• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reservoir Production Optimization Using Genetic Algorithms and Artificial Neural Networks

Andersen, Mats Grønning
Master thesis
Thumbnail
View/Open
348912_FULLTEXT01.pdf (2.834Mb)
348912_COVER01.pdf (46.48Kb)
URI
http://hdl.handle.net/11250/251403
Date
2009
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [7422]
Abstract
This master's thesis has investigated how methods from artificial intelligence (AI) can be used to perform and augment production optimization of sub-sea oil reservoirs. The methods involved in this work are genetic algorithms (GAs) and artificial neural networks (ANNs). Different optimization schemes were developed by the author to perform production optimization on oil reservoir simulator models. The optimization involves finding good input parameter values for certain properties of the model, relating to how the wells in the oil reservoir operate. The research involves straightforward optimization using GAs, model approximations using ANNs, and also more advanced schemes using these methods together with other available technology to perform and augment reservoir optimization. With this work, the author has attempted to make a genuine contribution to all the research areas this master's thesis has touched upon, ranging from computer science and AI to process and petroleum engineering. The methods and approaches developed through this research were compared to the performance of each other and also to other approaches and methods used on the same challenges. The comparison found some of the developed optimization schemes to be very successful, while others were found to be less appropriate for solving the problem at hand. Some of the less successful approaches still showed considerable promise for simpler problems, leading the author to conclude that the developed schemes are suited for solving optimization problems in the petroleum industry.
Publisher
Institutt for datateknikk og informasjonsvitenskap

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit