• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elektroniske systemer
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elektroniske systemer
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulation and fabrication of two-dimensional photonic crystal drop filters for biosensing

Hellen, Ingerid Gjeitnes
Master thesis
Thumbnail
View/Open
19400_FULLTEXT.pdf (81.54Mb)
19400_COVER.pdf (1.613Mb)
URI
http://hdl.handle.net/11250/2564177
Date
2018
Metadata
Show full item record
Collections
  • Institutt for elektroniske systemer [1533]
Abstract
The main goal of this master thesis was to design and fabricate a biosensor consisting of a 2D photonic crystal. Its periodicity was made by etching a hexagonal hole pattern in a silicon slab, and a few linear defects were added by removing some of the holes. The result was a drop filter consisting of two waveguides with a resonator between them, all of which were positioned on top of a layer of silicon oxide. The idea was that light would couple, or "drop", from one waveguide to the other if, and only if, it belonged to a resonance frequency, hence the name of the filter. However, the exact resonance frequencies would depend upon the refractive index of the surrounding media, making the filter able to sense its surroundings.

To reach that goal, several issues had to be addressed regarding the fabrication method, including silicon growth and etch times, increases in the hole radius relative to the exposure mask and resist cracking. In addition, an estimate of the refractive index n=3.37 for the amorphous silicon slab was found using a combination of simulations and fabrications.

Simulation tools were also used both to optimize the silicon slab thickness, which was the only major parameter that had not been optimized during the project thesis, and to measure the biosensing abilities of the device. In addition, they were used to test the possibility of combining two drop filters along one waveguide, called multiplexing.

The results from the work mentioned above were used to fabricate a set of functioning drop filters. They resonated nicely, creating a high-intensity peak on the transmission graphs for the dropped light. Finally, the biosensing abilities of the drop filters were tested by changing the surrounding medium from air to purified water both inside the photonic crystal holes and above the crystal. It resulted in a resonance shift of approximately 25nm, which corresponded to a normalized frequency shift of 0.0043. The goal of the project can therefore be considered as reached.
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit