• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hardness of Lattice Based Cryptography

Tunge, Thor
Master thesis
Thumbnail
Åpne
17962_FULLTEXT.pdf (762.7Kb)
17962_COVER.pdf (1.556Mb)
Permanent lenke
http://hdl.handle.net/11250/2557939
Utgivelsesdato
2018
Metadata
Vis full innførsel
Samlinger
  • Institutt for matematiske fag [1390]
Sammendrag
In this thesis we will discuss hard computational problems in lattice theory and relate them to cryptographic constructions. Many of these problems enjoy average-case hardness which makes them attractive for cryptography. In addition, lattice based cryptography is a candidate for post-quantum cryptography, as there is no known quantum algorithm which breaks various hardness theorems.

We build a foundation in algebraic number theory to have the required background to discuss schemes based on discrete algebraic structures. These structures are free Z-modules which permits unique factorization in prime ideals. We relate this algebraic number theory to lattices in R^n so we can use the theory from algebra to our advantage.

We then define some standard hard computational lattice problems and show how many of these are related to each other. We prove that these problems are at least as hard as finding the shortest vector of a lattice, which we conjecture is computationally infeasible. We then prove a quantum reduction the learning with errors problem, a problem in machine learning . We also show that there is a similar reduction for a variant of this problem over more general rings.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit