 3.2 and is able
to produce p-values for each SNP will do. There could be existing functions that
have been implemented by others, if not, the user could implement the function.
The �exibility of method replacement is useful for biologists whose projects involve
speci�c favored methods.

On a computer with standard speci�cations, framework time consumption was
moderate (10 minutes) for a scenario with 100 SNPs and a population ranging from
300 to 6000 individuals and a combined step of disease assignment and association
method execution being applied nS=100 times. The genomeSIM simulation pro-
gram is written in ANSI C++ [Dudek et al., 2006], and the rest of the framework
consists of R-code. In the scenario examples in this thesis, the genomeSIM simula-
tions constituted only a few seconds of the total framework time consumption. In
genome-wide studies, the number of SNPs can easily range in the ten-thousands,
even hundred-thousands. This would increase framework time consumption due to
both genomeSIM simulation, whose code cannot easily be improved, and also the
time consumption of the R-code in the framework signi�cantly unless the current
code is improved. Also, if a more realistic data set was to be obtained, the num-
ber of mating generations in genomeSIM could be increased, increasing simulation
time.

The sources for time consumption could be divided into three: Simulation
program (e.g. genomeSIM), framework R functions for disease assignment, data
loading and general setting up, such as the ones in the appendix of this thesis,
and invoked R association analysis functions (e.g. maxstat). Currently, for each
scenario, one and only one data set of SNP genotypes is simulated. Based on
this one data set, disease status is repeatedly assigned, producing repeated case-
control data sets. For each of these case-control data sets, the association method
is applied once. Based on the duration of each of the three main sources of time
consumption, the framework could be modi�ed in order to reduce total time con-
sumption. For instance, if the simulation program consumes very little time, like
it did in the conceptual test in Section 4.3, then instead of invoking the simulation
program only once a new data set of genotypes could be simulated for each of the
repeated case-control data sets. In that case, the variation between each of the
simulated genotype data set becomes relevant. If the variation is very high, for
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instance due to a wide range of allele frequencies in genomeSIM due to a wide
ALLELEFREQS parameter, then maybe the total number of such simulated case-
control data sets should be increase in order to level out the variation.

If the main source of time consumption is the framework utility R functions,
care could be taken in the general code design to increase the e�ciency of the code,
or a faster programming language such as C could be used. In fact, the frame-
work R function for disease application is supported by genomeSIM, meaning that
disease assignment can be done within its fast code. However, implementing the
disease assignment in R allows for greater control and �exibility, rather than re-
lying on a pre-bundled package such as genomeSIM. If both control/�exibility in
disease assignment and e�cient code is desirable, then �exible disease assignment
could be implemented by the user in an e�cient language and included into the
framework.

If both genotype data simulation, framework R-code and invoking of association
analysis R function are e�cient and fast, but genotype data simulated is a bit
slower than the other two, then another option could be to run a loop of genotype
data simulations, and for each iteration in the loop a subloop could be ran with a
modest number of disease assignments and association method applications.

The ratio of cases versus controls

The ratio of cases versus controls produced by the framework was mentioned in
Section 4.2. In its current design, the framework uses genomeSIM to simulate
the SNP genotypes of a whole population of individuals. Then, disease status is
assigned based on speci�ed penetrances f0, f1, and f2 of a single SNP, producing
cases and controls. In the current con�guration, the framework does not control
the ratio of cases versus controls. The resulting numbers of cases and controls
re�ect the prevalence K of disease in the simulated population using the disease
model speci�ed. Naturally, the resulting numbers of cases could di�er from the
ones desired by the user. For instance, if the penetrances are very low, then the
prevalence K in Table 3.1 will be also be small, resulting in ratio of cases to con-
trols which is too low. The framework can be modi�ed in a later version to control
the ratio by removing redundant cases or controls from the data set every time
after disease status has been determined for all the individuals.

In the framework conceptual test in section 4.3, values (f0, f1, f2) = (0.3, 0.35, 0.35)
were chosen in order to ensure a 1:2 ratio of cases versus controls because the lack
of redundant case/control removal in the current version. If it is desirable to use
the framework with a single SNP with a more modest e�ect and hence lower pen-
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etrances, the penetrance values that were used in the example could be too high
and the example unrealistic. Also, an allele frequency of g = 0.4 was used in order
to obtain more than just a few number of individuals with the MM genotype
since the frequency of the MM genotype is g2 when Hardy-Weinberg equilibrium
is assumed. This demonstrates that if a lower g and lower penetrancet are desired,
case/control ratio controlling by removal of redundant cases or controls could be
convenient.

Proposal for further applications and studies using the framework

Previously, the potential for immediate results by using the framework in its cur-
rent state, possibly with only minor changes, was discussed. However, by modi-
fying the framework beyond a mere replacement of modules, further possibilities
for results can be possible. The step of going from one SNP to multiple SNPs is
a more advanced modi�cation which requires biological understanding of the how
multiple SNPs can act together in causing complex diseases. In Sections 3.4 and
3.5, some multiple-SNP genotype concepts was explored as well as a conceptual
study of how logistic regression can be applied to multiple-SNP case-control as-
sociation. In order to incorporate multiple-SNP models into the framework, one
needs to specify penetrance tables or another way of determining disease status
of an individual based on his multiple disease SNP genotypes. Then one needs
to replace the single-SNP association method with a multiple-SNP association
method. Since many diseases are believed to be complex and a�ected by many
SNPs, multiple-SNP expansion of the framework could be very useful. The same
questions can be raised about whether the framework can realistically simulate
scenarios of multiple SNPs realistically as were raised for the single-SNP scenario,
especially since multiple-SNP models are more complex and thus more di�cult to
simulated realistically. Again, the framework with its exploratory potentials is a
�rst step towards more realistic tools.

Similarly, indirect association methods could be incorporated into the frame-
work, enabling the detection of other SNPs that are correlated with a causal SNP
due to linkage disequilibrium.

Another modi�cation which is more advanced than mere module replacement
is incorporation of multiple testing. The plots of the random reference SNPs in the
conceptual test of the framework in Section 4.3 indicated that the p-values of the
reference SNPs had approximately uniform[0,1] distributions. Hence, as was also
described in Section 3.6, false positive associations could arise due to chance. By
incorporating for instance adjusted p-values due to false positives and controlling
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type I error rates such as FDR and FWER, the framework could take into account
the issue of multiple testing. In this thesis, multiple testing features have not been
in the scope during construction of the framework. Focusing on the MAX test
method, a related master study [Risberg, 2008] that has peered deeper into mul-
tiple testing aspects regarding this method suggests that the correlation between
SNPs probably requires resampling. The study indicates that resampling of the
FWER is too conservative and that resampling of the FDR might be better.

In the current version of the framework, p-values are obtained by designating
one speci�c SNP as the disease SNP, then using its penetrance values to assign
disease to all individuals and an association method to produce p-values for all
SNPs. If multiple testing is to be incorporated in a later version of the frame-
work, the change could occur at the level of the produced p-values by introducing
adjusted p-values at that level. This does not constitute a very broad transition.
Similarly, in the performance evaluation module of the framework, measures of
average power can be introduced in place of regular power considerations at this
level. These features could be added to the framework in order to advance it on
the path from an initial approach towards more a more realistic tool.

Further results can be obtained if one considers the prospect of other sources
of data and projects to be used in combination with the framework. For instance,
HUNT (Helseundersokelsen i Nord-Trondelag) represents a major source of ge-
nomic data which can be used as an input to the framework rather than simulated
data. This would alter the approach of the framework considerably. If case-control
SNP genotype data was obtained from HUNT and used with the framework, then
disease status would already have been determined, which would remove the need
for a disease assignment step in the framework. Alternatively, in the context of
planning case-control studies on HUNT data, disease status could be temporar-
ily removed from the HUNT case-control data and the data processed in regular
framework mode in order to provide pre-study assessments on the required sam-
ple size (number of cases and controls) needed in order to expect detection of a
candidate SNP assuming a given disease model and association method. Another
use in the context of HUNT data could be this: If other case-control studies on
HUNT SNP data detected one or more SNPs that were later con�rmed in labora-
tories to be causal for the disease, then the framework could be used on the same
case-control data, removing disease status, then assuming the already detected
SNP as the disease SNP and exploring the performances of a wide range of disease
models for that SNP and a wide range of methods. In this way, the framework's
components could provide methodic insights using real data with a known and
con�rmed disease SNP.

57



With this discussion of the test results of the framework, the characteristics of
its current state and the potential for further applications, the thesis is concluded.
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Appendix A

R-code

A.1 Complete R-code for framework

master.r

# master . r : s k r i p t f o r aa bruke rammeverkets metoder e t t e r
f e r d i g opp s e t t

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

source ( "master/ s ou r c e s k r i p t . r " )

set . seed (121)

da ta in f o <− skaf fDataMedNcasesCtr ls ( ncases =100 , n c t r l s =200 ,
g=0.4 , f 0 =0.3 , f 1 =0.35 , f 2 =0.35 , k f f i l n=" kon f i g . datasim

" , utkat=" utkata log " , d a f i l n="data . txt " , e g f i l n=F)

data <− read . table ( da ta in f o$ d a t a f i l )

slemSNP <− finnBesteNslemSNP (data=data , g=data in f o$g , N=1)

outputobj <− t e s t ana l y s e (data=data , n=100 , slemSNP=slemSNP ,
penetr=data in f o$penetr )

f r ekvens <− b lantBes tePverd i e r ( pve rd i e r=outputobj [ [ 2 ] ] ,
s lemInd=slemSNP , besteN=5)

print ( f r ekvens )
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source ( "master/ rmsource skr ip t . r " )

print ( " f e r d i g " )

sourceskript.r

# sou r c e s c r i p t . r : s o u r c e s c r i p t f o r a l l e f i l e n e i koden
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

source ( " skaf fDataMedNcasesCtr ls . r " )
source ( " skaf fDataMedNcasesCtr ls/ f innNodvendigSampleSize . r " )
source ( " skaf fDataMedNcasesCtr ls/ lagGenomeSIMkonf igf i l . r " )
source ( " skaf fDataMedNcasesCtr ls/hentUtNUMGENS. r " )
source ( " skaf fDataMedNcasesCtr ls/ s imu le rDatase t t . r " )

source ( " finnBesteNslemSNP . r " )
source ( " finnBesteNslemSNP/est imerGi . r " )
source ( " finnBesteNslemSNP/hentUtBesteN . r " )

source ( " t e s t ana l y s e . r " )
source ( " t e s t ana l y s e/beregnSykdomskolonne . r " )
source ( " t e s t ana l y s e/ l a gKont ingen s tabe l l . r " )

source ( " b lantBes tePverd i e r . r " )
source ( " b lantBes tePverd i e r/blantBesteN . r " )

rmsourceskript.r

# rmsourcescr ip t . r : s k r i p t f o r aa rydde opp i R−workspacet
e t t e r bruk

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

rm( skaf fDataMedNcasesCtr ls )
rm( f innNodvendigSampleSize )
rm( lagGenomeSIMkonf igf i l )
rm(hentUtNUMGENS)
rm( s imu le rDatase t t )
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rm( finnBesteNslemSNP )
rm( est imerGi )
rm( hentUtBesteN )

rm( t e s t ana l y s e )
rm( beregnSykdomskolonne )
rm( l agKont ingen s tabe l l )

rm( b lantBes tePverd i e r )
rm( blantBesteN )

ska�DataMedNcasesCtrls.r

# skaf fDataMedNcasesCtr l s . r : . . .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

skaf fDataMedNcasesCtr ls <− function ( ncases , n c t r l s , g , f0 ,
f1 , f2 , k f f i l n , utkat , da f i l n , e g f i l n=F) {

u t l i s t <− l i s t ( )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Operasjon 1 . Beregn nodvendig sample s i z e f o r aa

faa t i l s t r e k k e l i g
# mange cases og con t ro l s , g i t t enke l 1SNP−

pene transemode l l
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s s i z e <− f innNodvendigSampleSize ( ncases , n c t r l s , g ,
f0 , f1 , f 2 )

t p l i s t <− l i s t ( s s i z e )
names( t p l i s t ) <− " s s i z e "
u t l i s t <− c ( t p l i s t , u t l i s t )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Operasjon 2 . Simuler d a t a s e t t e t i genomeSIM ved

h j e l p av enten
# a) en kop i av en de f au l t−k o n f i g f i l som hentes f r a

e t s t ed
# i k i l dekoden , e l l e r
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# b ) en h e l t egen k o n f i g f i l , som maa s k a f f e s av
brukeren s e l v

# og p l a s s e r e s paa ro tn i v aa e t i k i l d e koden f o r
master . r k a l l e s .

# Uansett h v i l k e n metode som brukes v i l den sample
s i z e som b l e

# funnet over e d i t e r e s automat isk inn i k o n f i g f i l e n
f o r s imu ler ingen

# s t a r t e r .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

kon f i g <− ""
i f ( e g f i l n ) { # de f a u l t=F

kon f i g <− e g f i l n
} else {

kon f i g <− lagGenomeSIMkonf igf i l ( f i l n v n=
k f f i l n )

}

# Rik t i g sample s i z e e d i t e r e s d e r e t t e r automat isk
inn i k o n f i g f i l vha sed .

# Teknisk ad hoc−t r i k s som kan vaere v an s k e l i g aa
f o r s t a a motivas jonen f o r uten f o r k l a r i n g :

# as . i n t e g e r ( s s i z e )+1, som er POPSIZE, synes aa b l i
ganget med 10 , noe som

# kan v i r k e r a r t da POPSIZE faar en e k s t r a 0 .
AArsaken t i l a t den b l i r ganget

# med 10 er en ad hoc−l o sn in g paa e t problem som
oppstod da de t t r e n g t e s en

# ek s t r a boks tav paa s l u t t e n av POPSIZE− l i n j a i
t e k s t f i l a f o r d i sed

# f j e r n e t den s i s t e boks taven paa hver enes t e l i n j e
. 0 ' en f j e r n e s a l t s aa , og

# POPSIZE b l i r s taaende i g j e n r i k t i g .

system (paste ( " sed '/^POPSIZE/c POPSIZE " , ( as .
integer ( s s i z e )+1)∗10 , " ' " , konf ig , " >
tempkonfig " , sep="" ) )
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# Kommandoen over skap t e t r o b b e l med e t e k s t r a LF−
l i n j e s k i f t paa s l u t t e n

# av hver l i n j e . GenomeSIM v i l dessu ten ha
k o n f i g f i l a med CRLF− l i n j e s k i f t .

# De ek s t r a LF− l i n j e s k i f t e n e f j e rne s , og CRLF
s i k r e s ,

# vha f o l g ende to kommandoer :

system ( " sed ' s/ . $// ' tempkonfig > tempkonfig2 " )
system ( " sed −e ' s/$/\ r/ ' tempkonfig2 > tempkonfig " )

system (paste ( "cp tempkonfig " , kon f i g ) ) # de t t e b l i r
den end e l i g e k o n f i g f i l a

system ( "rm tempkonfig tempkonfig2 " ) # rydder opp

# Simulerer d a t a s e t t e t . Det havner som en t e k s t f i l
i den

# s p e s i f i s e r t e u t ka t a l o g en . (En kop i av k o n f i g f i l a
som b l e b ruk t

# havner ogsa/ der , som dokumentasjon f o r
s imu ler ingen . )

d t f i l n <− s imu le rDatase t t ( k f f i l n=konf ig , utkat=
utkat , d a f i l n=da f i l n )

# Se t t e r opp e t R−o b j e k t som inneho lde r informasjon
# om da t a s e t t e t som net topp b l e s imu l e r t .

t p l i s t <− l i s t ( kon f i g )
names( t p l i s t ) <− " kon f i g "
u t l i s t <− c ( u t l i s t , t p l i s t )

t p l i s t <− l i s t ( d t f i l n )
names( t p l i s t ) <− " d a t a f i l "
u t l i s t <− c ( u t l i s t , t p l i s t )

t p l i s t <− l i s t ( g )
names( t p l i s t ) <− "g"
u t l i s t <− c ( u t l i s t , t p l i s t )
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t p l i s t <− l i s t (c ( f0 , f1 , f 2 ) )
names( t p l i s t ) <− " penetr "
u t l i s t <− c ( u t l i s t , t p l i s t )

u t l i s t
}

�nnNodvendigSampleSize.r

# finnNodvendigSampleSize . r : . . .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f innNodvendigSampleSize <− function ( ncases , n c t r l s , g , f0 ,
f1 , f 2 ) {

g0 <− (1−g )^2
g1 <− 2∗g∗(1−g )
g2 <− g^2
K <− g0∗ f 0+g1∗ f 1+g2∗ f 2
u t s i z e <− max( ncases/K, n c t r l s /(1−K) )
u t s i z e

}

lagGenomeSIMkon�g�l.r

# lagGenomeSIMkonf ig f i l . r : . . .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

lagGenomeSIMkonf igf i l <− function ( f i l n v n=" kon f i g . datasim" )
{

system (paste ( "cp skaf fDataMedNcasesCtr ls/
genomeSIMfi ler/genomeSIMkonfigf i lMal . datasim" ,
f i l n v n ) )

f i l n v n
}

simulerDatasett.r
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# simu l e rDa ta se t t . r : . . .
#−−−−−−−−−−−−−−−−−−−−−−−

s imu le rDatase t t <− function ( k f f i l n , utkat , d a f i l n ) {

# Forberede l s e : l a g e r u t k a t a l o g f o r s imu l e r t e f i l e r
, og

# f i l e n e som genomeSIM l a g e r kommer t i l aa faa
f o r s t a v e l s e n "out "

system (paste ( "mkdir" , utkat ) )
out <− paste ( utkat , "/out" , sep="" ) #

system (paste ( "genomeSIM" , k f f i l n , out ) ) # de t t e er
s imu l e r i n g s k a l l e t i Unix

# En kopi av k o n f i g f i l a f r a ro tn i vaa i k i l d e koden
l e g g e s i u t ka t a l o g en

# som dokumentasjon paa s imu ler ingen som b l e g j o r t

system (paste ( "cp" , k f f i l n , utkat ) )

# Trenger aa v i t e NUMGENS− t a l l e t f r a en l i n j e i
k o n f i g f i l a f o r aa kunne

# g i ut f i l b a n en ( adressen ) t i l den f e r d i g e
d a t a s e t t f i l a .

# S k r e l l e r ogsaa vekk den f o r s t e kolonnen i
d a t a s e t t e t ved h j e l p av

# e t per l−k a l l . Kolonnen som f j e r n e s er en
# i r r e l e v a n t genomeSIM−sykdomskolonne da kun

t i l f e l d i g sykdoms−
# paa l e g g ing b l e b ruk t i denne s imu ler ingen . Det

r e s t e r ende d a t a s e t t e t
# inneho lder kun ko lonner f o r s imu l e r t e genotyper .

NUMGENS <− hentUtNUMGENS( k f f i l n )
dat fn1 <− paste ( utkat , "/" , "out . 1 . " , NUMGENS, " .

out" , sep="" )
dat fn2 <− paste ( utkat , "/" , da f i l n , sep="" )
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p e r l k a l l <− paste ( " p e r l −pe ' s/^[^ ]+\ ∗// ' " ,
datfn1 , ">" , dat fn2 )

system ( p e r l k a l l )

# g i r ut f i l b a n en ( adressen ) t i l d a t a s e t t f i l a

datfn2
}

hentutNUMGENS.r

# hentUtNUMGENS. r :
#−−−−−−−−−−−−−−−−−

hentUtNUMGENS <− function ( f i l n a vn ) {
NUMGENS <− system (paste ( " grep −v \\#" , f i l navn , " |

grep NUMGENS" ) , i n t e rn=T)
NUMGENS <− s t r sp l i t (NUMGENS, " " )
NUMGENS <− NUMGENS[ [ 1 ] ] [ 2 ]
NUMGENS <− s t r sp l i t (NUMGENS, "" )
NUMGENS <− NUMGENS[ [ 1 ] ]
NUMGENS <− NUMGENS[ 1 : ( length (NUMGENS)−1) ]
NUMGENS <− paste (NUMGENS, c o l l a p s e="" )
NUMGENS <− as .numeric (NUMGENS)
NUMGENS

}

�nnBesteNslemSNP.r

# finnSlemSNP . r : . . .
#−−−−−−−−−−−−−−−−−−−

finnBesteNslemSNP <− function (data , g , N) {

# s e t t e r opp matr i se som l a g r e r a l l e l f r e k v e n s d a t a
f o r a l l e m SNP

m <− dim(data ) [ 2 ]
mat <− matrix (nrow=m, ncol=6)
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# f y l l e r ut de 3 f o r s t e kolonnene i matrisen med
e s t imer t e

# f r e k v en s e r g0 , g1 og g2 f o r a l l e m SNPx , ved
h j e l p av

# h j e l p e f unk s j onen est imerGi . r
# ( g0+g1+g2=1 fo r a l l e SNP)

mdata <− as .matrix (data )
g0hat <− apply (mdata , 2 , est imerGi , i =0)
g1hat <− apply (mdata , 2 , est imerGi , i =1)
g2hat <− apply (mdata , 2 , est imerGi , i =2)
mat [ , 1 ] <− g0hat
mat [ , 2 ] <− g1hat
mat [ , 3 ] <− g2hat

# antar Hardy−Weinberg l i k e vek t og beregner 3
f o r s k j e l l i g e

# es t ima te r f o r g ba s e r t paa hhv g0 , g1 og 2 .
F y l l e r d e t t e

# inn i de 3 s i s t e kolonnene i t a b e l l e n .

ghat0 <− 1−sqrt ( g0hat )
ghat1 <− 1/2 − 1/2∗sqrt (1−2∗g1hat )
ghat2 <− sqrt ( g2hat )
mat [ , 4 ] <− ghat0
mat [ , 5 ] <− ghat1
mat [ , 6 ] <− ghat2

dmat <− data . frame (mat)
names(dmat) <− c ( " g0hat " , " g1hat " , " g2hat" , " ghat0"

, " ghat1" , " ghat2" )

# Sammenligner den onskede verd i en g med
g j ennomsn i t t e t av de

# t r e es t imatene f o r hver SNP. I d e n t i f i s e r e r en
l i s t e over de

# N SNP som er naermest den onskede g i f o l g e d e t t e
k r i t e r i e t .

# Ti l d e t t e brukes h je lpemetoden hentUtBesteN . r
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# (Andre k r i t e r i e r /normer kunne ogsaa vae r t t en k t
b ruk t )

# NB! Est imate t f o r g ba s e r t paa g1−kolonnen (
kolonne 2 i matrisen )

# produserer i b l a n t NA−v e r d i e r pga . kvadra t ro t en av
noe n e g a t i v t .

# Dette
# s k j e r naar den opp r i nne l i g e

s imuler ingsparameteren f o r en SNP
# l i g g e r naer g=0.5. Programmet mi t t haandterer

d e t t e ved aa se bor t
# f ra a l l e SNP som g i r NA−v e r d i e r i ko lonne 2 .
# Dette b e t y r at h v i s man er paa u t k i k k e t t e r
# en SNP med en g−v e rd i i omraadet rundt 0 .5 , v i l

man r i s i k e r e aa se
# bor t f r a en k e l t e gode kand ida te r .

# Det an b e f a l e s uanse t t a t man i e t t e r k an t s j e k k e r
at de SNP

# i l i s t e n som kommer
# ut f a k t i s k l i g g e r "naer" den onskede verd i en f o r

g .

d i f f <− abs ( g − 1/3∗( ghat0+ghat1+ghat2 ) )
d i f f [ d i f f=="NaN" ] <− 2
d i f f <− sort ( d i f f )
d i f f [ d i f f==2] <− "NaN"
u t l i s t <− l i s t ( )
t p l i s t <− l i s t ( d i f f )
names( t p l i s t ) <− "besteSNP"
u t l i s t <− c ( u t l i s t , t p l i s t )
t p l i s t <− l i s t (dmat)
names( t p l i s t ) <− "Est_g012_g"
u t l i s t <− c ( u t l i s t , t p l i s t )

# Henter ut indeksene t i l de N SNP som har e s t imer t
g−v e rd i

# som l i g g e r naermest den onskede g ( i f o l g e de t
b ruk t e naerhe t smaa le t )
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# fra den s o r t e r t e d i f f e r a n s e l i s t e n .
# Eksempel paa output [N=5]: besteN = c

(45 ,3 ,9 ,24 ,55)
# Dette b e t y r at SNP nr . 45 har e s t imer t g−v e rd i

som l i g g e r
# naere s t den onskede g som b l e sendt inn t i l

metoden , e t t e r f u l g t av
# SNP nr . 3 , 9 , 24 og 55 i synkende r e k k e f o l g e .

besteN <− hentUtBesteN ( u t l i s t $besteSNP , N)
besteN

}

estimerGi.r

# estimerGI . r : . . .
#−−−−−−−−−−−−−−−−−−−

est imerGi <− function ( SNPkolonne , i ) {
giHat <− length ( SNPkolonne [ SNPkolonne==i ] ) /length (

SNPkolonne )
giHat

}

hentUtBesteN.r

# hentUtBesteN . r : . . .
#−−−−−−−−−−−−−−−−−−−−

# Denne koden henter ut de N f o r s t e numeric− t a l l f r a en
# character−vek t o r paa formen
# c ("VX" , "VY" , . . . ) der X, Y, . . . er t a l l .
# Eksempel : c ("V14" , "V6" , "V107") og N=2, da g i r koden ut

c (14 , 6) .

hentUtBesteN <− function ( b e s t e l i s t e , N) {
b e s t e l i s t e <− names( b e s t e l i s t e [ 1 :N] )
b e s t e l i s t e <− s t r sp l i t ( b e s t e l i s t e , sp l i t="V" )
ut index <− vector ( length=length ( b e s t e l i s t e ) )
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for ( i in 1 : length ( b e s t e l i s t e ) ) {
ut index [ i ] <− as .numeric ( b e s t e l i s t e [ [ i

] ] [ 2 ] )
}
ut index

}

testanalyse.r

# t e s t a n a l y s e . r
#−−−−−−−−−−−−−−

# Denne metoden g j o r f o l g ende n ganger :
# paa d a t a s e t t l a s t e t i R, t r i l l t e rn ing f o r

sykdomspaa l egge l s e => produserer 1
sykdomskolonne

# t e s t e r en metode 1 ( e . g . Armitage dominant ) paa
d a t a s e t e t med t i l h o r e nd e sykdomskolonne

# t e s t e r en metode 2 ( e . g . Armitage a d d i t i v ) paa
d a t a s e t t e t med samme t i l h o r e nd e sykdomskolonne

# . . .
# t e s t e r en metode M ( e . g . Armitage r e c e s s i v ) paa

d a t a s e t t e t med samme t i l h o r e nd e sykdomskolonne

# For hver av de n r ep e t i s j on ene b l i r en ny sykdomskolonne
produser t og de M metodene b l i r t e s t e t paa de t samme
opp r i nne l i g e d a t a s e t t e t , men naa med den nye
sykdomskolonnen .

# La m vaere a n t a l l SNP. Ou tpu tob j e k t e t er en l i s t e :
# l i s t e [ [ 1 ] ] er n s e t t med sykdomskolonner ( en

POPSIZE x n matr i se )
# l i s t e [ [ 2 ] ] er n s e t t v e k t o r e r med p−v e r d i e r f o r

a l l e de m SNP' ene som stammet f r a aa t e s t e t med
metode 1 ( en m x n matr i se )

# l i s t e [ [ 3 ] ] er t i l s v a r e n d e som l i s t e [ [ 2 ] ] , bare
med metode 2 ( en m x n matr i se )

# . . .
# l i s t e [ [M+1]] er t i l s v a r e n d e som l i s t e [ [ 2 ] ] og

l i s t e [ [ 3 ] ] , bare med metode M ( en m x n matr ise )
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# NB: Hvis a n t a l l metoder (M) s k a l okes u tover 1 , som er
de fau l t en ,

# maa d e t t e e d i t e r e s inn f o r haand i koden under . En s l i k
u t v i d e l s e

# er s t o t t e t av
# kodedes i gne t , men g j o r e s paa ege t ansvar og kan medfore

at koden i k k e

# v i r k e r h v i s de t g j o r e s f e i l .

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t e s t ana l y s e <− function (data , n , slemSNP , penetr ) {
l ibrary ( SNPassoc )

M<− 1 # s e t t inn a n t a l l metoder som s k a l brukes
her

# Se t t inn en vek t o r av metodenavn her .
# Eksempel : c ("metode1 " , "metode2 " , . . . )
# Dette er t i l bruk f o r navng iv ing av ou t pu t o b j e k t

l eng e r nede
# i koden .

metnvn <− "max"

# Se t t e r opp e t ou t pu t o b j e k t som be s t aa r av
f o l g ende :

# En POPSIZE X n matr ise med n sykdomspaa legg inger
# M matriser , hver av dimensjon m X n , med
# n p−ve rd i ko l onner f r a bruk av de M metodene

POPSIZE <− dim(data ) [ 1 ]
m <− dim(data ) [ 2 ]
u t l i s t <− l i s t ( )
t p l i s t <− l i s t (matrix (nrow=POPSIZE, ncol=n) )
names( t p l i s t ) <− " sykdomskol "
u t l i s t <− t p l i s t
for ( i in 1 :M) {
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t p l i s t <− l i s t (matrix (nrow=m, ncol=n) )
names( t p l i s t ) <− metnvn [ i ]
u t l i s t <− c ( u t l i s t , t p l i s t )

}

# Her k j o r e s for−l o kken n ganger , og de nevnte
ou tpu tmat r i s e r

# f y l l e s ut . Metoden som l a g e r p−verd i ene i d e f au l t
−i n n s t i l l i n g e n

# er maxstat f r a SNPassoc−pakken i R.
# maxstat t r enge r inpu tda ta f o r 1 SNP paa formen

# r0 r1 r2
# s0 s1 s2 ( se Zheng og Gastwirth , 2006)

# Dette s k a f f e s t i l v e i e av hje lpemetoden
l a gKon t i n g en s t a b e l l . r

for ( i in 1 : n) {
u t l i s t $sykdomskol [ , i ] <− as .matrix (

beregnSykdomskolonne (data [ slemSNP ] ,
penetr ) )

for ( j in 1 :m) {
tab l e23 <− l a gKont ingen s tabe l l ( as .

matrix (data [ , j ] ) , as .matrix (
u t l i s t $sykdomskol [ , i ] ) )

max <− maxstat ( tab l e23 )
u t l i s t [ [ 2 ] ] [ j , i ] <− max [ 5 ]

}
}

# Metoden g i r per d e f a u l t matrisen med p−v e r d i e r
f r a maxstat

u t l i s t
}

beregnSykdomskolonne.r

# beregnSykdomskolonne . r − . . .
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

beregnSykdomskolonne <− function ( SNPkol , penetr ) {
f 0 <− penetr [ 1 ]
f 1 <− penetr [ 2 ]
f 2 <− penetr [ 3 ]
utko l <− SNPkol
utko l [ utko l==0] <− rbinom( length ( utko l [ u tko l==0]) ,

1 , f 0 )∗3
utko l [ utko l==1] <− rbinom( length ( utko l [ u tko l==1]) ,

1 , f 1 )
utko l [ utko l==2] <− rbinom( length ( utko l [ u tko l==2]) ,

1 , f 2 )
utko l [ utko l==3] <− 1
utko l

}

lagKontingenstabell.r

# la gKon t i n g en s t a b e l l . r : . . .
#−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Denne metoden ta r inn e t d a t a s e t t med SNP−genotyper og en
# t i l s v a r e n d e sykdomskolonne . Fra d e t t e t e l l e r den opp de
# re l e v an t e s t o r r e l s e r og s e t t e r opp en 2 X 3

k o n f i d e n s t a b e l l
# paa formen

# r0 r1 r2
# s0 s1 s2

# Se Zheng og Ghastwirth , 2006

l a gKont ingen s tabe l l <− function ( SNPkol , sykko l ) {
mat <− cbind ( SNPkol , sykko l )
temp <− mat [mat[ ,1 ]==0]
r0 <− length ( temp [ temp==1])
mat [ , 1 ] [mat[ ,1 ]==1] <−3
temp <− mat [mat[ ,1 ]==3]
r1 <− length ( temp [ temp==1])
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mat [ , 1 ] [mat[ ,1 ]==3] <−1
temp <− mat [mat[ ,1 ]==2]
r2 <− length ( temp [ temp==1])
n0 <− length ( SNPkol [ SNPkol==0])
n1 <− length ( SNPkol [ SNPkol==1])
n2 <− length ( SNPkol [ SNPkol==2])
s0 <− n0−r0
s1 <− n1−r1
s2 <− n2−r2
kottab <− rbind (c ( r0 , r1 , r2 ) ,c ( s0 , s1 , s2 ) )
kottab

}

blantBestePverdier.r

# b lan tBes t ePve rd i e r . r : . . .
#−−−−−−−−−−−−−−−−−−−−−−−−−−

# Denne metoden ta r inn en m X n t a b e l l som be s t aa r av
# n s e t t med p−v e r d i e r f o r m SNP som stammer f r a en p−verd i

−
# genererende metode som er g j e n t a t t n ganger paa a l l e de m

SNP.
# slemInd er indek sp l a s s e r ing en , f . eks 58 , t i l Ã�n s p e s i e l l

SNP
# b l an t de m.
# besteN er e t t a l l , f . eks 7 . Metoden g i r ut andelen av

ganger
# den s p e s i e l l e SNP' en er b l an t de l a v e s t e besteN p−

verd i ene
# fo r hver av de n g j e n t a k e l s e n e .
# Eksempel : s lemInd = 58 , besteN = 7 , og anta at i p−

v e r d i t a b e l l e n
# som kommer inn er n = 10.
# Da g i r metoden ut en vek t o r med 10 f r e k v en s e r mellom 0 og

1 , der
# hver f r e k v e k s svare r t i l hvor o f t e SNP nr 58 var b l an t de

l a v e s t e
# 7 p−verd i ene f o r den g j e n t a k e l s e n av den p−

verd i genererende
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# metoden .

b lantBes tePverd i e r <− function ( pverd ie r , slemInd , besteN ) {
n <− dim( pve rd i e r ) [ 2 ]
m <− dim( pve rd i e r ) [ 1 ]
vektor <− apply ( pverd ie r , 2 , blantBesteN , slemInd ,

besteN )
guns t i g e <− length ( vektor [ vektor==1])
mulige <− length ( vektor )
f r ekv <− guns t i g e/mulige
print ( vektor )
f r ekv

}

blantBesteN.r

# blantBesteN . r :
#−−−−−−−−−−−−−−−

# Denne metoden ta r inn en p−ve rd i ko l onne ( pvko l ) .
# Hvis p−v e rd i nummer slemInd er b l an t de N l a v e s t e i
# p−verd iko lonnen , g i r metoden ut t a l l e t 1 . E l l e r s g i r den
# ut t a l l e t 0 .

blantBesteN <− function ( pvkol , slemInd , N) {
mat <− cbind ( pvkol , 1 : length ( pvkol ) )
mat <− mat [ order (mat [ , 1 ] ) , ]
slemRank <− which(mat[ ,2]== slemInd )
ut <− vector ( length=1)
i f ( slemRank > N) {

ut <− 0
} else {

ut <− 1
}
ut

}
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R-code for plotting

addomplot.r

# addomplot . r : s k r i p t f o r aa l a g e p l o t t e n e f o r a d d i t i v og
dominant mode l l

source ( " p l o t t . r " )

t a l l <− c ( 0 , 1 , 2 )
penadd <− c ( 0 . 2 , 0 . 5 , 0 . 7 )
pendom <− c ( 0 . 2 , 0 . 7 , 0 . 7 )
penrec <− c ( 0 . 2 , 0 . 2 , 0 . 7 )
penodm <− c ( 0 . 2 , 0 . 7 , 0 . 2 )

par (mfrow=c ( 2 , 2 ) )
p l o t t ( t a l l , penadd , main="Addit ive model" )
p l o t t ( t a l l , pendom , main="Dominant model" )
p l o t t ( t a l l , penrec , main="Rece s s ive model" )
p l o t t ( t a l l , penodm , main="Overdominant model" )
dev . copy2eps ( f i l e="modelp lots . eps " )

plott.r

p l o t t <− function (x , y , main ) {
plot (x , y , xlab="Number o f M a l l e l e s " , ylab="

Penetrance ( f ) " , pch=20, main=main , xaxp=c
( 0 , 2 , 2 ) , yaxp=c ( 0 , 1 , 5 ) , xl im=c ( 0 , 2 ) , yl im=c ( 0 , 1 )
, cex=2, cex . axis=2, cex . lab =1.6 , cex . main=2)

}

resultat6.r

par (mfrow=c ( 3 , 2 ) )
r e s u l t a t ( outputobj , slemSNP , "p−va lues o f d i s e a s e SNP" , "p−

value rank o f d i s e a s e SNP" )
r e s u l t a t ( outputobj , slemSNP+1, "p−va lue s o f random SNP" , "p

−value rank o f random SNP" )
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r e s u l t a t ( outputobj , slemSNP−1, "p−va lue s o f random SNP" , "p
−value rank o f random SNP" )

dev . copy2eps ( f i l e=" 100 . eps " )

resultat.r

r e s u l t a t <− function ( outputobj , slemSNP , mainhist , mainkum)
{

slemSNp <− outputobj [ [ 2 ] ] [ slemSNP , ]
hist ( slemSNp , breaks=20, main=mainhist , x lab="p−

value range " , cex=2, cex . axis=2, cex . main=2, cex
. lab =1.6 , density=200 , col="blue " )

source ( "master/ s ou r c e s k r i p t . r " )
n <− dim( outputobj [ [ 2 ] ] ) [ 1 ]
x <− 1 : n
y <− numeric ( )
for ( i in 1 : n) {

y <− c (y , b lantBes tePverd i e r ( outputobj
[ [ 2 ] ] , slemSNP , i ) )

}
plot (x , y , type=" s " , main=mainkum , xlab="Lowest N p−

va lue s " , ylab="Rate among" , cex=2, cex . main=2,
cex . axis=2, cex . lab =1.6 , yl im=c ( 0 , 1 ) , pch=20,
yaxp=c ( 0 , 1 , 2 ) , lwd=3)

abline (0 ,1/100)
y

}
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