• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Implementations of Bus Travel Time Prediction Utilizing Methods in Artificial Intelligence

Dahl, Erlend; Sjåfjell, Aleksander Aas; Skogen, Simen
Master thesis
Thumbnail
Åpne
751710_COVER01.pdf (184.5Kb)
751710_FULLTEXT01.pdf (1.338Mb)
Permanent lenke
http://hdl.handle.net/11250/253824
Utgivelsesdato
2014
Metadata
Vis full innførsel
Samlinger
  • Institutt for datateknologi og informatikk [3956]
Sammendrag
Travel time prediction is an important part of intelligent transportation systems. This work is a continuationof a state-of-the-art review where the most prominent methods used for bus arrival prediction were investigated. Anintroduction where a brief overview of the process of data collection and a rationale for selecting the data sources isgiven. Subsequently, the process of setting up representative datasets is explained and a selection of AI methods ischosen. The Weka machine learning implementations are used to classify, and an analysis of k-Nearest Neighbor,Artificial Neural Networks, and Support Vector Regression is done with different parameters and attributes. Theparameter analysis discovered the optimal parameters for the different classifiers on the datasets, while the attributeanalysis investigated the use of weather, ticket, passenger and football match data to improve the prediction performanceof the classifiers. An extensive group analysis investigated the performance of the classifiers on different training andtesting periods. Finally, a proof of concept model for real-time prediction is presented and compared to an existingreal-time system in Trondheim, Norway. The model is found to be competitive to the existing system.
Utgiver
Institutt for datateknikk og informasjonsvitenskap

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit