• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Framework for discovering Interesting Rules from Event Sequences with the purpose of pre-warning Oil Production Problems

Christiansen, Joacim Lunewski
Master thesis
Thumbnail
View/Open
536426_COVER01.pdf (47.63Kb)
536426_FULLTEXT01.pdf (1.130Mb)
URI
http://hdl.handle.net/11250/252834
Date
2007
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [4881]
Abstract
Periods of sub-optimal production rates, or complete shut-downs, add negative numbers to the revenue graph for oil companies. Oil and gas are produced from several reservoirs and through many wells with varying gas/oil proportion, making it a complex process that is difficult to control. As a part of a three step process for utilizing data in the oil production domain, this thesis derive methods for discovering event patterns, called restricted association rules, from time series in order to pre-warn about future problems in oil production processes. A restricted rule syntax and semantics is derived to explicitly target rules suited for prediction. Based on the defined rule syntax, a two step process is derived where restricted rule mining based on the concept of minimal occurrences is used to discover restricted association rules from a sequence of events. Next, redundant rules are removed based on the concept of minimum improvement and chaining of rules, during a rule selection phase. Information theory is applied in order to identify the most interesting rules, which can be submitted to an expert for validation. Both a simple solution for easy implementation in ConocoPhillips and a more advanced solution appropriate for general prediction cases are derived. This thesis concludes that it is feasible to discover dependencies between events from actual process data. It is also concluded that a large number of rules can be pruned, in order to get a manageable set of rules which is believed to have good predictive performance.
Publisher
Institutt for datateknikk og informasjonsvitenskap

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit