
July 2009
Keith Downing, IDI
John Petter Jensen, StatoilHydro

Master of Science in Informatics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Reservoir Production Optimization
Using Genetic Algorithms and Artificial
Neural Networks

Mats Grønning Andersen

Abstract

This master’s thesis has investigated how methods from artificial intelligence
(AI) can be used to perform and augment production optimization of sub-
sea oil reservoirs. The methods involved in this work are genetic algorithms
(GAs) and artificial neural networks (ANNs). Different optimization schemes
were developed by the author to perform production optimization on oil
reservoir simulator models. The optimization involves finding good input
parameter values for certain properties of the model, relating to how the
wells in the oil reservoir operate. The research involves straightforward op-
timization using GAs, model approximations using ANNs, and also more
advanced schemes using these methods together with other available tech-
nology to perform and augment reservoir optimization. With this work, the
author has attempted to make a genuine contribution to all the research ar-
eas this master’s thesis has touched upon, ranging from computer science
and AI to process and petroleum engineering.

The methods and approaches developed through this research were com-
pared to the performance of each other and also to other approaches and
methods used on the same challenges. The comparison found some of the de-
veloped optimization schemes to be very successful, while others were found
to be less appropriate for solving the problem at hand. Some of the less suc-
cessful approaches still showed considerable promise for simpler problems,
leading the author to conclude that the developed schemes are suited for
solving optimization problems in the petroleum industry.

Preface

This dissertation has been written as the final part of the author’s masters
degree on artificial intelligence at the Department of Computer and Informa-
tion Science at the Norwegian University of Science and Technology (NTNU).

During a summer working for StatoilHydro ASA as part of their Summer
Project 2008 the author got in contact with personnel working with produc-
tion optimization in StatoilHydro. The task of this group is to perform pre-
dictions for oil reservoir properties and behavior. This group could provide
an interesting problem for a master’s thesis. After some discussion a com-
mon understanding of problems and methods were established, and NTNU
supervisor Keith Downing agreed with the author that the problems this
group worked with were suitable for solving with artificial intelligence (AI)-
methods. StatoilHydro does not have any department where AI research is
performed, and to the author’s knowledge, nowhere is it used in development
or optimization apart from as part of Master- and PhD theses. This was seen
by StatoilHydro as an opportunity to learn about AI-methods and the us-
ability for these methods on their problems. For the author, performing this
master thesis on these problems presented an excellent opportunity to use
the knowledge and methods learned from different courses and experience on
a relevant real-world problem.

After initial meetings between StatoilHydro employees, NTNU supervisor
Keith Downing, and the author, a StatoilHydro supervisor was found, John
Petter Jensen, and a problem definition formed. The goal of this master’s
thesis was from the beginning to explore the use of genetic algorithms (GAs)
and artificial neural networks (ANNs) on problems regarding optimization of
production in underwater oil reservoir models. As part of the work the author
gained access to StatoilHydro simulating tools for reservoir properties and
behavior. The AI-methods were to be compared to currently used methods
and the possible gains and problems determined and documented.

While exploring ways to do comparison of the performance of AI-methods
to other relevant methods used for optimization, the author was encouraged
to contact a PhD-student, Masoud Asadollahi, at the International Research
Institute of Stavanger (IRIS). Mr. Asadollahi could provide both a relevant
case used for educational and experimental purposes as well as performance
data for other algorithms on this specific case.

i

Acknowledgements

The author would like to thank supervisors Keith Downing at NTNU and
John Petter Jensen at StatoilHydro for their advice and assistance while
working on this thesis. Thanks go to Masoud Asadollahi and Renato Markovi-
novic at IRIS for help with the Brugge case and for sharing results. Thanks
also go to Mathias Bellout and Jørgen Borgesen at NTNU for providing as-
sistance on obtaining software and introduction material to the petroleum
domain in the early stages of work with this master thesis.

My supportive family and girlfriend have helped and motivated me through
months of work. I am forever grateful for being blessed with the company of
such wonderful people.

ii

Contents

1 Introduction 2
1.1 Oil reservoirs and optimization 2
1.2 Artificial Intelligence . 3
1.3 Motivation . 3

2 Background 4
2.1 The AI field . 4

2.1.1 Genetic algorithms . 4
2.1.1.1 Evolution in biology 4

2.1.2 The inception and development of evolutionary com-
putation . 5
2.1.2.1 The basics of genetic algorithms 5
2.1.2.2 Evolution: interaction of concepts 8
2.1.2.3 Genetic algorithms in optimization 8
2.1.2.4 Convergence in genetic algorithms 10

2.1.3 Artificial neural networks 11
2.1.3.1 Neural networks in biology 11
2.1.3.2 The basics of artificial neural networks 12

2.2 Reservoir production optimization 14
2.2.1 Exploration and development of oil fields 15
2.2.2 Use of simulator models for optimization 17
2.2.3 The ECLIPSE reservoir simulator 18
2.2.4 Optimization of reservoir model production 20

2.2.4.1 Sequential quadratic programming 20
2.2.4.2 Hooke-Jeeves method 20
2.2.4.3 Previous uses of GAs and ANNs in the petroleum

industry . 21
2.3 Goals . 22

iii

CONTENTS

3 Methodology and implementation 23
3.1 Problem and possible gains . 23

3.1.1 Scheme 1: using GA as an optimizer for the reservoir
simulator . 24

3.1.2 Scheme 2: using GA as an optimizer for an ANN built
from data from reservoir simulations 24

3.1.3 Scheme 3: using GA as an optimizer on a combination
of reservoir simulation and ANN 27

3.2 ECLIPSE models used . 32
3.2.1 Shoebox case . 32
3.2.2 Brugge case . 33

3.2.2.1 Optimization strategy 34
3.3 Technologies used for programming 37
3.4 The genetic algorithm used . 37

3.4.1 Problem representation 38
3.4.2 Genetic operators . 41

3.4.2.1 Crossover . 41
3.4.2.2 Mutation . 41

3.4.3 Population size . 41
3.4.4 Elitism . 42
3.4.5 Fitness . 42
3.4.6 Selection mechanism 42
3.4.7 Solution space database 43

3.5 The artificial neural network used 43
3.5.1 Structure . 43
3.5.2 Node input and output 43
3.5.3 Node error . 45
3.5.4 Weight update . 46
3.5.5 Learning . 46
3.5.6 Training data . 46

4 Results and testing 48
4.1 Proof of concept . 48

4.1.1 The GA (scheme 1) . 48
4.1.2 The ANN (scheme 2) 49
4.1.3 ANN and ECLIPSE model (scheme3) 49
4.1.4 Preface to optimization on the Brugge case 52

4.2 Scheme 1: GA used on ECLIPSE simulator 56
4.3 Scheme 2: GA used on ANN 60
4.4 Scheme 3: GA used on a combination of ECLIPSE simulator

and ANN . 63

iv

CONTENTS

4.5 Determining optimization run parameters 66
4.5.1 ANN parameters . 66

4.5.1.1 Learning rate 67
4.5.1.2 Structure of the ANN 68
4.5.1.3 Momentum rate 70
4.5.1.4 Number of epochs 70
4.5.1.5 Number of training cases 70
4.5.1.6 Training data evaluation 71

4.5.2 GA parameters . 73
4.5.2.1 Genetic representation 74
4.5.2.2 Population size 75
4.5.2.3 Crossover rate 76
4.5.2.4 Mutation rate 77

5 Comparison of results 80

6 Discussion 84
6.1 Results discussion . 84
6.2 ANN discussion . 86

6.2.1 Parameter dependencies 86
6.2.2 Low success rate of ANN 87
6.2.3 Random and incremental training data 89
6.2.4 Choice of structure for the ANN 89

6.3 GA discussion . 90
6.3.1 Search space topology and parallel search 90
6.3.2 Solution quality versus number of simulations 91
6.3.3 Population fitness variance 92
6.3.4 The impact of genetic operators 92

7 Conclusion 93
7.1 Genetic algorithms for optimization 93
7.2 Artificial neural networks used in optimization 94
7.3 Scheme 3 ideas . 95
7.4 Multidisciplinary focus and the AI methods used 95
7.5 Goals . 95

7.5.1 Goal 1: Use of GA . 96
7.5.2 Goal 2: Use of ANN 96
7.5.3 Goal 3: Minimizing simulations used versus quality of

solution . 96

v

CONTENTS

8 Future work 97
8.1 Scheme 3 expanded . 97
8.2 Parallel computing . 98
8.3 Training ANNs with the history data used to develop simula-

tor models . 98

vi

CONTENTS

List of acronyms used

AI Artificial Intelligence

GA Genetic Algoritm

ANN Artificial Neural Network

IRIS International Research Institute of Stavanger

EC Evolutionary Computation

MPC Model Predictive Control

SQP Sequential Quadratic Programming

NPV Net Present Value

1

Chapter 1

Introduction

1.1 Oil reservoirs and optimization

The Norwegian oil-adventure started in 1971. Since then over 4 billion Sm3

(standard cubic meters) of oil equivalents have been produced on the Norwe-
gian continental shelf. It is estimated that around 36% of the total available
resources have been produced and sold [18]. The remaining 64% of the Nor-
wegian oil reserves are still located in subsurface reservoirs. Research is
conducted on all relevant parts of the production chain to be able to extract
the remaining resources as efficiently and profitably as possible. One area of
focus, which is the area this dissertation has focused on, is optimization of
well properties in underwater oil reservoirs to maximize the profitability of
production.

The conditions under which underwater oil reservoirs are found are often
hazardous and inaccessible. It follows that the inner workings and status of
oil reservoirs are hard to directly observe, and expensive to monitor. Fortu-
nately, multiple tools for constructing models and simulating production on
these models exist. Researchers and engineers spend considerable effort on
optimization using the available tools for approximating reservoir properties
and optimizing production. Numerous methods and approaches are avail-
able, all with different advantages and disadvantages. Simulators used to
recreate conditions inside an oil reservoir are often complex, and simulation
often come at a high computing cost. This makes the efficiency of optimiza-
tion important. By minimizing the number of simulations needed for good
optimization, resources can be saved.

2

CHAPTER 1. INTRODUCTION

1.2 Artificial Intelligence

AI today offers a large array of useful tools for performing computation.
Among them are genetic algorithms (GAs). GAs have been established as
suitable tools for solving a large variety of problems. One application area
where GAs can be seen to show their full potential is for performing opti-
mization [8]. GAs can be used for a wide range of optimization problems,
from finding the best solution for trivial scheduling problem, to producing
solutions for famous challenges like the travelling salesman problem.

Another useful tool from the AI-toolbox is artificial neural networks
(ANNs). This technology offers emergent functionality that allows for suc-
cessful prediction of the behavior of other functions, processes, simulators or
similar artifacts that produce input-output patterns [3]. This technology can
be used to simplify more complex systems, and this application of ANNs is
used to augment optimization in this dissertation.

1.3 Motivation

The focus of work for this master thesis has been on using methods from
AI to tackle the challenges relating to production optimization of sub-sea oil
reservoirs. The availability of a realistic and complex industry problem to
solve with AI methods provides motivation in itself. The research is inter-
esting as an evaluation of AI methods on a relevant problem in comparison
to other methods and approaches previously used. The results are also rele-
vant for the industry, since they provide performance comparison of different
methods, and potentially powerful alternatives for use in day-to-day business.

The author has experimented with AI methods to perform or augment steps
involved in production optimization of sub-sea oil reservoirs. The results of
this research were then compared with the results of other methods and ap-
proaches to optimization. The idea behind the work is to develop a
system using AI methods for optimization that performs well when
compared to other methods used for optimization today.

Chapter 2 will give thorough background information about all the discussed
topics and concepts. The chapter closes with a section (2.3) explaining and
elaborating on more detailed goals for the thesis than has been presented in
this introduction.

3

Chapter 2

Background

This dissertation has touched upon multiple problem domains. Methods,
concepts and terminology from several areas of study other than computer
science will be discussed. The purpose of the following sections is to provide
introductions to all domains involved in this dissertation.

2.1 The AI field

The following subsections describe the methods used in this master thesis
from the AI field of study.

2.1.1 Genetic algorithms

GAs are part of a larger group of methods in AI called evolutionary com-
putation. These methods are inspired by processes from biology; they use
concepts from natural evolution to develop solutions to problems. Genetic
algorithms provide an approach to learning that is based loosely on simulated
evolution [15].

2.1.1.1 Evolution in biology

In 1789, Thomas Malthus said that the growth rate of a population is a
function of the population size, and therefore, if left unchecked, a population
will grow exponentially. However, since environments have finite resources,
the population will produce more young than the environment can sustain,
and the individuals will have to compete for these resources [13]. This is
where Charles Darwin entered the discussion. Darwin said that when more
individuals of a species is born than can survive, a struggle for existence will
occur. If an individual is born that vary slightly in any matter profitable to

4

CHAPTER 2. BACKGROUND

itself, it will have a better chance of surviving, and thus be naturally selected
[5]. In biology, evolution is observed as change in the behavior and form of
organisms between generations. Properties and behaviors are inherited from
the ancestors of an organism, the organism is modified in unique ways from
changes in the genetic material from one generation to the next [24]. This
means that there will be variance in the populations through the generations.

The result is that individuals will arise that can be significantly differ-
ent from their ancestor. When there at the same time are limited resources
in the environment, a struggle for these resources will ensue. The better
fit individuals in this struggle will most likely persist and get to reproduce,
the less fit individuals have a larger chance of disappearing. Thus, over the
generations, evolution will drive the population to be better adapted to the
environment. Three important concepts should be drawn from this; selec-
tion, variation, and inheritance. These concepts will be further explored
in subsequent sections discussing their importance in genetic algorithms.

2.1.2 The inception and development of evolutionary
computation

In the 1960s, advanced computing technology was becoming relatively cheap.
The availability of the technology meant that computers could simulate and
analyze problems more complex than what would be possible mathematically.
Amongst the many groups interested in this possibility were evolutionary bi-
ologists interested in developing and testing models of natural evolutionary
systems. At the same time, engineers and scientists wanted to explore the
potential of using these methods which were assumed tested and proved by
nature again and again to create various useful artifacts [15]. The work at
this point was mostly very theoretical, with the aim of simulating natural
evolution rather than harnessing the power of evolution to do computation.
This changed in the 70s, when focus on early GAs was on developing more
application-independent algorithms. Different subfields of evolutionary com-
putation (EC) were unified in the 1990s, and many fundamental assumptions
and underlying theories were revisited in order to strengthen and generalize
the basic EC paradigms. This led to the further development and usability
of the methods as competent problem solvers today [8].

2.1.2.1 The basics of genetic algorithms

Several entities that make up the building blocks of genetic algorithms have
their direct counterpart in nature. Populations, individuals and their fitness,

5

CHAPTER 2. BACKGROUND

generations and genomes are all present both in nature and in GAs. Pro-
cesses like selection, reproduction, inheritance and development also have
similar meaning in both systems. The author will briefly discuss each con-
cept and explain how they together make up the genetic algorithm. Genetic
algorithms are a subset of a larger family of algorithms in evolutionary com-
putation. There are several criteria and properties that genetic algorithms
have that other similar methods don’t have. The author will not make a com-
plete listing of these differences, for a comprehensive and detailed overview
on genetic algorithm, please refer to Jong [8], Mitchell [15], Holland [7] or
Goldberg [6].

Individuals/phenotypes These entities can be considered the most im-
portant part of the genetic algorithm. In many ways they behave like organ-
isms found in nature. They have their own unique properties; they are part
of a population of other similar individuals. They fight for survival and they
reproduce. In a genetic algorithm they normally do not have complex lives
like in nature, but can be considered solutions to problems. The individu-
als often encode a pattern or parameters for a function or simulator. These
solutions can be tested and given a score [8].

Environment The individuals in a genetic algorithm exists to be tested
and judged. They are judged by interacting in their environment, which is
the process of calculating how good they perform at the task they are meant
to be working on. The environment is often a function or simulator capable
of calculating how well an individual performs [7].

Fitness This is the performance score each individual receives after inter-
acting in its environment.

Selection This is the process of evaluating fitness of the individuals and
selecting individuals that are better fit than other individuals. The selection
mechanism is used when deciding parents for reproduction.

Population The population is the collection of individuals that at any
point exists in the genetic algorithm.

Genotypes This is the most basic building block in a genetic algorithm.
In living organisms the genotype is associated with the DNA building blocks.
The DNA of the organism plays a very large part in the organisms devel-
opment from inception to death. In genetic algorithms, the genotype of an

6

CHAPTER 2. BACKGROUND

individual is the only factor determining the development of the individual.
The genotype is the only trait of an individual in a GA that is not meant to
be directly observable. The genotype provides the encoding for the individ-
ual. From the genotype, an individual is developed into a mature phenotype
[8].

Inheritance This is the concept of how traits are transferred from parents
to their offspring. In GAs all the traits transferred from parent to offspring
can be found in the genotypes. The process of evolution involves change to
this genetic material which will be discussed later. How well the changes in
a genotype correspond to changes in the phenotype that is developed is a
very large factor when determining the success of a genetic algorithm. If the
mapping between genotype and mature phenotype is not very consistent and
predictable, preservation of the genotypes of successful phenotypes during
the process of evolution will not be reflected in the success of offspring. The
profitable traits will not be inherited consistently and the performance of the
genetic algorithm might become random or inconsistent [8].

Generation A generation in GAs is a point in time where one population
of individuals disappears and gives room for a new population of individuals
to be tested in its environment. This event occurs when all the individuals in
a population have been attributed a fitness value, parents have been selected
and a new pool of genotypes has been determined.

Reproduction This is the process of recombining existing genotypes into
new genotypes. The genotypes of parents are used to constitute a new geno-
type that will be the basis for a new individual. Reproduction can be sep-
arated into sexual and asexual reproduction. In sexual reproduction cloned
segments from multiple parents are used to create hybrid offspring. In asex-
ual reproduction a single parent provides the basis for the offspring [12].

Variation The differences in genotypes are meant to be reflected in differ-
ences in phenotypes. By inducing change in the genotypes from generation
to generation, the individuals in the population should exhibit different be-
havior and show different traits than their parents. These changes can be
minor, but are essential for continued progression.

Genetic operator: Crossover Genetic operators are the forces that ma-
nipulate the genotypes and produce the changes between parent and offspring

7

CHAPTER 2. BACKGROUND

individuals. Crossover is a genetic operator used only for sexual reproduc-
tion. The genotypes of two or more parents, typically bit strings, are cut
at one point, and one part from each parent is recombined in two offspring
individuals [12].

Genetic operator: Mutation This genetic operator is used in asexual
reproduction, but also in addition to sexual reproduction. A part of the
genome is modified. Since the genome is a string of binary digits, this is
done by simply shifting one bit in the genetic code [12].

Genetic operator: Summary Much has been written regarding which
genetic operator is the “better” [26]. They have advantages and disadvan-
tages in different situations. Each represents a different heuristic that com-
plements the other. Crossover provides exploitation of good solutions in order
to produce better solutions. Mutation induces variation into the population,
allowing for exploration of new solutions.

2.1.2.2 Evolution: interaction of concepts

Figure 2.1 shows how these concepts interact and form a cycle of life. When
the selection mechanisms favor individuals with good fitness, this should
lead to the population accumulating good traits and getting rid of bad traits,
making the individuals in the population better adapted to their environment
over time.

2.1.2.3 Genetic algorithms in optimization

The biological motivation for genetic algorithms has been made clear in the
previous subsection.

However, the area of application for GAs that has received the most
attention is optimization. There exists a large number of problems that can
be represented as optimization problems, and very few available solutions for
how to solve them [8]. Optimization can be observed everywhere; people aim
for maximum efficiency and performance in their endeavors, physical systems
in nature tend to a state of minimum energy. To make use of optimization
as a tool for our problems a few important concepts are required;

Objective function value There must exist some quantitative measure
of the performance of the system under study. This performance is measured
by the objective function.

8

CHAPTER 2. BACKGROUND

Figure 2.1: In this cycle genetic information is used to developed grown indi-
viduals, these individuals are tested for fitness, and selected for reproduction
based on their fitness performance. Selected individuals transfer and recom-
bine their genetic information to the next generation where the cycle process
starts anew.

Variables The objective function value depends on characteristics of the
system that can be modified to observe their impact on the objective. These
are called the variables.

Optimization can be viewed as exploration of a search space [17]. Figure
2.2 shows such a search space. Variable sets are represented on the X-axis.
This is often a multidimensional solution vector u, but for illustrative pur-
poses it is represented only in one dimension. The Y-axis is the resulting
performance measured by applying the variable set to the objective function
f . The goal is to locate the optimal point in the search space. A point u∗ is
the global maximum (optimal) point if,

f(u∗) ≥ f(u)

for all possible u.
For detailed information on numerical optimization, see Nocedal [17].
GAs are mathematical tools for parallel adaptive search where each in-

dividual corresponds to a sample point in a search space. The fitness mea-
surement in GAs corresponds to the objective in general optimization, while
the individuals in the population in a GA hold sets of optimization variables.
The initial population is a random placement of the individuals in the search
space, and through evolution the individuals located at the most fit locations
in the search space are selected and recombined into new possible solutions

9

CHAPTER 2. BACKGROUND

Figure 2.2: Search space optimization. The highest point on the curve cor-
responds to the solution in the solution space with the highest performance.

[8]. Multiple promising points in the search space can be explored simulta-
neously, until at some point exploitation of the best solution wins over in
the selection process and the algorithm converges to one good solution. The
degree of exploration provided by random initialization, the parallel search
process and mutation operation acts as a guard against early convergence to
local maxima. There is however no guarantee that a global maximum will
be located in GAs [7].

2.1.2.4 Convergence in genetic algorithms

In nature, the environment is in a constant state of flux. The individuals
in the environment have to adapt to this change over time. In nature, the
purpose of evolution is to keep the population alive by adapting them to
their surroundings. In practical applications the environment is often con-
stant. This means there can exist some global maximum objective for a
given problem, see section 2.1.2.3 for elaboration on optimization. In these
cases, evolution can stop when this solution is identified, or a solution be-
lieved to be close to this global maximum. The challenge is in knowing when
this event occurs. One solution is to keep evolving the population until no
changes are made to the population that can improve it any more. The dif-
ficulty with this is that only the simplest problems converge to such a point
in finite time. The principle can still be used. By measuring fitness vari-
ance in the population over the generations we can detect when evolution
no longer introduces significant change to the population. While the aim
is zero variance (all individuals are the optimal solution), a low value for
this variance is often sufficient. Another convergence criterion that performs
well is measuring the best so far fitness score. By recording this for each

10

CHAPTER 2. BACKGROUND

generation and observing the changes in the performance, one can determine
convergence when this property no longer improves. Both these measures are
fairly robust and problem-independent measures of convergence[8]. Figure
2.3 shows how both these measurements should present themselves in a GA
that has reached convergence. The development is usually rapid in the start
and slows down some after the initial generations.

Figure 2.3: The Y-axis in (a) shows fitness for the best individual for each
generation. This property is no longer improving and we can assume the
system has converged to a good solution. The Y-axis in (b) shows population
fitness variance for each generation. This graph indicates that the population
has reached a relatively homogenous stage where all the individuals are of
similar fitness.

2.1.3 Artificial neural networks

ANNs are another method in AI with roots in biology. ANNs are inspired
by the neural networks constituting animal brains.

2.1.3.1 Neural networks in biology

The term “neural network” describes a population of physically intercon-
nected neurons. Signals are passed between these neurons. This commu-
nication often involves an electrochemical process. Neurons have several
connections to and from other neurons, and the net effect from all ingoing
interactions in a neuron decides the behavior of the neuron, which in turn
leads to the neuron sending its own response further along the network. For

11

CHAPTER 2. BACKGROUND

a description of animal neurons and further information on biological neural
networks and their properties see Bj̊alie [2], Kandel [9].

2.1.3.2 The basics of artificial neural networks

Neurons and their interconnections can be modeled in computers producing
mathematical structures similar in functionality to their organic counter-
parts. These structures are called ANNs. They generally take some input,
processes it and gives some output. Many variants and types of ANNs exist.
The author has been using standard backpropagation ANNs for this thesis.

Structure An ANN consists of nodes (neurons) with weighted connections
between them. There are some nodes that receive input, some nodes that
give output, and hidden nodes in between. Each node processes all its input,
for example by summing it up and running the sum through a function, and
propagates its result to its connected nodes until an output is given at some
output node(s) [3].

Figure 2.4 presents the topology of a simple example ANN.

Input and output Figure 2.4 displays an array of input nodes, in this
case 5. On the other end, only one output node is shown. This corresponds
to an input–output pattern where 5 input values produce 1 output value.
The number of input and output values can vary, but this type of pattern is
what ANNs typically use.

Learning Just like animal brains, ANN’s learn from experience. By expe-
riencing instances of a problem, an ANN receives information about how to
update the weighted connections between neurons. This happens based on
minimizing error in estimating output given desired output from a problem
instance set with different inputs and outputs. This enables an ANN to adapt
itself in a way that lets it generalize over the data and further enables it to
make predictions about future (unknown) problems by acting as a function
for the input [15]. This process is referred to as backpropagation. The imple-
mented backpropagation algorithm is explained in detail in the methodology
chapter, section 3.5.5.

Convergence Convergence can be measured by observing how the er-
ror between expected target value and actual calculated value is reduced
throughout training for a set of testing data other than the training data.
When the error has been reduced to a point where it is no longer decreasing
this generally means the ANN has converged [3].

12

CHAPTER 2. BACKGROUND

Figure 2.4: Example ANN structure. Input nodes receive input and pass
it along to the hidden nodes through weighted connections. The received
signal is processed in the hidden nodes and sent along weighted connections
to output node(s) which further process the signal and produce the final
output.

13

CHAPTER 2. BACKGROUND

Data representation and interpretation ANNs are often built with
topologies making the information at any specific node hard to interpret.
The information contained in a network is often best expressed in the struc-
ture’s total ability to produce correct output given an input. These steps
are performed in the backpropagation algorithm [3]. ANNs trained on well
defined input–output cases are capable of expressing a rich variety of decision
surfaces without much direct regard to problem semantics [15]. This conver-
gence to a state that acts as a general problem solver for a given domain is
an emergent feature of ANNs. It has the ability to produce a complex math-
ematical structure where each single node contains distributed information
processing or redundancy functionality that is very hard to interpret out of
the big context [15]. ANNs are often seen as black boxes that take input
and produce output, without the designer bothering too much about perfect
understanding of what comes in between.

Generalization When an ANN produce correct output for the majority of
input cases other than the ones in was trained with, it can be said to general-
ize well. A well trained ANN for the purposes of approximation like was used
in this dissertation should provide a smooth nonlinear mapping. This means
that it should be able to interpolate to new cases that are similar but not
identical to those patterns used for training. If the network is overtrained,
this will result in a non-smooth mapping, and the ANN will work more like a
memory with direct lookup from input to output. The structure of the ANN
is therefore an important factor for correct training. A correct amount of
hidden layers and nodes should be used. If more are used than are required
to learn the input-output relationship, there will be more weights than nec-
essary which can lead to overfitting of the data and bad performance when
approximating unknown cases [3].

More information on ANNs is available by Callan [3] and Mitchell [15].

2.2 Reservoir production optimization

This section will serve as an introduction to the part of this dissertation
which concerns itself with the petroleum industry domain. The focus will be
on providing descriptions of relevant models and problems covered by this
dissertation.

14

CHAPTER 2. BACKGROUND

2.2.1 Exploration and development of oil fields

This subsection will briefly illustrate the structure and properties of oil reser-
voirs to make clear the process of performing optimization on models of these.

Origin of oil and gas

Prehistoric organic material deposited at the bottom of oceans and swamps
make the basis for oil and gas found today. Stacked layers of organic materials
are turned to oil and gas over millions of years under high pressure and
temperature. Water has a higher density than oil and gas, therefore oil
and gas will migrate to the surface unless trapped inside reservoirs without
possibility of escape [29].

Exploration of oil and gas

Oil and gas is generally located in very inaccessible areas (else it would
have easily escaped a long time ago). Oil reservoirs can be found several
kilometers beneath the surface. These reservoirs are detected by means of
seismic imaging. Sound waves are fired towards the ground, and the time
they take to bounce back is measured. This time will differ in different layers
of rock, and these differences make it possible for geoscientists to create
3D maps of the subsurface ground. When an area is located that has the
potential for containing oil and gas, exploration drills determine whether oil
and gas is indeed present. The performance of these wells together with
the seismic data is then used to predict how field development decisions will
affect future production. A field 1 will be developed if the initial predictions
are promising [29].

Development of oil and gas

In this phase, wells are drilled into the subsurface ground, and connected to
surface facilities. Wells are created by drilling holes and cementing a steel
pipe inside. Holes in this pipe are made to allow for hydrocarbons and water
to flow in and out of the reservoir [29]. Figure 2.5 shows an example of a
reservoir with several wells.

Production of oil and gas

This phase can go on for tens of years and is divided into three stages. In
the initial stage the pressure inside the reservoir is high, and hydrocarbons

1An oil field is a collection of reservoirs related to the same geological structure [29].

15

CHAPTER 2. BACKGROUND

Figure 2.5: Reservoir with multiple wells. This illustration shows the Brugge
case model using the ECLIPSE simulator tools. The color shows concentra-
tions of oil and water.

are driven into the well producers. This process is referred to as primary
recovery. Around 10% of the available hydrocarbons are typically extracted
in this phase. In the next phase, the secondary recovery, the pressure inside
the reservoir has declined as a result of primary recovery. This creates a need
to inject fluids into the reservoir to increase the pressure to be able to extract
the hydrocarbons. It is this phase which serves as the focus of this master’s
thesis. In the tertiary recovery phase chemicals that alter the properties of
oil can be used to further the recovery of this oil [29].

Field development management

When the necessary structures for oil extraction is in place, production can
commence and performance data is preserved. When enough field data has
been recorded, numerical reservoir simulation models are developed on the
background of these data. These models of the subsurface ground seek to
describe the effect of changing input parameter for process control on the
hydrocarbon production. These models have time-varying (dynamic) and
time-invariant (static) properties. The dynamic properties are fluid pres-
sures and saturations. Remaining fluid properties, viscosity and density, and
geological properties2 (permeability and porosity) are generally considered
to be static properties [29].

The geological properties of a reservoir can vary significantly over space.
These differences decide the flow paths for fluids inside the reservoir. The
goal of the simulator is to determine optimal flow paths for fluids to extract

2For detailed information on geological properties and fluid properties, see Dake [4].

16

CHAPTER 2. BACKGROUND

the maximum amount of oil on one side, given injection of fluids on the
other. Figure 2.6 depicts this situation in a 2D reservoir. We can see the oil-
water front being irregular in different spatial locations in the reservoir. By
adjusting injection rates from water injectors over time, this oil-water front
is adjusted to maximize production of oil in the oil producers and minimize
production of water in these producers (for late phases of production when
there is little oil left) [29].

Figure 2.6: Horizontal injection and production well. This illustration is
borrowed from Zandvliet [29].

2.2.2 Use of simulator models for optimization

In industry today, computers are often given the responsibility for advanced
control of process plants. Advances and cost reduction in computer hardware,
competitive business environments and academic interest have all played
their part in this development. Model predictive control (MPC) is currently
the most widely implemented advanced process control technology for pro-
cess plants [22]. Academic interest in MPC was established in the 1980s, and
led to a thorough understanding of its theoretical properties [20], [21]. MPC
systems have been developed for use in process control under many different
names for decades, but the academic approach led to a strong conceptual
and practical framework for both practitioners and theoreticians [16]. As
the name implies, MPC involves using models. These models represent some
real-world process. MPC involves a lot more than just using models, but this
falls outside the scope of this dissertation as an AI study.

17

CHAPTER 2. BACKGROUND

The author has used models of reservoirs to simulate reservoir behavior.
These models can be used to predict and analyze dependent variables (out-
put) with respect to changes in independent variables (input). The added
value of using models comes from being able to predict the outcome of a
process before the fact. By being able to find optimal input parameters for a
given industrial process before performing it, a lot of resources can be saved
by not having to try different solutions on the actual problem. Control per-
formance can be improved, downtime and maintenance requirements can be
reduced, in short, the day-to-day production can become a lot more flexible
and agile [16]. For reservoir production optimization the challenges related
to observation, process control and production can be quite extreme [29].
Good prediction of behavior, properties, and performance before the fact
is therefore of critical importance for the feasibility and profitability of the
project.

Figure 2.7 shows how a simulator can be used for optimization. The sim-
ulator receive some initial input from an optimizer, and returns the perfor-
mance results of optimization back to the optimizer. The optimizer makes
some alteration to the independent input variables, sends the new input to
the simulator and receives the new output. The effect of changing the input
parameters can then be analyzed, and some heuristic in the optimizer will
decide how the input parameters can be further changed in a good direction.

2.2.3 The ECLIPSE reservoir simulator

This subsection provides information about the oil reservoir simulator used
by the author for the cases discussed in this dissertation. The ECLIPSE
simulator is developed and maintained by Schlumberger Information Solu-
tions (SIS). ECLIPSE has “been the benchmark for commercial reservoir
simulation for over 25 years because of their breadth of capabilities, parallel
scalability, utility computing, and unmatched platform coverage.”[25].

The following description is taken from the ECLIPSE manual [25].

The ECLIPSE simulator suite consists of two separate simulators:
ECLIPSE 100 specializing in black oil modeling, and ECLIPSE
300 specializing in compositional modeling. ECLIPSE 100 is a
fully-implicit, three phase, three dimensional, general purpose
black oil simulator with gas condensate options. ECLIPSE 300 is
a compositional simulator with cubic equation of state, pressure
dependent K-value and black oil fluid treatments. . . . Both pro-

18

CHAPTER 2. BACKGROUND

Figure 2.7: Use of a simulator for optimization. An optimizer sends input
to an objective function or simulator which returns an objective function
value. By experimenting with different input according to some heuristic,
the optimizer can find optimal inputs for producing desired output.

grams are written in FORTRAN and operate on any computer
with an ANSI-standard FORTRAN90 compiler and with suffi-
cient memory. For large simulations the simulators can be run
in parallel mode. The Parallel option is based on a distributed
memory architecture implemented using MPI (message passing
interface).

3-dimensional models of the terrain of oil reservoirs are made up of grid cells
with unique geological and fluidic properties as discussed in section 2.2.1.
Placement of wells is specified and measurements of factors like pressure and
saturation in the reservoir and wells can be performed. These models are
initiated based on some history data. They are then able to make predictions
on future data. A production horizon is specified in ECLIPSE models, this
is the period of time the production will go on for. While it is possible to
change parameters at any point in the production horizon, this will lead to
optimization scenarios more complex than strictly necessary for the purposes
of this dissertation. Previous studies which the author used for comparison
did also not change parameter values over time. The full specifics of the
ECLIPSE simulator is out of the scope of this dissertation, for more detailed
information, see [25].

From the author’s point of view, using ECLIPSE has proved to be easy
and suitable for the purposes of this thesis. It is worth noting the similarity

19

CHAPTER 2. BACKGROUND

between the ECLIPSE simulator and previously discussed ANNs. Both arti-
facts take inputs and output according to some pattern and can be used to
predict future instances of problems.

2.2.4 Optimization of reservoir model production

This subsection contains information on some methods used for optimization
today.

2.2.4.1 Sequential quadratic programming

Methods based on sequential quadratic programming (SQP) are considered
amongst the most effective methods for nonlinearly constrained optimiza-
tion. SQP discovers objective function derivates by intentionally mutating
the optimization parameters and observing the effect. These derivatives are
used to determine the appropriate direction of change in the optimization
parameters. This is a very simplified view of SQP. For detailed information,
see [17].

Optimization can be performed by using Matlab [14] scripts and tools.
Matlab has a toolbox for optimization, where a lot of optimization methods
are available. Amongst these is the function fmincon, which is Matlab’s
SQP-implementation. In the Matlab documentation [14], the following is
written about the SQP method:

SQP methods represent the state of the art in nonlinear pro-
gramming methods.. . . , the method allows you to closely mimic
Newton’s method for constrained optimization. . . . the principal
ideal is the formulation of a QP subproblem based on quadratic
approximation of the Lagrangian function. . . .

Optimization results produced in this master thesis will be compared to re-
sults produced by optimization using Matlab’s fmincon function. These
results are from the research performed by Lorentzen et al. [11]. This re-
search showed that optimization using SQP is robust and efficient for the
case presented later in this dissertation.

2.2.4.2 Hooke-Jeeves method

This is another method that has previously been used for optimization on one
of the cases this dissertation will involve. Hooke-Jeeves is a search method
for finding the minimum (or maximum) of a multidimensional surface. The
method is a sequential technique that at each step performs two kinds of

20

CHAPTER 2. BACKGROUND

moves, an exploratory move and the pattern move. The exploratory move
explores the behavior of the objective function when parameters are altered,
and the pattern move takes advantage of the pattern direction established
by the first move. These moves are repeated until convergence. For detailed
information about Hooke-Jeeves, see [23].

Results of optimization by this method will also be compared to the
results produced by the author. These results are from research performed
by Asadollahi et al. [1].

2.2.4.3 Previous uses of GAs and ANNs in the petroleum industry

During the planning phases of this master thesis, the author searched for
relevant previous studies performing optimization using AI techniques in the
domain. The author has not been able to locate any identical application
schemes for use in the domain, but papers have been written on using GAs
for similar tasks.

Yang et al. [28] presents the most similar case to what the author is try-
ing to accomplish. In this article, GAs are compared to simulated annealing
(SA) algorithms (see [10] for details on SA) for parameter optimization on a
production-injection operation systems (PIOS), consisting of injectors, reser-
voir, producers and surface facilities. In all, similar to what is performed in
this dissertation. The research involves optimization over more of the parts
involved in the production chain than what this dissertation has considered.
The article does not mention any specifics on the GA used, but shows GA
performance to be as good as SA for the problem task [28]. Field performance
showed that the optimization techniques increased the economic benefits and
extends the reservoir life.

Velez-Langs [27] presents a very good overview of other applications for
GA in the petroleum industry.

In other industry domains, the use of both GA and ANN seems more com-
mon. Park et al. [19] discusses using GA and ANN for aluminum laser
welding automation, this article features some detail on GA parameters used
and describes a successful application of the GA as an optimizer for the
problem. This article also used an ANN to judge the performance of the GA
solutions, and this method was shown to be effective [19].

21

CHAPTER 2. BACKGROUND

2.3 Goals

Section 2.2.4 discussed optimization using SQP. This method acts as an opti-
mizer on a reservoir simulator. Use of this method does not require anything
of the simulator used apart from it being able to take input and produce
output. Similarly, the simulator used is not dependent on the optimization
algorithm used. This modularity is illustrated in figure 2.7. This modularity
implies that the different parts of the figure can be interchanged.

As described in section 2.1.2.3, GAs can be used as optimizers. The
potential for use of GAs as optimizers in this domain has been the main
focus in this thesis.

Goal 1 Explore the potential for using genetic algorithms as optimizers for
use with reservoir simulators. The success of this approach will be compared
to other means of performing optimization on the reservoir simulator, as dis-
cussed in section 2.2.4.

Section 2.2.3 describes similarities between reservoir simulators and ANNs.
One goal of this master thesis is to research the possibility for training ANNs
based on data from simulation and compare the performance of these ANNs
with that of the original simulator.

Goal 2 Explore the potential for training ANNs based on data from sim-
ulations, and running these ANNs as simplified models of the simulators.

While these two goals focus on studying AI-methods, the whole reason for
performing such studies is to develop feasible and efficient methods for use
in the industry. This aspect of the problem must be taken into consideration
and is expressed in the following goal:

Goal 3 From a industry perspective, the goal and point of the work in this
dissertation is in exploring the potential for reducing number of simulations
and saving time, while still achieving good optimization results.

22

Chapter 3

Methodology and
implementation

This chapter explains how the different technologies described in the previous
chapter were used together to perform oil reservoir production optimization
using methods from the AI field of research.

3.1 Problem and possible gains

Apart from the academic interest and curiosity regarding using AI methods
on reservoir optimization problems, there are challenges in the domain today
that this research is trying to address. As will be discussed in section 3.2, a
simulation run in a reservoir simulator can take very much time. For very big
models and long production horizons, the run time for a single simulation can
be several hours. When performing production optimization on a reservoir
simulator, several thousand simulations can be necessary. The total time for
the optimization run can be considerable.

The search space represented in the reservoir simulator is often complex
and nonlinear. As discussed in section 2.1.2.3, GA as a search method is a
powerful tool, and can provide a valuable alternative to other optimizers on
nonlinear problems.

The potential for saving time is also the basis for using ANNs as simpli-
fied models of reservoir simulators. If a limited number of simulations can
be performed on the simulator and provide a good enough training base for
the ANN, the simulator can be replaced by the ANN. For complex simula-
tions, the time to train an ANN on thousand of cases is significantly less
than running a single simulation, and the time it takes to run a simulation
on the ANN can be considered instant compared to a simulation run on the

23

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

model1. The simulation time alone for the ANN is irrelevant without taking
into consideration the time it takes to generate training data and perform
the training. A comparison of this method to running all simulations on the
reservoir simulator must take all such factors into account.

These observations together with the modularity discussion earlier in this
section leads to a number of possible schemes for using AI-methods together
with the reservoir simulator and existing optimizers. Figure 3.1 illustrates
how the modularity of the problem allows for combining the use of the dif-
ferent methods. The author has chosen 3 of these schemes as the focus of
this master’s thesis, and these are discussed in the following subsections.

3.1.1 Scheme 1: using GA as an optimizer for the
reservoir simulator

In this scheme the GA acts as an optimizer for the reservoir simulator. It is
capable of managing a population of individuals containing vectors of input
parameters for the reservoir simulator. When a simulation is performed
by the simulator using the input parameters, a performance score can be
measured, see section 3.2. This performance score will be optimized by the
GA through the process of evolution on the population of individuals. Figure
3.2 illustrates how this scheme is intended to work. A 2-dimensional figure
only allows for 1-dimensional parameter vectors. The points on the X-axis
should instead be considered a simplified representation of n-dimensional
solution vectors. While this representation is not realistic, it is very suitable
for illustrative purposes.

The GA steps found in section 3.4 summarizes scheme 1.

3.1.2 Scheme 2: using GA as an optimizer for an ANN
built from data from reservoir simulations

In this scheme training data will be generated from running the reservoir
simulator with varied input parameters. An ANN can then be trained from
this training data. The training data should cover as much of the input
parameter space as possible in as few simulations as possible. The ANN can
then be used as a model for the GA to perform optimization on. The aim
is to perform the optimization with fewer or a similar number of simulations

1Simulation time for the Brugge case was recorded to around 90 seconds, the same
simulations were performed in around 0.0005 seconds in the ANN. Feedforward in the
ANN is performed about 180000 times faster than simulation in the reservoir simulator.

24

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.1: Combination of methods. The simulator and optimizer parts
are modular and problem-independent. Successful solution can be developed
involving different approaches.

25

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.2: Scheme 1: (a): An initial population is scattered across the
solution space. (b): Through selection, the most fit solutions will be explored
and reproduced into several good solutions. (c): After a finite number of
generations, the algorithm will have converged and a single best individual
can be pinpointed.

26

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

than in Scheme 1. This means that the number of training cases should
be limited below a certain threshold determined by scheme 1. Figure 3.3
illustrates how this scheme is intended to work.

The following steps summarizes scheme 2.

1 training data is generated and simulated

2 ANN is trained using the training data

3 GA-optimization is performed on the ANN

3.1.3 Scheme 3: using GA as an optimizer on a com-
bination of reservoir simulation and ANN

In this scheme, the model component in figure 3.1 will be changed back
and forth between the reservoir simulator and ANN several times through
the GA optimization. The idea is to generate a random initial population
with the GA and run these individuals on the reservoir simulator. The GA
will continue to develop this population using the MPC simulator. After
a sufficient amount of training data has been generated, an ANN can be
trained from the data. The reservoir simulator can then be replaced by the
ANN, but only for a limited number of generations. Since the time it takes to
optimize using the ANN is a lot shorter than with the reservoir simulator, the
optimization can go on until convergence. The ANN can then be replaced by
the reservoir simulator again, still using the same population that resulted
from optimization on the ANN. The reservoir simulator can then be used
for optimization for some generations again, generating additional and more
precise training data. This cycle can be repeated until a good solution has
been discovered. The point of this scheme is to take advantage of the already
generated training data from optimization on the reservoir simulator in the
most efficient way. Figure 3.4 illustrates how this scheme is intended to work
in a general solutions space.

The following steps summarizes scheme 3.

1 GA-optimization is performed on reservoir simulator for

several generations

2 ANN is trained using the data from the reservoir simulations

3 GA-optimization is performed on the ANN -> convergence

4 goto step 1 if the current best solution is not good enough

5 final round of GA-optimization is performed on the

reservoir simulator

As was discussed in section 2.1.2.4 and illustrated in figure 2.3, improve-
ments in convergence measurements happens rapidly in the start. The author

27

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.3: Scheme 2: (a): Training data are generated, the input parameters
should be distributed along the entire solution space. (b) An ANN can be
trained from the training data. (c) This ANN will perform like a continuous
function which the GA can perform optimization on.

28

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.4: Scheme 3: (1): Training data are generated randomly by the GA
(initial population) using the reservoir simulator (blue color). (2) An ANN
(red color) can be trained from the initial training data. Optimization on the
ANN will result in a GA population focused around the maxima in the red
curve. (3) The reservoir simulator can be used to generate additional precise
data around the focus areas. This additional data will be preserved along
with the already existing training data. (4) A new ANN can be trained on
the accumulated training data, and a new optimization can be performed on
the ANN. (5) The reservoir simulator can again be used to generate precise
data around the assumed optimal parameter inputs. (6) After steps 3-4 have
been repeated enough times, a best solution can be located.

29

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

wants to explore the idea that in this phase a lot of good training data is
generated. What follows is a period of slow development which would take
a lot of time when performed on the reservoir simulator. By exploiting the
training data generated, fewer simulations would have to be performed by
the reservoir simulator and time can be saved.

One big challenge in this scheme is that the training data does not neces-
sarily cover enough of the input parameter space. It will be mostly focused on
a few points in the parameter input space selected as the most fit solutions by
the GA. This can lead to unexpected behavior in the ANN, and potentially
reduce its precision considerably. Solutions outside the explored solution
space can be found to be good solutions. The algorithm should recover from
this by exploring the solutions in that part of the solution space and incorpo-
rating the data in the existing training data. Figure 3.5 illustrates how the
search and error-recovery can be performed on a 2-dimensional problem. The
final phase of the optimization in this scheme should always be performed on
the reservoir simulator rather than the ANN, to avoid faulty data resulting
from the discussed potential challenges.

30

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.5: Scheme 3 in 2 dimensions: The two parameters are along the X-
axis and Y-axis, good solutions are found in the ANN within the darker points
for the current training data. (a): An ANN is trained from the initial training
cases which covers part of the solution space. Optimization leads to improved
focus in one area, the algorithm uses the ECLIPSE simulator to generate
additional training data for the optimized area, and this is used for training
a new ANN with good solutions within the darker points in (b). This process
is repeated leading to the situation in (c) where the specialized training data
has indicated a good solution can be found in a part of the solution space not
previously explored. This area is then explored with the ECLIPSE simulator,
and the solutions from this area are added to the training data. If this area is
found to contain inferior solutions, the ANN will reflect this, and the search
will get back on track like in (d).

31

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.2 ECLIPSE models used

This section will present and discuss the details of the ECLIPSE simulator
models used for optimization. The structure and topology of the models will
be illustrated and the input parameters and objectives discussed.

3.2.1 Shoebox case

This model is a simple made-up case. It has 8 input injection valves and
8 output production valves. These are aligned on each side of a 8x8 2-
dimensional grid model, for a total of 64 grid cells, each with unique time-
invariant geological properties. The name “shoebox” is a common description
for such simple cases. Figure 3.6 is taken from the reservoir simulator and
shows the details of the model.

Figure 3.6: Shoebox case: This model consist of 64 grid cells. 8 injection
wells are located on the right side. 8 production wells are located on the left
side. The color of the tile shows the oil saturation level. Red color means
mostly hydrocarbons, blue color means mostly water. This illustration is
taken from the middle of a simulation run.

Several parameters can be chosen for optimization, the author has chosen
the liquid flow rates for both producers and injectors as input parameters.
The production horizon for this model is 6 years, and the objective for the
model is the total field oil production over the whole production horizon. By
adjusting the flow rates in the valves, different flow patterns are taken by
the liquids and different extraction estimates can be obtained. The total oil

32

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

production is measured in standard cubic meters, Sm3, while the flow rates
are Sm3 per day. While this model does not offer great complexity, it has
served as a good source for basic information about the domain and as a
testing ground for the technologies used.

3.2.2 Brugge case

The Brugge case is a realistic large-scale model that has been used for aca-
demic purposes before. There exists good solid data on optimization perfor-
mance on this model already, which makes it an excellent case for the author’s
study. A 3-dimensional model consisting of 450000 grid cells was originally
used to generate ten years of initial production history. The optimization
model is an upscaled version with 60048 grid cells, and the production hori-
zon for this model is 20 years.[11]. Figure 3.7 illustrates the topology of the
reservoir model.

Figure 3.7: Topology for the Brugge case.

The field has 20 producer wells and 10 injector wells. Individual grid
cells in the model have different geological properties and positioning as
displayed by figure 3.7, making the fluid dynamics of the system complex
and optimization challenging. The time for a simulation run on the Brugge
case is around 85–95 seconds on the hardware available to the author. The
Brugge case with wells is illustrated in figure 3.8. In this figure the height
dimension has been scaled down compared to in the previous illustration.

Each of these wells are divided into 3 segments where flow can be con-
trolled independently for each segment. This allows for 60 production rates
for the producers and 30 for the injectors. Considering the values will not

33

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.8: Brugge case: 10 injector wells (labels starting with “BR-I”) sur-
rounds 20 producer wells (labels starting with “BR-P”) in this 3-dimensional
60048 grid cell model. Oil saturation levels are shown by the color in each
grid cell.

be changed over time like discussed in section 2.2.3, optimizing for flow rates
like for the shoebox case would mean 90 parameters to optimize over. A
discussion of an alternative strategy for optimization follows.

3.2.2.1 Optimization strategy

Previous uses of this case have shown that injection rates can be decided
by simply replacing produced volume of liquid with water [11], and this is
also the scheme the author has chosen. This eliminates the injector wells
from the optimization parameters. A number of segments in the producers
are disabled; the total number of optimization parameters is the remain-
ing 54 producer segments. The parameters for the remaining producers are
maximum allowed water cuts2 for each segment. At first this measurement
does not make much sense, since this property of the produced liquid does
not concern itself with the flow of liquids in the wells directly. The reason-
ing behind this choice is internal constraints in the model. These are all
outside the scope of this dissertation, and the author will not discuss all
of them. Lorentzen [11] provides a much more complete presentation of this
case and parameters. The internal constraints are in regard to maximum well
injection- and production rates, pressures in the wells and such properties.
The simulator will simply produce as much liquid as is possible according

2Water cut is the percentage water in the produced liquid.

34

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

to these constraints. The maximum allowed water cuts in each segment will
then be the limiting factor for production in the model, and will also be used
to calculate profit estimations.

The optimization strategy used for this model should maximize net present
value (NPV) over the next 20 years of production. Given economic param-
eters for NPV are 80$ income per barrel of oil produced, and 5$ cost per
barrel of water produced and another 5$ cost per barrel of water used for
injection in the injection wells [11].

Like mentioned earlier, each producer is divided into 3 segments with
individual control for maximum water cut in each segment. Figure 3.9 shows
how each segment is exposed to different levels of oil saturation/water cuts3.
In light of this figure, the effect of considering water cuts for calculating profit

Figure 3.9: Well segments for a producer well in the Brugge case. (a) shows
an oil-water front along the producer segments. While segment 1 and 2
are located well for producing only oil, segment 3 is partially flooded and
will also be producing water. This water-front will move in time as oil is
extracted, eventually leading to the situation in (b). In (b) segment 2 and
3 are completely flooded and producing water, while segment 1 is producing
some oil and some water.

becomes more obvious. First remember that any liquid produced must be
replaced by the same amount of water, at a cost. In addition, the produced
water in the liquid produced (as determined by the water cut) also comes
at a cost. Water cuts can be measured in real-time in each segment in the

3The oil saturation is the opposite of the water cut, oil saturation is the percentage of
oil in the liquid before production, water cut is the percentage of water in the produced
liquid.

35

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

producer wells. The different segments experience different water cuts over
time during the simulation run as oil is replaced by water. By setting a
maximum value for the allowed water cut in a producer segment, it will
produce only as long as measured water cut is below this threshold. This
means that a segment will produce at full capacity according to internal
constraints until the measured water cut is above this threshold. A crucial
thing to keep in mind for this strategy is the time aspect; the maximum water
cut means the well segment will produce until the threshold is reached. The
extraction might still be profitable after this point, but further extraction
could mean less production in other segments (and other wells) that has
better water cut values. There are internal constraints in the model which
enforces a maximum water handling capacity in the model. Details regarding
these constraints can be found in a paper by Lorentzen [11]. The author did
not have to take these into account, as they were handled automatically by
the simulator. The effect of these constraints can be seen as a maximum total
“bandwidth‘” for flow. If segments with better water cut values are given
more of this available “bandwidth” the result will be higher profit than if the
segments with bad water cut values are allowed to continue production. The
profit of the operation depends on the total water cut in all the produced
liquid, so all producer segment water cut values are dependent on each other’s
performance for this total calculation.

By optimizing the NPV over the water cuts as parameters, helped by the
internal constraints and properties of the model, direct regard to flow rates in
the well segments is avoided. Optimizing segment flow rates directly would
have been much harder since there are limitations for each of these, other
limitations for the wells, as well as global limitations relating to pressure
in the reservoir as a whole. Considering maximum water cuts is a shortcut
around all those limitations (since attempting simulation with flow rates re-
sulting in property values outside these limitations would result in an error
from the simulator). Maximum water cuts allows for the simulator itself to
set all parameters regarding to flow, and serves as an on-off switch for each
segment based on profit alone.

While the complexity of the choice of optimization parameters is not the
main concern of this dissertation as an AI-study, the chosen parameters are
all valid and much used optimization parameters for this case. The choice
does not affect the complexity of the optimization methods used, as they
concern themselves only with these values as meaningless numbers.

36

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.3 Technologies used for programming

The author was encouraged to use Matlab [14] for working with the ECLIPSE
[25] model. Several Matlab scripts exist to modify ECLIPSE input files and
read output files. Using these scripts is straightforward, and the author saw
fit to try developing a GA and ANN in Matlab.

While both implementations did work, there were several performance
issues. The time to train an ANN made in Matlab was over 1000 times
longer than the same code in Java. Several issues relating to representing
big numbers presented themselves as well. Numbers in the magnitude of
2216 needed to be represented as part of the work on the Brugge case, and
standard Matlab data types does not support precision in numbers larger
than about 260. For these tasks Java implementations were developed and
used by the Matlab code.

The result is a mix of Matlab and Java code where all time-critical tasks
and low-level representations are performed by Java code while the larger-
scale organization of data is handled by Matlab.

3.4 The genetic algorithm used

General concepts for GAs were discussed in section 2.1.2.1. This section will
provide a complete description of GA parameters and concepts implemented
in the GA for use on the optimization cases. The following steps describes
the high-level behavior of the GA and corresponds to figure 2.1 in section
2.1.2.2.

Genetic algorithm :

1 randomly initialize 1st generation population genotypes

2 for generation 1 to last

3 develop generation genotype population to fully

developed phenotypes

4 evaluate all phenotypes in the population with ECLIPSE

simulator and assign fitness to each individual

5 save generation data

6 break loop if convergence is experienced

7 select parents for recombination

8 perform crossover on winners of the selection process

9 perform mutation on winners of the selection process

10 prepare the genotype population resulting from the

recombination for replacing the parent population

11 develop and evaluate final generation. save to generation

37

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

data history

12 declare a winner from the recorded history data

The algorithm should be running for longer than strictly necessary to make
sure all solution paths have been exhausted and give the algorithm time to
randomly get out of local maxima. At the same time delivery dates had to be
adhered to, and simulation of previously discussed cases can take considerable
amounts of time, as was discussed in section 3.2.2. Realistic and predictable
time frames had to be used for the optimization runs.

3.4.1 Problem representation

The internal representation of the problem is a very important factor in the
performance of the GA. When applying a GA to a problem, you want it
to search for solutions in a solution space [8]. This means that individuals
in the population represent potential solutions to the problem at hand, and
fitness can be assigned to the individuals depending on their performance
solving the problem. In the simulation cases discussed in section 3.2, a vector
of valve properties for oil wells was discussed as the input parameters to
the models, 16 for the shoebox case and 54 for the Brugge case. When
simulation is performed with these input parameters, a performance measure
can be extracted from the simulation results. Parameter optimization is the
easiest to attack using a GA approach[8]. The idea of gene sequences is very
similar to parameter vectors. The mapping between an n-dimensional vector
and individuals in the population is very simple; the individuals are the n-
dimensional vectors. This is the reason for the popularity of using GAs in
this application area [8].

Phenotypic representation for the shoebox case The shoebox case
features 16 input parameters, 8 injector flow rates and 8 producer flow rates.
These are constrained to be between 80 Sm3 liquid per day and 120 Sm3

liquid per day.

Phenotypic representation for the Brugge case The Brugge case fea-
tures 54 input parameters. Maximum water cuts (percentages) on 54 active
segments distributed amongst 20 producer wells. Being percentages, these
are constrained between 0 and 1. One simplifying assumption can be made
however. Section 3.2.2.1 describes the optimization strategy for the Brugge
case with costs and profit estimations. A simple profit calculation shows that

38

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

there is a threshold for profit with a water cut of 0.93754. Higher maximum
water cut will never be profitable. This means that the water cut parameter
can be constrained between 0 and 0.9375.

While the phenotypic representation of the parameters is straightforward,
the genotypes that make up the low-level encoding for these can be con-
sidered slightly more complex. The genotypic representation should involve
strings of bits which the genetic operators can work on, as discussed in sec-
tion 2.1.2.1. The phenotypes consists of n different parameter values. Each
of these n values can be represented as a binary number. To do this directly
can be impractical since the number of bits needed to represent the number
120 (used by the shoebox case) is 7 (27 = 128). When this number also has to
be above 80 a lot of the possible numbers represented by 7 bits are not usable
by the GA. A very simple scheme makes the bit representation feasible for all
such parameter constraints. The number represented by the bits is a fraction
of the maximum value of the bit string, assuming a maximum length. By
adding and multiplying factors to this fraction, constrained parameters can
be represented. The following discussion will illustrate this.

Bit value: 01012 = 510

Maximum value for a 4-bit string: 11112 = 15

Fraction: 5/15 = 0.3333

This fraction will always be a number between 0 and 1, with different step
lengths depending on the number of bits used to represent the string. The pa-
rameter deciding bit string length for each input parameter is called geneSize
in the GA code.

Genotypic representation for the shoebox case Each parameter rep-
resented in the phenotype is represented in the genotype by a string of bits.
All 16 parameters have their own bit string, and all of these are combined
in the genotype, resulting in a bit string of total length 16 ∗ geneSize. For
obtaining a number between 80 and 120 for each individual parameter the
following formula is used: 80 + 40 ∗ fraction.

4Assume 80 bbl liquid produced. Water cut of 0.9375 gives 75 bbl of produced water.
Produced liquid is replaced by water so the produced 75 bbl and additional 5 bbl of water
are injected. NPV = 80 ∗ 5− 5 ∗ 75− 5 ∗ 5 = 0

39

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Genotypic representation for the Brugge case Each parameter rep-
resented in the phenotype is represented in the genotype by a string of bits.
All 54 parameters have their own bit string, and all of these are combined
in the genotype, resulting in a bit string of total length 54 ∗ geneSize. For
obtaining a number between 0 and 0.9375 for each individual parameter the
following formula is used: 0.9375 ∗ fraction.

The effect of this representation is that the bit string length becomes a mea-
sure of resolution for the parameters. Assume a 1-dimensional optimization
case has a parameter value range between 0 and 15 and an optimal param-
eter value of 15. 4 bits are used to represent the parameter. If the initial
value of this parameter is 0, best case for improving this parameter to its
optimal value is in 4 steps (by flipping every bit in the 4-bit long string).
If 3 bits are used, this number of steps is reduced to 3. However, a 3-bit
string can produce 8 different possible values (23), while a 4-bit string can
produce 16 different values. If the genetic operator works on the parame-
ter by randomly flipping bits, the 4-bit representation will statistically take
longer to reach its optimal value than the 3-bit representation, given equal
starting point. This is because the step length determined by number of pos-
sible solutions decreases by a factor of 2 every time the resolution increases
by 1 for the 1-dimensional problem. In an n-dimensional optimization case,
change in the bit string length results in an exponential increase in possible
combinations. For the Brugge case, going from a 3-bit to 4-bit representation
increases number of possible solution by a factor of 1.8014 ∗ 1016. There is
a tradeoff between speed and precision that must be considered. Increased
resolution and smaller step lengths in a long bit string will optimize slower
than a shorter bit string with larger step length and reduced resolution. The
shorter bit string will result in fewer simulations needed since the GA will
not have as many possible solutions to explore. It will also mean that fewer
parts of the solution space are explorable, which can result in good solutions
being unreachable for the GA.

To make choices for setting these parameters, several rounds of exper-
imentation was performed. The results of these experiments are given in
section 4.5.2.

Section 2.1.2.1 described how representation plays a key role in determin-
ing how well the inheritance of traits from parent to child will be reflected
in the individuals. As the above discussion has shown, the mapping from
genotype to phenotype is straightforward and provides a direct correlation
between genotype and phenotype.

40

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.4.2 Genetic operators

Two genetic operators are used on the genotypes in the GA, single-point
crossover and mutation.

3.4.2.1 Crossover

The crossover operator used in the GA takes 2 parents and divides their
genome bit strings in half at a random position in the string. This separa-
tion will never split a single phenotype parameter, but selects positions that
preserve the structure of each individual input parameter. Half of each par-
ent is then used to form a new individual. Crossover occurrence is decided
by the crossover rate. This rate determines a percentage of the population
which will serve as parents for the next generation. The genotypes of the
remaining part of the population will simply be copied directly to the next
generation without crossover. The crossover rate is called crossoverRate in
the GA code.

3.4.2.2 Mutation

The mutation operator in the GA takes a genotype bit string and randomly
shifts 1 bit in this string. The position of the flipped bit is random. As a
result, mutation can result in changes of varying magnitude in the phenotype.
If the bit string 111 is changed to 110, this results in a very small change in
value (1), but if the same bit is mutated to 011 the change in value is bigger
(4). Mutation will only affect one of the phenotype parameters each time it
is performed; it will never affect more than one phenotype input parameter.
The effect of mutation will be random, and is decided by the mutation rate.
Mutation affects the whole genotype population after crossover has been
performed, and individuals are randomly chosen according to the mutation
rate for mutation. The mutation rate is called mutationRate in the GA code.
Values for these rates were determined by trial in section 4.5.2, as they also
are problem-specific [8].

3.4.3 Population size

The individuals in the population are the available resources the GA uses to
solve the problem task. The parent population is the basis for generating
new search points, therefore the population size can be viewed as a measure
of the degree of parallel search supported by the GA [8]. The population
size is constant through the generations. The GA involves full generational
turnover, every parent is replaced by a child each generation. Population size

41

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

is problem-dependent [8] and several trials were performed in section 4.5.2
to determine population size for the Brugge case. This parameter is called
nIndividuals in the GA code.

3.4.4 Elitism

For small population sizes, the effect of stochastic selection can result in
losing good individuals by random chance. The GA can then be set to
always save a number of best individuals from one generation to the next.
This parameter is called nBestIndividuals in the GA code, and allows a
number of individuals to be copied directly between generations.

3.4.5 Fitness

The fitness for each individual is the objective function value determined by
ECLIPSE simulation for each model. For the shoebox case the fitness is the
produced volume of oil in Sm3 over the production horizon. For the Brugge
case the fitness is the NPV in USD of the project over the production horizon.
These are both elaborated on in section 3.2.

3.4.6 Selection mechanism

Two basic categories of selection mechanisms exists; deterministic and stochas-
tic [8]. The author has chosen a stochastic approach, where each individual
is assigned a probability of being selected based on fitness performance. Less
fit individuals can also be selected to reproduce, but the chance of this hap-
pening is less than for the better fit individuals. The selection mechanism
uses sigma scaling for modifying the selection pressure inherent in the fit-
ness values by using the population fitness variance as a scaling factor. The
following conversion formula is used:

ExpV al(i, g) = 1 +
f(i)− f(g)

2σ(g)

where g is generation number, f(i) is the fitness for individual i, f(g) is the
average fitness in the population for generation g, and σ(g) is the standard
deviation of population fitness. Two effects can be observed. (1) The selec-
tion pressure is lessened when few individuals have better fitness calculations
than the others (high σ(g)), this results in increased degree of exploration
in the initial generations of the optimization run, which prevents early con-
vergence to a local maxima. (2) The selection pressure is increased when
the population has become more homogenous (low σ(g)), small differences

42

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

in fitness will give a high probability of selection. The selection mechanism
is used for parent selection.

3.4.7 Solution space database

For low mutation rates and population sizes, several individuals will be iden-
tical from one generation to the next, and even with higher values for these
rates, multiple individuals with identical genotypes will be generated5. The
initial trials showed that around 50% of the individuals generated from the
evolution process were simulated more than once. By saving every simulated
solution in a hash table and performing lookup check on this table before per-
forming simulation the speed of the optimization runs were greatly improved.
A lot of data was generated for the different cases through initial testing and
parameter experiments, these results were preserved for later use. The ANN
described in section 4.5.1 was built using such a data point database.

3.5 The artificial neural network used

General concepts for ANNs were discussed in section 2.1.3. This section will
provide a description of design choices for the implemented ANN.

3.5.1 Structure

The ANN is built as a directed acyclic graph. Each node communicate over
weighted links to other nodes in one direction, which is commonly referred to
as a “feedforward”-ANN [15]. The nodes are organized in layers. One input
layer is followed by a number of hidden layers which ultimately ends up in
one output layer. Figure 3.10 shows the pattern of connectivity of an ANN
developed for the shoebox case.

As was discussed in section 2.1.3.2, the structure of the ANN determines
the success of the ANN by its impact on the degree of overfitting of the data.
The structure of the ANNs used was determined by experimentation and
discussed in section 4.5.1.

3.5.2 Node input and output

Each node takes input from all nodes in the layer before and sends output
to all nodes in the next layer in the graph. For the hidden layers, the rule

5Non-unique genotypes can be generated a result of crossing identical parents, perform-
ing mutation twice on the same bit over 2 generations, and similar situations.

43

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.10: ANN developed for the shoebox case. 16 input nodes hold the
input parameter values. These values are feedforward through the ANNs
hidden layer and result in an output in the single node in the output layer.

44

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

for combining the inputs for node j is defined by a sigmoidal function, which
produces output in a continuous range from 0 to 1 according to the formula:

oj =
1

1 + exp(−netj)
(3.1)

The netj total input for a node is calculated by the following formula:

netj = w0 +
n∑

i=1

xiwij (3.2)

For each node in the current layer, the input from all nodes xi in the previous
layer is multiplied with the weight between the nodes wij. The w0 factor is
the weight of a bias node, which has a constant activation (output) value of
1 and takes no input. For the nodes in the output layer, a linear function is
used which simply sums up all inputs according to equation 3.2 and sends
the result as output. For full details on these concepts, Callan [3] provides a
good description.

In the trained ANNs used in this dissertation, input nodes receive their
activation output directly from the solution input parameters. For both
ECLIPSE models used the input parameters in the input layer of the ANNs
are the same as the phenotypic representation presented in section 3.4.1. The
output value of the output layer of the ANN corresponds to the objective
function value produced by the ECLIPSE simulator. Input and output values
in training patterns were normalized for better ANN performance. When
performing simulation with new cases on the ANN after training, these values
were expanded to their de-normalized form for evaluation.

3.5.3 Node error

The error of the trained network compared to the original training pattern
can be calculated for each node in the ANN. For linear output nodes the
error δ is calculated simply by subtracting the activation (output) value y
from the target value t:

δ = t− y (3.3)

For the hidden layers this calculation is performed with the following formula
for sigmoidal function nodes:

δj = oj(1− oj)
∑
k

δkwkj (3.4)

Where δj is the error for the node in question, oj is its output, δk is the error
of a node in the next layer, and wkj is the weight between the current node
j and the node in the next layer k. For elaboration on how the formula for
these error estimates is derived, Callan [3] provides a complete description.

45

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.5.4 Weight update

When error estimates are available, these can be used to update the weighted
connection between nodes according to the following formula:

∆wij(n+ 1) = η(δjoi) + α∆wij(n) (3.5)

Where ∆wij(n + 1) is the change to a weight at step n + 1, η is a learning
rate and α is a momentum rate for learning. The momentum rate takes
into consideration the weight update in step n and is there to avoid the
weight updates oscillating around a value. The learning and momentum
rates are parameters determining the success of the ANN. These must be
tuned according to problem specifics, like number of training cases. These
rates were determined by experimentation in section 4.5.1. These parameters
are called learningRate and momentumRate in the ANN code.

For elaboration on how the formula is derived, Callan [3] provides a com-
plete description.

3.5.5 Learning

The ANN employs the backpropagation algorithm for supervised learning of
weights between nodes.

Backpropagation algorithm

1 for all training patterns

2 for each node in the input layer, assign corresponding

training pattern input value

3 for all layers calculate input and output according to

equations (3.1) and (3.2)

4 for all layers calculate error according to equations

(3.3) and (3.4)

5 for all layers update weights for each node according

to equation (3.5)

6 run training patterns on the ANN and check performance

7 if performance is not good enough, goto step 1

The number of times this cycle is repeated is referred to as the number of
epochs of the ANN. This can also be set as a parameter for training the ANN
with backpropagation, and is called epochs in the ANN code.

Callan [3] can provide further details on backpropagation.

3.5.6 Training data

Two methods were used for generating training data.

46

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Random The genetic algorithm initiate a completely random population in
the start, by simply generating a large enough initial population and running
the GA for only the first generation, a random set of training cases were
generated.

Incremental A special approach designed to spread the input data as best
as possible along the solution space was also experimented with. A number
of desired simulations must be specified beforehand, nSimu. The problem
solution representation described in section 3.4.1 features parameter input
vectors represented as huge strings of bits. The possible total number of
values for a string of bits is 2bitStringLength. By dividing the value of the
maximum value bitMax (ie. 1111 for a bit string of length 4) by nSimu,
a smaller bit string will be the result, increment. By starting with a bit
string of value 0 bitMin (ie. 0000) and then adding increment to this value
nSimu times, nSimu number of different solutions can be generated. These
solutions will all be of equal distance from each other in terms of bit string
numeric value. This is not the same as saying they will be of equal distance
in the solution space, the success of this approach will also be seen in the
experiments in chapter 4.

47

Chapter 4

Results and testing

In this chapter the specifics of the different optimization runs and the pro-
duced results are presented.

4.1 Proof of concept

This section presents performance results from initial optimization runs made
on the shoebox case with the 3 different schemes described in section 3.1.
Details on obtaining parameters for the runs are not included in this section,
but are discussed for the larger Brugge case in section 4.5.

4.1.1 The GA (scheme 1)

Figure 4.1 shows the result of running optimization on the shoebox case using
the GA as an optimizer on the ECLIPSE simulator. The optimization run
was performed with a GA population size of 11, and ran for 120 generations.
Because of the low population size, the best individual from each generation
was preserved into the next generation, as was discussed in section 3.4.3.

1320 fitness evaluations were performed over the 120 generations. Of
these, 1003 (75.98%) were performed simulations in the ECLIPSE simulator,
while 317 were lookups of saved simulated values, as discussed in section
3.4.7. Figure 4.1(a) shows fitness for the best individual over all generations.
We can see this property increasing fast in the beginning and converging to
one solution at the end of the optimization run. This is the desired behavior
of a GA, and shows that the algorithm works for optimization. Since the
best individual is saved from one generation to the next, evolution can never
produce a solution that is not better or equal to the best one in the previous
generation. Figure 4.1(b) shows population fitness variance over the genera-

48

CHAPTER 4. RESULTS AND TESTING

Figure 4.1: Scheme 1: (a) shows fitness for the best individual in each gen-
eration. (b) shows population fitness variance in each generation

tions. We see large fitness variance for the first generations, but after around
10 generations, this variance is low. This shows that one promising point
in the solution space has been located, which is explored for the rest of the
optimization run.

Optimal fitness value was found to be 1306549.4

4.1.2 The ANN (scheme 2)

For this experiment, an ANN was trained using 600 training cases generated
across the solution space using the incremental approach discussed in section
3.5.6. Figure 4.2 shows the result of running optimization on the shoebox
case using GA as an optimizer on the ANN. The same initial population was
used, and we can see the GA performing the same way as on the ECLIPSE
simulator.

Optimal fitness value was found to be 1303471.4. When running this solu-
tion on the ECLIPSE simulator, the fitness value is reported to be 1305902.1.
These results are both very close to the result obtained in section 4.1.1, and
shows the ANN being a good approximation of the ECLIPSE simulator.

4.1.3 ANN and ECLIPSE model (scheme3)

In this experiment, the optimization run was performed with a GA popula-
tion size of 11. The 5 first generations were run on the ECLIPSE simulator.

49

CHAPTER 4. RESULTS AND TESTING

Figure 4.2: Scheme 2: (a) shows fitness for the best individual in each gen-
eration. (b) shows population fitness variance in each generation

After these 5 initial generations, the evaluated solutions were used to train
an ANN, and optimization was performed for 49 generations on this ANN.
After the 49 generations, the population was simulated for 1 generation using
the ECLIPSE simulator. These new evaluated solutions were then added to
the solution database, and this was used to train a new ANN. The new ANN
was then used for another 49 generations. This cycle was repeated.

The total number of generations was 4905. Of these, 105 were performed
on the ECLIPSE simulator, resulting in 955 (90.52%) simulations that had
been performed on the ECLIPSE simulator and 100 lookups of saved simu-
lations.

Figure 4.3 shows the result for all 4905 generations. The picture is a
lot different than the previous fitness plots. The first 49 generations using
the ANN yields very high fitness performance values. When the GA uses
the ECLIPSE simulator again on the optimized results, the actual solution
performance values are found to be far away from the performance values
the ANN produced.

Figure 4.4 shows the same graph as figure 4.4, but only for the first
500 generations. We can see that for each 50 generation cycle the perfor-
mance difference between the ANN and the actual solution performance on
the ECLIPSE simulator is made smaller by the added training data until at
around generation 350 the algorithm converges to one solution. The ANN
produced from the explored parts of the solution space has become a good ap-
proximation of the ECLIPSE simulator for the relevant parts of the solution
space.

In figure 4.5 only the generations performed on the ECLIPSE simulator is

50

CHAPTER 4. RESULTS AND TESTING

Figure 4.3: Fitness plot for scheme 3 on the shoebox case. 5 initial genera-
tions are run using the ECLIPSE simulator, these data are used to train an
ANN, which the GA uses for the next 49 generation. After 49 generations
using the ANN, the GA goes back to using the ECLIPSE simulator for one
generation. This cycle is repeated and the algorithm converges.

Figure 4.4: Fitness plot for the first 500 generations for scheme 3 on the
shoebox case.

51

CHAPTER 4. RESULTS AND TESTING

included, the generations run using the ANN is not included in this plot. We
see fast convergence, with visible jumps in fitness measurements in the start
of the optimization run. The situation at generations 7–9 shows an example
of the scenario discussed in section 3.1.3 and illustrated in figure 3.5. The
ANN trained from the initial data finds a solution that is far outside of
the explored parameter input space. When this solution is evaluated by the
ECLIPSE simulator, the performance measure does not correspond to the one
performed by the ANN. When this new training data for the relevant parts
of the solution space is incorporated into a new ANN, the “error” is corrected
and the algorithm gets back on the right track after only one generation of
repairing the inaccurate ANN approximation. The graph shows that this
phenomenon occurs a few times during the optimization run, generally with
a smaller effect for each occurrence than for the previous one.

Figure 4.5: Fitness plot only for the generations run on the ECLIPSE simu-
lator for scheme 3 on the shoebox case.

Optimal fitness value was found to be 1306549.4, the exact same result
as in scheme 1.

4.1.4 Preface to optimization on the Brugge case

The experiments presented in the above sections are intended as proof of
concept for the schemes presented in section 3.1. The discussion that follows

52

CHAPTER 4. RESULTS AND TESTING

will therefore be brief compared to the more lengthy discussion in chapter 6
which concerns itself with the more thorough experiments for the different
schemes on the Brugge case.

As was mentioned earlier in this section the GA appears to be perform-
ing like an optimizer is supposed to perform. Figures 4.1 and 4.2 showed
convergence measurements improving until convergence is experienced in the
GA optimization runs, using both the ECLIPSE simulator and the ANN.

The ANN trained for investigating scheme 2 was shown to be a successful
approximation of the ECLIPSE simulator for this case. The ANNs trained
in scheme 3 by using the GA training data also imbued the algorithm with
an ability to adapt to the solution space in an incremental way that proved
to be very successful.

We can inspect the fitness results of the different schemes together in fig-
ure 4.6. The figure shows the fitness performance for all the schemes. We

Figure 4.6: Fitness plot for all the 3 schemes on the shoebox case.

see that scheme 1 and 3 converge to the same solution. Scheme 3 converges
a lot faster than both the other schemes. It is important to take into ac-
count the number of actual simulations in this comparison. Like discussed
in section 3.4.7, many solution are evaluated multiple times, they are not all
unique. In these cases the fitness is not found by simulation, but by lookup
in a hashtable instead.

53

CHAPTER 4. RESULTS AND TESTING

In Scheme 1, 1003 simulations were performed on the ECLIPSE simulator,
and a good solution is found around generation 60, or half of the total number
of simulations. It is also likely that more lookups are performed towards the
end of the simulation run than in the beginning as the population becomes
more homogenous. Approximately 600 simulations were performed before a
good solution was established.

In scheme 2, the hashtable lookup was not used. The training data was
distributed along the solution space before the optimization. 600 training
cases were used, and the time needed to perform the number of generations
with the GA is irrelevant when compared to the ECLIPSE simulation time.
Also, it should be taken into account that the plot shows the fitness evaluation
from the ANN, not the ECLIPSE simulator. When the optimal solution
vector from scheme 2 was used on the ECLIPSE simulator, the fitness value
was very close to the one found by scheme 1 and 3.

In scheme 3, 955 simulations were performed on the ECLIPSE simulator,
and a good solution is found around generation 30. This scheme had a much
higher share of simulations versus lookups compared to scheme 1 however.
This is because changes introduced by minor inaccuracy in the optimization
on the ANN will make the population less homogenous for every time the
population is simulated by ECLIPSE. While scheme 1 got 75.98% of the
fitness evaluations from the ECLIPSE simulator, scheme 3 used the simulator
for 90.52% of the fitness evaluations. This difference is not enough to discredit
the success of scheme 3 however. The number of generations needed for good
results in the beginning of the optimization run is far superior to both the
other schemes.

The number of simulations performed was similar for scheme 1 and 3, but
a good solution was found earlier in scheme 3. There is a possibility that
fewer training cases could have been used for the ANN in scheme 2 to pro-
duce a successful solution. It will always be hard to know how much training
data will be needed beforehand, and the incremental and agile approach to
generating training data in scheme 3 appears to be a working solution to that
problem.

In summary, a good solution could be found around generation 30 or around
350 simulations for scheme 3 when considering the lookup factor. A very
similar good solution was found around generation 60 or 600 simulations for
scheme 1 when considering the lookup factor. 600 simulations were also used
for generating an ANN for scheme 2. All these approaches to production op-
timization for the shoebox case proved successful, with scheme 3 appearing
to work better than the other two.

The following sections will present the same schemes on the larger Brugge

54

CHAPTER 4. RESULTS AND TESTING

case and will show if the discovered trends and effects are relevant for the
larger case as well.

55

CHAPTER 4. RESULTS AND TESTING

4.2 Scheme 1: GA used on ECLIPSE simu-

lator

Scheme 1 was discussed in section 3.1.1. Choice of population size, learning
rates, and similar GA parameters used were all discovered by means of trial.
This process is presented in section 4.5.2.

Optimization was performed using 3 different settings for population size.
Optimization runs were initiated using both random initial populations and
a chosen good initial population. Good initial guesses are often available in
practical reservoir optimization, and the used initial guess is very similar to
what other researchers have used for the Brugge case before the author. Fig-
ure 4.7 displays the results for performing GA optimization on the Brugge
case using a good initial guess and 3 different population sizes.

Figure 4.7: Scheme 1: Fitness plot per simulation for using 3 different pop-
ulation sizes when performing optimization on the Brugge case with GA. A
good initial population was used.

Since the population sizes differ, the performance should not be measured
per generation for comparison. The figure displays the performance of the
different GA optimizations over number of ECLIPSE simulations run, where
both differences in population sizes and lookup of previously simulated cases
in the optimization run have been taken into account. Very low population

56

CHAPTER 4. RESULTS AND TESTING

sizes were used, this is due to the findings in section 4.5.2.2 and discussion
in chapter 6.

We can see that the GA using population size of 3 individuals is converg-
ing to a good solution before the optimization runs using 8 and 16 individuals.
This solution is not as good as the ones eventually developed by the runs
with larger population sizes. The convergence to a good solution for the GA
using 8 individuals is also slightly faster than the GA using 16 individuals.

Figure 4.8 shows the performance of the same optimization runs using ran-
dom initial populations. The same random seed was used when initializing
the populations, and all GAs started with the same best solution fitness in
the initial generation.

Figure 4.8: Scheme 1: Fitness plot per simulation for using 3 different pop-
ulation sizes when performing optimization on the Brugge case with GA. A
random initial population was used.

The figure shows very similar results to the experiments using better ini-
tial populations. The GA using 3 individuals per generation converges very
rapidly, but appears to get stuck in a local maximum. The other solutions
both converge slower, but also more steadily and eventually discovers better
solutions than the GA using lower population size. The relative difference
between the GAs using 8 and 16 individuals per generation is smaller for the
runs using random initial populations than for the ones using good initial

57

CHAPTER 4. RESULTS AND TESTING

Simulation no. 3 individuals 8 individuals 16 individuals
1 4383588513 4383588513 4383588513
100 4421070884 4405027379 4401200794
240 4476540113 4440980315 4422360465
460 4505736558 4462850835 4452159401
720 4507716014 4494644696 4494644696
1000 4507777715 4506297306 4491430230
1300 4507840765 4508490101 4502895952
2120 4507840996 4511079060 4507803813
3020 4509211987 4511276768 4508870522
3710 4511276768 4509844495

Table 4.1: Scheme 1: Fitness performance for different population sizes run-
ning GA optimization on the Brugge case.

populations.

We can inspect the numerical values of the solutions for different simula-
tion numbers in table 4.1. These results are for the GA optimization using
a good initial guess. The solution fitness discovered after 460 simulations
by the GA optimization using 3 individuals is not matched by the one us-
ing 8 individuals until after 1000 simulations have been performed, and even
later for the GA optimization using 16 individuals. The numerical difference
between the fitness of the solution discovered after 460 simulations using 3
individuals and the fitness of the best solution discovered after 3020 simula-
tions using 8 individuals is 5540210. The result found after 460 simulations
is only 0.123% worse than the result found after 3020 simulations. However,
if we go back to the meaning of this number discussed in section 3.2.2.1, this
value is actually the NPV in US Dollars. That is 5.5 million USD for the
time and resources it takes to do additional 2600 simulations.

The solution vectors discovered by the 3 different GA optimizations can be
inspected in figure 4.9. In this figure, each column represents a optimization
parameter in the solution vector, and the height represents the value of the
parameter.

The meaning and implications of these findings are all discussed further
in chapter 6.

58

CHAPTER 4. RESULTS AND TESTING

Figure 4.9: Scheme 1: Solution vectors for the optimized solutions discovered
by performing GA optimization with different population sizes. Columns
represent optimization parameters, and the column height represents the
value of the parameter.

59

CHAPTER 4. RESULTS AND TESTING

4.3 Scheme 2: GA used on ANN

Scheme 2 was discussed in section 3.1.2. Choice of GA and ANN parameters
used were all discovered by means of trial. This process is presented in sec-
tions 4.5.2 and 4.5.1. The number of training cases used was inspired from
the performance of optimization using scheme 1. To be able to compare the
performance of the schemes, similar number of simulations were used.

GA optimization was performed on different ANNs trained with 200, 400,
800 and 3000 randomly generated training cases, and again for the same
amount of incrementally generated training cases. These approaches were
presented in section 3.5.6. Figure 4.10 shows the performance for GA opti-
mization on ANNs trained with the different number of training cases. All
optimization runs were initiated and run with the same random seed.

Figure 4.10: Scheme 2: Fitness performance for running GA optimization
on ANNs trained with different number of training cases from the ECLIPSE
simulator.

The point of scheme 2 is to evaluate the solutions with ANNs instead
of the ECLIPSE simulator. The solution vectors for the initial populations
in the different runs is identical due to the random seed, and the figure
shows that the value of these initial guesses are similar when evaluated by
the trained ANNs. We can also see all the optimization runs converging
to solutions with higher fitness values than the actual values discovered by
scheme 1 in the previous section. When we apply the final optimized solution
vectors from the optimization runs to the ECLIPSE simulator we get the real
values for the solution vectors. These are shown together with their ANN
counterparts in figure 4.11.

The values evaluated by the ECLIPSE simulator is shown by the red

60

CHAPTER 4. RESULTS AND TESTING

Figure 4.11: Scheme 2: Optimized fitness values from the ANNs and the real
values of these solutions when evaluated by the ECLIPSE simulator.

ANN init. ECL. init. % ANN opt. ECL. opt. %

Random training data
200 3889599384 4020186350 -3.25 4959519735 3129661975 58.47
400 4022223539 4020186350 0.51 4826720299 3560127420 35.58
800 4082148403 4020186350 1.54 4867656516 3665899804 32.78
3000 4044972140 4020186350 0.62 5234528538 3872832355 35.16

Incremental training data
200 4019740294 4020186350 -0.01 5814950499 3498988529 66.19
400 4004347450 4020186350 -0.39 5876672093 3395715210 73.06
800 4027680797 4020186350 0.19 5724885790 3567634826 60.47
3000 3982082850 4020186350 -0.95 5513610728 3592944642 53.46

Table 4.2: Scheme 2: Initial and optimized fitness values from the ANNs and
the real values of these solutions when evaluated by the ECLIPSE simulator.

bars in the figure, the blue bars are the fitness evaluations performed by the
ANN. For all numbers of training cases and types of training data used, the
fitness evaluations of solutions by the ANNs are far away from their actual
values when evaluated by the ECLIPSE simulator. The difference between
the ANN and ECLIPSE evaluations is especially large for the incremental
training data used. Table 4.2 shows the numerical fitness values for initial
guess and optimized solutions evaluated by ANNs and ECLIPSE. The table
also shows the difference between the fitness values of the solutions when
evaluated by the ANN and by the ECLIPSE simulator in percentages.

For the incrementally generated training data the optimized values are
over 50% higher than the actual values from the ECLIPSE simulator. The
randomly generated training data performs slightly better, but still with op-
timized fitness far off the actual values. ANNs trained with higher number

61

CHAPTER 4. RESULTS AND TESTING

of training cases generally produced solutions with better performance when
evaluated by the ECLIPSE simulator. It should be noted that all the varia-
tions produced optimized solutions with fitness values worse than the initial
guess, when evaluated by ECLIPSE.

Another very interesting point to note is the low difference between the
ANN and ECLIPSE values for the initial guess. As the table shows, this
difference is significantly lower than the results from the optimized solution
for all variations of the optimization. The initial population solutions were
not part of the training data used to develop the ANNs.

The meaning and implications of these findings are all discussed further
in chapter 6.

62

CHAPTER 4. RESULTS AND TESTING

4.4 Scheme 3: GA used on a combination of

ECLIPSE simulator and ANN

Scheme 3 was discussed in section 3.1.3. The GA and ANN parameters used
were all discovered by means of trial. This process is presented in sections
4.5.2 and 4.5.1.

Scheme 3 optimization was performed using a good initial population as well
as a random initial population. GA optimization was run on the ECLIPSE
simulator for 25 generations with a population size of 3. Using the available
results, an ANN was trained, and GA optimization was performed on this
ANN for 100 generations. The GA then switched back to using the ECLIPSE
simulator for solution evaluation for another 25 generations, generating ad-
ditional training data for training ANNs. This cycle was repeated until 4925
generations totally had been performed.

Figure 4.12 shows the results for performing scheme 3 optimization on the
Brugge case using both good and random initial guesses. The figure shows the

Figure 4.12: Scheme 3: Performances for scheme 3 optimization on the
Brugge case using a good initial population and a random initial popula-
tion.

GA improving solutions for the first 25 generations. When the trained ANNs
are used to evaluate the solutions, improved solutions are found that, when

63

CHAPTER 4. RESULTS AND TESTING

evaluated by the ECLIPSE simulator, does not have fitness values close to
the ANN approximations. When this cycle is repeated the same happens over
again. Optimization using ECLIPSE improves the solutions, but the ANN
approximation identifies solutions that are outside the explored parameter
space and evaluates these with fitness values that are not corresponding to
the real model. It is not clear from the graph, but it is interesting to note that
when optimization switches from ECLIPSE evaluation to ANN evaluation,
the ANN approximation are very accurate for the solutions that have already
been evaluated by the ECLIPSE simulator. It is in the unknown parts of the
solution space the ANN approximations are inaccurate.

Figure 4.13 shows the generations performed on the ECLIPSE simulator
only. No consistent improvement to the solutions can be seen from looking

Figure 4.13: Scheme 3: Performances for scheme 3 optimization on the
Brugge case using a good initial population and a random initial popula-
tion. Only generations performed on the ECLIPSE simulator is shown.

at this figure. For the good initial population the optimization results in
an optimized result that is worse than the initial guess. For the random
initial guess the final result is slightly better. However, as can be observed
in the figure, both optimization runs explored solutions that were both sig-
nificantly worse and better than either initial or optimized solutions. The
discovery of both good and bad solutions appears seemingly at random, and
no exceptionally good solutions were ever happened upon.

64

CHAPTER 4. RESULTS AND TESTING

The author did perform several other experiments with scheme 3, chang-
ing number of generations for using both ECLIPSE and ANNs, GA param-
eters and other factors. The results were very similar for all variations and
these results have been omitted for the sake of brevity.

The meaning and implications of these findings are all discussed further
in chapter 6.

65

CHAPTER 4. RESULTS AND TESTING

4.5 Determining optimization run parameters

When running and preparing the GA and ANN, a number of parameters can
be set that will control the performance of the algorithm, the speed of con-
vergence, accuracy and other properties of the methods. These parameters
can all be tuned to yield different results, dependent on the case, available
training data, complexity of the problem representation, and other properties
of the problem in question. Finding the optimal parameters is difficult, and
several textbooks will tell that it is highly problem-dependant [3] [8]. Finding
optimal algorithm parameters is important because the performance of the
algorithms is highly dependent on the parameters chosen.

Optimization is the topic of this dissertation. It concerns itself with op-
timization of production in oil reservoirs. The author has chosen to tune
GA and ANN parameters independently. This is risky since they are all
dependent on each other. A dissertation could be concerned only about find-
ing optimal parameters for ANNs and GAs, and most textbooks do cover
this. Consequently, the author has avoided putting too much focus on this
optimization. When optimizing the algorithm parameters, a starting point
was chosen according to the recommendations of mentioned textbooks and
the authors own experience. Several values for the parameters were exper-
imented with, and the results were thereafter inspected. In this way, the
optimization of the algorithm parameters was performed manually by trial
and error. This process is documented in the following subsections.

Descriptions follows of how the GA and ANN parameters were determined
for use in the 3 production optimization schemes described in the previous
sections. The ANN will first be discussed as it was later used to assist in
determining the parameters for the GA.

4.5.1 ANN parameters

As was discussed in section 3.5, there are several different parameters that de-
termines the performance of training in the backpropagation algorithm, and
consequently, the success of the ANN as an approximation of the ECLIPSE
simulator. As is stated by Callan [3], “The application of neural networks is
an experimental approach to engineering.”. The author has taken available
guidelines into consideration, and established all algorithm parameters for
training the ANNs by trial and error.

In the following experiments, 2 sets of training data were used. The
number of training cases to use was inspired by the results found for scheme
1 in section 4.2 and discussed in section 6. The number of training cases
was set to 800 since good solutions could be produced at that number of

66

CHAPTER 4. RESULTS AND TESTING

simulations in scheme 1. The ECLIPSE simulator was used to produce 800
training cases randomly and 800 cases in the incremental way. Both these
approaches were discussed in section 3.5.6. Experiments were run with both
sets of training data, and the solutions were then evaluated by running the
other data set as testing data for the ANN produced.

4.5.1.1 Learning rate

For the first experiments, different learning rates were experimented with.
The learning rates explored were 0.1, 0.125, 0.13, 0.14, 0.15 and 0.2. The
structure of the ANNs used consisted of 54 input nodes, 54 hidden nodes,
and 1 output node, corresponding to the input–output sets of the ECLIPSE
simulator. Training was run for 500 epochs using a momentum rate of 0. All
these parameters are explored and tuned in the following subsections. Figure
4.14 displays the results for training with the different learning rates.

Figure 4.14: Performances for training ANNs with different learning rates.
The left-hand graphs show the total error for all training patterns in the
output layer for each epoch. The right-hand charts show number of incorrect
cases after running the testing data set on the ANN, using 5% error tolerance.

The figure shows a graph of total error for all training cases in the output
layer for each epoch and a chart of number of incorrect cases after running
the testing data set on the ANN with 5% error tolerance. This is displayed
for both sets of training data. The chart shows that similar results were
obtained with all learning rates, with slightly better performance at learning

67

CHAPTER 4. RESULTS AND TESTING

rates around 0.13. The graphs show total error in the output layer converging
to very low values for all learning rates. Figure 4.15 shows the accurate
development for the 20 last epochs.

Figure 4.15: Total output layer error for training ANNs with different learn-
ing rates for the last 20 epochs.

The figure shows total error is low for learning rates of 0.13 and 0.14.
Based on the results in the graphs and the charts both, 0.13 was chosen as
the default learning rate for training ANNs.

4.5.1.2 Structure of the ANN

The results of the experiments to determine appropriate ANN structure can
be inspected in figure 4.16. Training was run on each structure for 500 epochs
with learning rate 0.13 and momentum rate 0.0.

For the incremental training data set, a single layer of 114 hidden nodes
performed best. Using the random training data set, the best performance
was found using 2 hidden layers, the first containing 100 nodes, the second
containing 50 nodes. The results obtained with this structure for random
training data performed better than all other tested structures.

Total output layer error for single and double hidden layer per epoch is
shown in figure 4.17. Only the best results for single and double hidden
layer are displayed. We see the error decreasing faster and to a lower level
in the experiment using a single hidden layer. Figure 4.16 showed that this
structure was inferior to the double hidden layer structure when performing
on the testing data however. The ANN trained using a single hidden layer is
a case of overtraining caused by too few hidden nodes. The error is low for
the training cases, but the structure is not complex enough for prediction on
the testing data, this is discussed further in chapter 6.

Two hidden layers using 100 and 50 nodes was chosen as the default
structure for training ANNs.

68

CHAPTER 4. RESULTS AND TESTING

Figure 4.16: Performances for training ANNs with different structures. Single
numbers on the X-axis means one hidden layer with the displayed number of
nodes in it. 100+50 means 2 hidden layers, the first using 100 hidden nodes,
the second using 50 hidden nodes. The charts shows number of incorrect
cases from the training data set after running the data on the developed
ANN, using 5% error tolerance.

Figure 4.17: Performances for training ANNs with different structures. The
graph shows total output layer error on the training cases for each epoch.

69

CHAPTER 4. RESULTS AND TESTING

4.5.1.3 Momentum rate

Figure 4.18 shows the results of performing training of ANNs using momen-
tum rates of 0.0, 0.01 and 0.1. The experiments used learning rate 0.13,
structure 100+50 and ran for 500 epochs. The results are quite clear. A

Figure 4.18: Performances for training ANNs with different momentum rates.
The charts shows number of incorrect cases from the training data set after
running the data on the developed ANN, using 5% error tolerance.

momentum rate of 0.01 performed slightly better than 0.0, and far better
than 0.1. Momentum rate of 0.01 was chosen as the default momentum rate
for training ANNs. The error in the output layer for each epoch was very
similar for all cases.

4.5.1.4 Number of epochs

Figure 4.19 shows the results of performing training of ANNs using different
number of epochs. The default parameters established in previous sections
were all used for these experiments. The results were very similar for using
both sets of training data, the results using the random training data set
is shown. The chart shows that the initial guess of 500 epochs proved to
be appropriate and was chosen as the default number of epochs for training
ANNs.

4.5.1.5 Number of training cases

The point of the final round of ANN experiments is to determine the effect
of number of training cases for the performance of the ANN, using the es-

70

CHAPTER 4. RESULTS AND TESTING

Figure 4.19: Performances for training ANNs with different number of
epochs. The chart shows number of incorrect cases from the training data set
after running the data on the developed ANN, using 5% error tolerance. The
graph shows total output layer error on the training cases for each epoch.

tablished ANN parameters. Training was run using 20, 50, 100, 400, 800 and
4000 training cases, all randomly generated. Figure 4.20 shows the test data
precision of trained ANN with the different number of training cases.

Not unsurprisingly, using very few training cases leads to poor precision.
It is interesting to note that using more than 400 training cases does not
improve the performance of the ANN very much. This and other aspects of
the established parameters will be discussed further in chapter 6.

4.5.1.6 Training data evaluation

This subsection provides information about the training cases used for train-
ing ANNs. The two approaches for generating training data were discussed
in section 3.5.6. 4000 training cases were generated for each approach used,
and parts of these training data sets were used when training ANNs in the
previous sections. Figure 4.21 shows the fitness for all generated solutions
for both approaches in descending order. We can see that the majority of
training cases have fitness values ranging between 3.65E+9 and 4.05E+9.
Figure 4.22 shows the distribution of training data solutions below, in, and
above this range of fitness values.

85.05% of the training cases for the randomly generated training data
falls into this value range. For the incrementally generated training data this
value is 84.58%. Only 7.23% of the training cases was evaluated to fitness
values above 4.05E+9 for the randomly generated training data. 6.88% of
the training data set had fitness values evaluated above 4.05E+9 for the
incrementally generated training data.

71

CHAPTER 4. RESULTS AND TESTING

Figure 4.20: Performances for training ANNs with different number of train-
ing cases. The chart shows number of incorrect cases from the training data
set after running the data on the developed ANN, using 5% error tolerance.

Figure 4.21: Fitness for all generated training data solutions. The solutions
are sorted in descending order.

72

CHAPTER 4. RESULTS AND TESTING

Figure 4.22: Distribution of training data over fitness values.

4.5.2 GA parameters

While use of GA for optimization problems is often problem-independent
[8], section 3.4 discussed how parameters for the GA were not. This section
presents and discusses the experiments performed to find good GA parame-
ters for optimization of the Brugge case model.

Performing these experiments with the ECLIPSE simulator would require
a lot of time because of the high simulation time using the simulator. The
author elected to not use the ECLIPSE simulator for the experiments, but
rather use a different technique much used in this dissertation. An ANN was
trained using previously collected data points from the ECLIPSE simulator.
This ANN was then used to perform the experiments to establish good GA
parameters.

27212 data points that had been collected as part of the initial testing of
the algorithms on the reservoir simulator produced an ANN with behavior
similar to what can be expected of the reservoir simulator itself, even if it
might not be able to provide accuracy in all parts of the solution space. In-
cluded in this training data set was cases assumed to be scattered across as
much of the solution space as possible. 8000 of the total training cases had
been obtained by using the methods discussed in section 3.5.6.

The results obtained from the experiments are presented in the following
subsections and discussed in chapter 6.

73

CHAPTER 4. RESULTS AND TESTING

4.5.2.1 Genetic representation

As was discussed in section 3.4.1, the number of bits used in the genetic rep-
resentation of the solutions can have an impact on the precision and perfor-
mance of the GA. Few bits means there are less possible solutions to explore.
It also means potential good solutions are not reachable to the algorithm.
Experiments were performed with different bit string lengths to determine
the effects of the different choices. The results of the experiments are shown
in figure 4.23. All the optimization runs were performed with a population
size of 60, crossover rate of 0.3, and mutation rate of 0.5. These were then
tuned in later experiments.

Figure 4.23: Performances for performing optimization with the GA using
different bit string lengths for the genetic representation.

These optimization runs were performed on the actual ECLIPSE model,
and not the ANN discussed in the introduction to this section. The figure
shows the results for bit string lengths 3–5 to be similar, and somewhat
worse performance from the run with bit string length 6. While lower bit
string length seems to be performing better than higher bit string lengths,
we see bit string length 5 converging on a better solution than the other
runs. The result that was reached has the same NPV objective value as the
results presented by Lorentzen [11] which are assumed to be near optimal.
Since the run with bit string length 5 was the only one to reach this solution
with comparable performance to lower bit string lengths, 5 was chosen as the
default bit string length to use for future experiments and optimization runs
on the Brugge case.

74

CHAPTER 4. RESULTS AND TESTING

4.5.2.2 Population size

13 different population sizes were chosen and a GA optimization was per-
formed for each population size. Crossover rate was set to 0.3. Mutation
rate was set to 0.5.

For each generation, the best solution is copied directly to the next gener-
ation, as was discussed for low population sizes in section 3.4.4. The popula-
tion sizes experimented with was: 101, 81, 61, 51, 41, 31, 21, 11, 9, 8, 6, 3 and
2. Since the best individual is kept between generations, number of solutions
that are subject to mutation and crossover is really populationSize−1. This
means that for population size 2, only 1 individual is mutated per generation,
and the other is not counted as a simulation. Since the population sizes vary,
the performance should not be measured per generation for comparison, and
is measured per simulation instead. As was stated in Goal 3 in section 2.3,
the aim is to minimize number of simulations performed. The results of these
optimization can be inspected in figure 4.24.

Figure 4.24: Performances for performing optimization with the GA using
different population sizes.

We can see that optimization with the largest population sizes improves
the solutions a lot slower than optimization using smaller population sizes.
Every optimization run with population larger than 11 performs poorly. Fig-
ure 4.25 shows the same results but only for the smaller population sizes.

As a result of the variation in population size, the different optimization
runs started at slightly different best initial guesses, despite identical random

75

CHAPTER 4. RESULTS AND TESTING

Figure 4.25: Best performances for performing optimization with the GA
using different population sizes.

seed. We can see runs with population sizes of 3 and 8 showing promising
development of solutions. In the optimization with population size 3, a rela-
tively bad initial guess is assumed, and the GA rapidly improves this solution,
eventually finding a good solution and converging on this solution long before
all the other optimization runs. Optimization with population size 8 showed
very good early improvement of the solutions, and second best convergence
to a good solution. The difference in performance between the different low
population sizes for optimization is small, and the actual performance dif-
ferences will be a little random without performing the same experiments
several times.

Because the differences are not big, this was not explored further, and
population sizes of 3 and 8 were chosen as default for further experimentation
and actual optimization runs with the ECLIPSE simulator. The results
of scheme 1 in section 4.2 confirms these findings when simulated on the
ECLIPSE simulator.

4.5.2.3 Crossover rate

Experiments were performed with 4 different crossover rates for population
size 8 and 2 different crossover rates for population size 3. Mutation rate was
set to 0.5 in both cases. Figure 4.26 shows the experiments with different

76

CHAPTER 4. RESULTS AND TESTING

crossover rates for optimization with population size 8. Crossover rates of
0.0, 0.3, 0.7 and 1.0 were used in these experiments.

Figure 4.26: Performances for performing optimization with the GA using
different crossover rates and population size 8.

We can see this parameter bringing very little performance change to
the optimization runs. The higher crossover rates showed slightly faster
convergence. Figure 4.27 shows similar results for the optimization run with
population size 3. In this case there are only 2 options, either crossover the
2 dynamic individuals in the population, or don’t.

The difference is minor, but the higher crossover rate seems to improve
slightly faster than the lower crossover rate. Crossover rate of 0.7 was chosen
as default for further experiments and optimization runs with population size
8 and 1.0 for population size 3 runs.

4.5.2.4 Mutation rate

Experiments were performed with 7 different mutation rates; 0.0, 0.2, 0.4,
0.6, 0.8, 0.9 and 1.0. Experiments were performed with population size 8
and crossover rate of 0.7. The results of these experiments can be inspected
in figure 4.28.

For low mutation rates, the algorithm converges slower than for higher
mutation rates. Best values for mutation rates appears to be around 0.8–1.0.

77

CHAPTER 4. RESULTS AND TESTING

Figure 4.27: Performances for performing optimization with the GA using
different crossover rates and population size 3.

Figure 4.28: Performances for performing optimization with the GA using
different mutation rates.

78

CHAPTER 4. RESULTS AND TESTING

Mutation rate of 0.9 was chosen as the default for optimization runs.

79

Chapter 5

Comparison of results

In this chapter the optimization results obtained by the different schemes is
compared to each other and to other methods for optimization used on the
Bugge case. The algorithms presented in this comparison are;

• Scheme 1, GA population size 3 — Presented in section 4.2.

• Scheme 1, GA population size 8 — Presented in section 4.2.

• Scheme 2, 3000 training cases used — Presented in section 4.3.

• Scheme 3, good initial population — Presented in section 4.4.

• Matlab fmincon optimization — Presented in section 2.2.4.1.

• Hooke-Jeeves optimization — Presented in section 2.2.4.2.

Table 5.1 shows some key results from use of the different algorithms. The

Simulations used to reach:
Algorithm Init. guess Opt. solu. 4.5E+9 4.506e+9 Opt.
Scheme 1, GA3 4383588513 4509211987 430 480 2900
Scheme 1, GA8 4383588513 4511276768 990 1000 3020
Scheme 2, ANN 4020186350 3872832355 NA NA 3000
Scheme 3 4383588513 4322394899 NA NA 1911
fmincon 4390801909 4504325848 280 NA 443
Hooke-Jeeves 4384377320 4508690950 300 1200 3000

Table 5.1: Result comparison: The table shows initial guess fitness, optimized
solution fitness, number of simulations used to reach fitness values of 4.5E+9
and 4.506E+9, and number of simulations used to reach the optimal solution.

80

CHAPTER 5. COMPARISON OF RESULTS

table reflects the efficiency of the algorithms by both evaluating how many
simulations were used to reach the optimized fitness value and also how
many simulations were used to reach two good solutions. Good solutions are
considered by the author to have fitness values above 4.5E+9.

The results can also be inspected in figure 5.1 where the most promising
approaches are displayed. These approaches all used a very similar good
initial guess, making them very suitable for comparison.

Figure 5.1: Performances for performing optimization on the Brugge case
with different optimization algorithms.

The fmincon and Hooke-Jeeves algorithms both provide very rapid early
improvement of the solutions, and reach what can be considered a good
solution after around 300 simulations. This early performance is not matched
by any of the schemes the author has used for production optimization.
However, we can see the GAs used by the author in scheme 1 provide the best
optimized results if optimization is given the time to run to convergence. The
GA using population size of 3 finds a solution after 480 simulations that is not
matched by Hooke-Jeeves until after 1200 simulations, and never matched
by fmincon. The solutions developed after 1310 simulations by the GA using
population size of 8 are not matched by any of the other algorithms. The

81

CHAPTER 5. COMPARISON OF RESULTS

optimized solution by this GA is the best result obtained for the Brugge case
of all the algorithms in this comparison.

The use of the fitness terminology is not appropriate for all the methods
presented. Fitness values and objective function values are both defined by
the same NPV calculation given in USD, and thus are perfectly comparable.

Algorithm parameter tuning Section 4.5 illustrated how considerable
effort was put into determining good algorithm parameters for the GA and
ANN used by the author. Some of the other methods used did not involve the
same rigorous tuning of parameters, or information was not present about the
work of tuning these parameters. It is possible that some of these algorithms
could provide better performance given more tuning of the relevant algorithm
parameters.

Fmincon result inaccuracy The results obtained by fmincon for the
Brugge case was from a previous study by IRIS that did not use the same
formulation of the Brugge case as the one the author has used. They are the
result of optimization performed on 10 different formulations of the Brugge
case, and the results are the average of all of them. These formulations are
all similar to the formulation the author uses, and the results obtained are
very nearly the same as the ones the author has used. Lorentzen [11] provides
details of the models used.

Thus, the results obtained from fmincon are hard to directly compare.
Solution vectors were available from the study using fmincon, and figure 5.2
shows how the optimized solutions from both fmincon and GA optimization
compares to each other.

We can see the solution vectors showing similar but not identical proper-
ties. When the solution vector discovered by fmincon is run on the author’s
formulation of the Brugge case the solution is evaluated to 4487549140 NPV.
This value is slightly below the value presented in table 5.1. The fmincon re-
sults also do not include optimization values beyond the first 443 simulations
performed. The differences in the models and approaches used are significant
enough to cast some doubt about the veracity of the fmincon results for this
comparison.

The findings of this chapter are further discussed in chapter 6.

82

CHAPTER 5. COMPARISON OF RESULTS

Figure 5.2: Solution vectors for fmincon optimization and GA optimization
on the Brugge case. The columns represent optimization parameters in the
solutions. The length of these columns represents the value of the corre-
sponding parameter.

83

Chapter 6

Discussion

6.1 Results discussion

Chapter 5 presented a comparison between the optimization schemes used by
the author and other optimization algorithms used on the Brugge case. The
results showed the GAs used in scheme 1 provided very good performance
in the middle (500+ simulations) and late stages (1000+ simulations) of
the optimization runs. The result of perfoming GA optimization with 8
individuals also yielded the best optimized solution of all the algorithms
presented. In the early stages of optimization, other algorithms provided
rapid early improvements of the solutions that could not be matched by the
schemes the author used.

Fmincon (section 2.2.4.1) discovers derivates by intentionally mutating
the optimization parameters. These derivatives are used to determine the
appropriate direction of change in the optimization parameters. As figure 5.1
showed, this information is very helpful in determining early improvement to
the solution. This also means the algorithm has a tendency to get stuck in
local maxima with no way of getting out.

Hooke-Jeeves (section 2.2.4.2) is, much like GAs, sometimes referred to
as a method to use when other methods fail. It is a pattern search which
uses no derivatives. It is however not stochastic. It follows a very specific
heuristic to zero in on the maximum (or minimum). Thus it is also subject
to getting stuck in local maxima.

GA is a stochastic and derivative-free method, and for low population
sizes its behavior can be very random. We can see this clearly in figure 5.1,
where both GA approaches improve the solutions sporadically and sometimes
in giant leaps. This is the effect of random mutation to the optimization pa-
rameters without any specific knowledge of derivatives or similar information

84

CHAPTER 6. DISCUSSION

about the effect of mutation on the objective function value. This function-
ality is instead emergent in the GA through the inherent selection pressure
the mechanisms of the GA provides.

The success of the GA in middle and late stages of the optimization shows
where the stochastic approach to optimization can provide added value. Ran-
dom mutation provides exploration of solutions in areas of the search space
which can be hard to evaluate by other methods, when they get stuck in
local maxima. The ability to get out of local maxima is the main reason for
the better results achieved by GA optimization.

It is hard to declare a clear winner among the optimization algorithms. The
result obtained after 3020 simulations using the GA is only 0.234% better
than the result obtained after 300 simulations using Hooke-Jeeves. When the
meaning behind the numbers is inspected, the difference can also be seen as
a difference in 10519008 USD for the project. That is over 10 million USD
net present value for the cost of performing 2720 simulations.

While the relative difference between the results is very small,
the difference in money earned is substantial. This highlights the
importance of good optimization for reservoir optimization. Each
simulation takes around 90 seconds for the Brugge case. This means 2720
simulations will be performed in just below 3 days. 3 days of simulating for
a gain of 10.5 million USD over a 20 year period seems well worth it.

One can easily imagine cases that take substantially more time to simulate
than the Brugge case. Simulations can take 10-20 hours. It then becomes
very impractical to have to do large number of simulations for optimization.

It is also important to keep in mind that the simulator is only a rough
approximation of the real reservoir conditions. Differences on the scale of
0.2% and significantly higher are well within the margin of error for most
simulator models of complex reservoirs.

A balance has to be struck between number of simulations and quality
of solution according to the specifications of the problem. How long is the
simulation time? How significant are small differences in the optimized so-
lutions? Is the simulator considered to be accurate enough for it to matter?
These and other similar questions decide the balance, and also decide which
algorithm can be considered most appropriate for a given case.

Section 3.1 and figure 3.1 illustrated the modularity of production optimiza-
tion. The optimizer and simulator can both be replaced. Scheme 3 in this
dissertation already introduced the idea of mixing up different methods to
be able to provide good results. This idea can be extended to involve com-
binations of different optimization algorithms.

85

CHAPTER 6. DISCUSSION

The results presented in chapter 5 showed that the different algorithms
performed differently in different stages of optimization. This indicates that
combining the use of the different methods can be done to produce the best
results. One could for instance take advantage of fmincon to improve a
solution rapidly to a good level in the beginning, and then change to a GA
for the middle stages. In the end stage the population size used by the GA
could be increased for better exploitation of the discovered solution. Chapter
8 mentions these and other similar ideas for future work with this material.

6.2 ANN discussion

The process of obtaining parameters for training ANNs was presented in
section 4.5.1. This section will discuss the findings and highlight interest-
ing properties of the problem and methods used that was discovered during
experimentation with the ANN.

6.2.1 Parameter dependencies

The parameters in the backpropagation algorithm are highly dependent on
each other. If one changes, the effect of changing another will be different
than it would have been before the change in the first parameter. A good
example is the relationship between learning rate and number of epochs used.
If a high learning rate is used, fewer epochs are needed to reach convergence.
If a lower learning rate is used, performing training over more epochs can yield
good results. If these factors are not balanced, this can result in unwanted
behavior like overtraining the ANN.

This effect can be seen when considering figure 4.19 in section 4.5.1.4.
Running training for many epochs resulted in an ANN which performed very
well when evaluating the training data. However, the performance when
evaluating testing data was worse than for ANNs trained over fewer epochs.
Too few epochs used for training resulted in bad performance on both training
and testing data sets.

In the experiments in section 4.5.1 the author discovered parameter values
for the ANN that proved to perform well in most cases. This was presented in
section 4.5.1.5, where the chosen parameters yielded good result for different
number of training cases. The chosen parameters can not be guaranteed to
be optimal for all cases, but as a result of the testing, they are assumed to
be appropriate for most cases.

86

CHAPTER 6. DISCUSSION

6.2.2 Low success rate of ANN

Throughout section 4.5.1 performance measurements for the trained ANNs
are given, showing successful approximation rate of testing cases to be mostly
below 25%. This is assuming correct approximation if the approximated
value is within 5% of the actual value. This means that the ANNs are
largely unsuccessful at approximating the ECLIPSE simulator. The poor
results presented for scheme 2 when used to perform optimization on the
Brugge case in section 4.3 confirms this finding. In all cases the optimization
produced solutions worse than the initial guess for scheme 2.

Table 4.2 showed large differences between the approximated and actual
fitness values of the optimized solutions. The table also showed that the
fitness value of the initial guess was very accurately approximated by all
the ANNs used. This behavior was also seen for the results of scheme 3 in
section 4.4. When the optimization scheme approximated solutions outside
the explored solution space the approximation was very inaccurate, while
for solutions previously explored by ECLIPSE the ANN approximation was
surprisingly accurate. Two plausible explanations exist for this.

For scheme 2, the initial guess could be part of the training data sets for
all cases. The author has made certain the exact solution was not part of
any of the training data sets, and it is highly unlikely that a very similar
solution was part of all the training data sets.

The other good explanation comes from inspecting how the optimization
parameters in the Brugge case works. Section 3.2.2 discussed how oil pro-
duction is controlled in the well segments, and figure 3.9 shows how the
different segments are turned off when producing too much water compared
to oil. For many of the producer wells, the values for the top segments are less
influential than the bottom ones. Some of them can in many cases produce
for the entire production horizon without ever starting to produce water.
The maximum allowed water cuts can then be any value for these segments
without changing the total outcome. This likely changes for optimal pro-
duction parameters, where the total “bandwidth” of the system is tuned by
finding good values where the top segments in the producers are exposed to
water.

The effect is that very many combinations of parameter settings in the
solution space yields production values around a certain value range. Only
a few optimal combinations of parameters change the outcome significantly.
The evaluation of the training data presented in section 4.5.1.6 confirms this.
Figure 4.22 showed that 85.05% of the training data set evaluated to fitness

87

CHAPTER 6. DISCUSSION

values between 3.65E+9 and 4.05E+9. When 85.05% of the possible solutions
in the solution space evaluates to values in a certain range with low individual
difference, it follows that the chances of randomly generated training data
falling inside this category of solutions is larger than for significantly better
or worse solutions.

The initial guess for scheme 2, with a value of 4.02E+9, falls inside this
value range. The ANN is trained with cases that focus on values in the given
range. To correctly approximate the initial guess is therefore more likely
than correctly approximating the optimized value. Only 7.23% of the solu-
tions in the training data set was above the 4.05E+9 value, and when we
inspect figure 4.21 we see that none are close to the value that was found to
be optimal by scheme 1, 4.51E+9. The ANN is a lot more successful
at approximating solutions that are mediocre, than at determining
which ones are significantly better or worse than the average.

Section 4.1.2 and 4.1.3 presented proof of concepts for scheme 2 and 3 on
the shoebox model. Use of ANNs on this model did provide much better
results than on the Brugge case. For the shoebox case, the best optimization
results was found using scheme 3, where ANNs used training data developed
during the optimization to approximate the ECLIPSE model. These experi-
ments featured only 16 optimization parameters to optimize, while the larger
Brugge case involved 54 optimization parameters to optimize over. The shoe-
box case also has a far simpler internal structure, containing 64 cells, where
the Brugge case contains over 60000.

It follows that the optimization parameters for the Brugge case allows
for a larger number of possible input–output combinations. The degrees
of freedom in the optimization variables are simply too many to allow for
accurate approximation with ANNs. When we view the results of scheme 3
for both the shoebox case in section 4.1.3 and the Brugge case in section 4.4
together, we can see clearly the problem that arises from too many degrees
of freedom.

The ANN provides accuracy in the areas which has been explored by the
GA and ECLIPSE simulator. The ANN is used for optimization, result-
ing in a solution that is outside the explored optimization parameter space.
Solutions in this area of the solution space is explored and added to the
training data. The new training data is then used for training a new ANN,
and a different area is located that needs to be explored. This cycle was
repeated around 5 times in figure 4.4 for the shoebox case until the ANN
approximation of the ECLIPSE simulator was good enough to provide good
optimization results using the ANN. This effect was illustrated in figure 3.5
in section 3.1.3. For the Brugge case, figure 4.13 shows the same develop-

88

CHAPTER 6. DISCUSSION

ment. Because of the larger number of possible solutions for the Brugge case,
the algorithm does not converge to one solution with nearly the same per-
formance as for the shoebox case. It does not converge to one such solution
at all in the given results.

It is possible that given enough time, scheme 3 would yield good results
also for the Brugge case. This would likely happen when a much larger
number of significant areas of the solution space had been explored, and
there is no way to know exactly when this would occur.

6.2.3 Random and incremental training data

The idea behind the incremental way of producing training data presented
in section 3.5.6 was to distribute solutions evenly across the solution space
to provide training data for as many as possible areas of the solution space.
Section 4.5.1.6 showed that both the incremental and the randomly generated
training data sets produced solutions with fitness values distributed similarly.
ANNs trained using incrementally generated training data for scheme 2 in
section 4.3 approximated the optimized solutions worse than the ANNs using
randomly generated training data. When we consider the findings in figure
4.22, we see that the randomly generated training data contains slightly more
cases with evaluated fitness values above 4.05E+9 than the incrementally
generated training data.

It follows that the randomly generated training data should be slightly
better able to approximate solutions in the upper end of the fitness spectrum.
Since the focus of optimization is on this end of the solution space, the slight
advantage the randomly generated training data gives is large enough to be
observable, as it was for scheme 2.

6.2.4 Choice of structure for the ANN

In section 4.5.1.2, using two hidden layers was shown to be producing the
best result. The structure used when training ANNs consisted of 54 nodes
in the input layer corresponding to each input variable in the Brugge model
and 1 node in the output layer also corresponding to the one value returned
when simulating the Brugge model on the ECLIPSE simulator. Two hidden
layers were used between the input and output layers, the first consisting
of 100 nodes, the second containing 50 nodes. The effect of two hidden
layers is described by Mitchell [15]; “Any function can be approximated to
arbitrary accuracy by a network of three layers of units... the output layer
uses linear unit, the two hidden layers use sigmoid units, and the number of

89

CHAPTER 6. DISCUSSION

units required at each layer is not known in general”. This is the structure
the author has chosen.

The results presented in section 4.5.1.2 helped determine the number of
nodes for the hidden layers. The discussion that follows is for the training
using random training data, as this was seen to give best performance. When
using few nodes in the hidden layers, the influence of each input node was
decreased, which helped combat noise and overfitting. When more nodes
were used in the hidden layer, the inputs were given more influence which
prevented underfitting. These approaches each have their pitfalls. The effects
can be either falsely removing too much noise or allowing insignificant inputs
too much influence on the output value.

These effects can be observed when considering figures 4.16 and 4.17
together. In figure 4.17 we see the training using a single layer of 64 nodes
converging to lower error in the output layer than the training using 100+50
nodes. The low error means that the trained ANN is good at approximating
the training data. Despite the higher error, the actual performance of ANNs
on testing data in figure 4.16 paints a different picure. The ANN trained
with 100+50 nodes scored better when used to simulate the testing cases.
The ANN using fewer nodes offers a lower level of complexity in the hidden
layer, giving inputs falsely large influence over the outcome, and making the
ANN perform poorly on unknown cases.

The performances displayed in figure 4.16 showed that a balance between
using too few and too many nodes was struck using the chosen structure of
100+50 nodes in the hidden layers.

6.3 GA discussion

The process of obtaining parameters for running GA optimization was pre-
sented in section 4.5.2. This section will discuss the findings and highlight
interesting properties of the problem and methods used that was discovered
during experimentation with the GA.

6.3.1 Search space topology and parallel search

In the experiments to determine good population sizes for performing op-
timization using the GA, low population sizes were found to give superior
results over larger population sizes. Since the population size can be viewed
as the degree of parallel search offered by the GA, it can be assumed that
this problem does not take advantage of the available parallelism. Parallel
search is great for avoiding getting stuck in local maxima, by exploring mul-

90

CHAPTER 6. DISCUSSION

tiple promising solutions at the same time. As figure 4.24 in section 4.5.2.2
showed, all the optimization runs were able to converge to approximately the
same solution without getting stuck in local maxima. This indicates that a
global maximum can be found, and likely from many different directions in
the search space. When the search space contains few or no local maxima,
the algorithm should not waste time exploring alternative solutions, but can
instead focus on improving one promising solution as fast as possible. This
is an effect of low population sizes for optimization, and the reason for their
success on this problem.

These assumptions were put to the test in section 4.2 for scheme 1 on the
ECLIPSE simulator. Figures 4.7 and 4.8 showed that GA optimization using
3 individuals did converge on a good solution faster than the optimization
runs using larger population sizes. Figure 4.9 showed the different optimized
solution vectors for scheme 1. When we inspect the similarities between the
optimized results we see that a few common features are present for all 3
variations. Section 6.2.2 discussed how some segments in the producer wells
were less relevant than others for the total outcome, and this is very visible
in the figure. This means that the GA optimization using 3 individuals is
not necessarily stuck in a local maximum. The chance of a random change
to the parameters resulting in a change in a significant part of the parameter
space is low. The GAs using higher population sizes offer a larger degree of
exploitation of good solutions. Although they reach good solutions slower,
they are better able to make small changes to existing good solutions. As
figure 4.8 showed, the GA optimization runs using larger population sizes
were able to produce better solutions in the long run.

6.3.2 Solution quality versus number of simulations

Goal 3 in section 2.3 emphasized the importance of minimizing number of
simulations used for any of this work to be relevant from the industry point
of view. The results of scheme 1 was presented in section 4.2. These re-
sults showed that minimizing the number of simulations could come at the
cost of quality of the solution. This was illustrated by pointing out that the
0.123% difference between the result obtained after 460 simulations and the
result obtained after 3030 simulations is actually a difference of 5.5 million
USD in the NPV calculation. The balance between these factors were dis-
cussed in general in section 6.1, and the same observations are relevant when
considering the balance between these factors for different GAs.

91

CHAPTER 6. DISCUSSION

6.3.3 Population fitness variance

Low population sizes and high mutation and crossover rates were determined
to perform very well on the optimization runs. This means that for each
generation, a lot of change is introduced in a small population. Since one
individual is always copied directly between generations, a best solution will
never be lost. It then makes sense to make major changes to the remaining
population in hopes of establishing a better solution. One effect is that pop-
ulation fitness variance becomes a very unreliable measure of convergence.
Random changes can make a population very varied in one generation, while
being almost completely homogenous the next. It follows that population
fitness variance was not considered for evaluating convergence in GA opti-
mization with low population sizes.

6.3.4 The impact of genetic operators

The individuals in the population of one generation are based on the best
individuals of the previous generation. For small population sizes, the same
individual often serves as the basis for the majority of the future population,
especially if this solution is superior to all the others. This means that the
crossover genetic operator often works on identical solutions. And when you
cross two identical solutions with each other the same solutions becomes
the end result. This effect was observed in figures 4.26 and 4.27 in the
presentation of crossover rate experiments in section 4.5.2.2. The crossover
operator did not have a major impact on the success of the optimization
runs. For population size 8 the crossover rate was seen to have a bigger
impact than on the experiment with population size 3. If larger population
sizes had proved more efficient, this GA parameter would have had an even
bigger impact.

The changes to the population introduced by the mutation operator
proved to be the driving force in improving the solutions.

92

Chapter 7

Conclusion

Through the research performed in this dissertation the author has gained
valuable experience and insight into practical engineering use for methods
from the AI domain. The optimization schemes discussed in this disserta-
tion produced results that were promising in comparison to other relevant
methods for use in the industry. The point of performing optimization on oil
reservoir models is ultimately to maximize the profit from production.

7.1 Genetic algorithms for optimization

Section 6.1 discussed how the GA used by scheme 1 could produce the best
results with a slightly higher number of simulations used than the other
methods in the comparison. The better results were shown to be a significant
increase in profit even if their relative difference was not as significant.

The cost of performing thorough optimization can be seen as very low
when compared to the consequences to profit with unoptimized production
(section 6.1). In that regard, the methods developed in this dissertation could
be seen as a revolution. This is however not the case since the models used
to simulate production are not accurate enough to capture the full reality
of sub-sea oil reservoirs. Optimization is generally performed on a rougher
scale than for the minor differences between optimization results that was
presented in this dissertation.

Seen in this light, the results are more interesting as a comparison of GAs
as derivative-free, stochastic optimizers and other methods using traditional
hillclimbing techniques. The results were as could be expected. The GA
would find initial good solutions slower than the SQP method. Where other
methods can get stuck in local maxima, the stochastic exploration of the
solution space provided mechanisms to escape local maxima, and yielded

93

CHAPTER 7. CONCLUSION

better results in the long run.
While the industrial relevance of the good results from this research is

questionable now, one can imagine that simulating tools will see improvement
in the future. If the precision of simulating tools increases the methods
developed in this dissertation can be seen as more effectual also from an
industry point of view.

7.2 Artificial neural networks used in opti-

mization

Not all technologies developed in this dissertation lived up to the expectations
of the author. Scheme 2 and scheme 3 were developed as alternative methods
of performing production optimization. These schemes showed great promise
in initial testing and for the simpler case studied (section 4.1.3). When
optimization was performed according to these schemes on the larger case,
they were seen to not significantly increase — and even decrease — the
performance of the solutions they were trying to improve (chapter 5). The
ANNs used were not able to capture the full complexity of the Brugge case.
This result yielded valuable insight into what ANNs can not be expected to
do.

The Brugge case is a model with significant internal complexity and many
degrees of freedom. The smaller shoebox case proved easier to approximate.
Classification is a typical application area for backpropagation ANNs like
the ones the author used. This is where ANNs perform well, as a means
of simplifying the underlying concepts in a system. When the author at-
tempted to use ANNs to simplify the Brugge model, the received result was
as could be expected, a simplification. When this simplification was directly
compared to the real model, discrepancies between the different approaches
were inevitable.

The ANN was able to produce good results for the simpler shoebox model
and for parts of the solution space of the Brugge model. This is in reality a
success for the use of ANNs. It shows that the ANN performed its task of
simplifying the problem. The author entered into this research with unre-
alistic expectations of what the ANN was supposed to do, and was through
the research made aware of the limitations of the technology.

94

CHAPTER 7. CONCLUSION

7.3 Scheme 3 ideas

The ideas in scheme 3 were intended to provide a genuine contribution to
both the AI field as well as for industry purposes. The incremental approach
to training ANNs proved to be inefficient as a means of augmenting opti-
mization on the Brugge model. It is however conceivable that the concepts
and ideas developed can be successfully employed for other challenges, both
in the petroleum industry and other fields. The best indication of this can
be seen when performing scheme 3 optimization on the shoebox case.

Section 4.1.3 discussed the results of scheme 3 applied to the shoebox case,
and these results showed that incrementally generating training data for the
ANNs according to scheme 3 can work well. Scheme 3 produced an optimized
solution for the shoebox model in nearly half the number of simulations re-
quired for the GA of scheme 1 to achieve the same result (section 4.1.4).

7.4 Multidisciplinary focus and the AI meth-

ods used

This dissertation involves topics from many different disciplines, and consid-
erable effort has gone into identifying and understanding the challenges in
domains other than AI. The assistance of petroleum and process engineers
and engineering students was crucial for working with the topics covered in
this dissertation. As a result of this multidisciplinary focus, the AI meth-
ods studied in this thesis have been limited to standard and straightforward
implementations of methods from the AI domain. While the success of back-
propagation/feedforward ANNs and basic GAs is undeniable, for this dis-
sertation and for other applications, more advanced approaches exists. If
this study was concerned only with topics and methods from the AI domain,
it would be appropriate to investigate other variations of the methods for
performance comparison.

7.5 Goals

Section 2.3 discussed the goals of this dissertation. The following subsections
will summarize how these goals were met.

95

CHAPTER 7. CONCLUSION

7.5.1 Goal 1: Use of GA

Section 6.1 discussed the performance of the approaches used by the author
to perform production optimization on the Brugge model. The comparison
showed that the use of GA for production optimization proved effective,
especially in middle and late stages of optimization. The usability of the
method then depends on specifics of the problem, like the cost associated
with evaluating solutions. For both the complex Brugge case and the less
complex shoebox case GAs were shown to be competitive algorithms that
can be used successfully for reservoir production optimization.

7.5.2 Goal 2: Use of ANN

Section 6.2.2 discussed the low success of ANNs and pointed out how there
are too many degrees of freedom to the Brugge case to be successfully ap-
proximated by ANNs. The ECLIPSE model offers a complexity that the
ANNs used by the author were not capable of capturing. While the use of
GAs proved to be effective at solving the problem given by the Brugge case,
the use of ANNs according to schemes 2 and 3 did not yield the same good
results. Looking back at sections 4.1.2 and 4.1.3, we saw that these schemes
proved a lot more successful for optimization on the less complex shoebox
case. ANNs can be a very appropriate technology for use in less complex
cases where the number of parameters and complexity is more manageable.

7.5.3 Goal 3: Minimizing simulations used versus qual-
ity of solution

Chapter 5 presented performance comparison for the different schemes used,
and section 6.1 discussed these findings. It was pointed out that the GAs
used did not provide the best performance in the early stages of the opti-
mization runs, but could provide very good results in the middle and later
stages of optimization. As has been thoroughly discussed, a balance should
be struck between number of simulations and quality of solutions. Work
with the optimization problems in this dissertation has constantly been fo-
cused around this issue, and the author therefore considers this goal to be
successfully met.

96

Chapter 8

Future work

This chapter will discuss work that could be done with the material in this
dissertation that the author did not get to do because of the time limitations
for the project.

8.1 Scheme 3 expanded

The ideas put forth in scheme 3 (section 3.1.3) involved using multiple differ-
ent approaches for evaluating solutions in a single optimization run. This is
possible through the modularity of optimization seen in figure 3.1 in section
3.1. The same modularity applies to the optimization algorithm employed.

The results in this dissertation show how different algorithms and ap-
proaches have their individual advantages and disadvantages for reservoir
optimization, often relating to accuracy versus computing cost. Some meth-
ods are better for rapid early convergence, while others are better at late ex-
ploration for the global maximum. In the same manner as solution evaluation
mechanisms were interchangeable in scheme 3, a method can be developed
that also alternates between different optimization algorithms.

A method could be developed that used SQP in the initial phases of
optimization. The method could switch to using a GA with low population
size for the middle stages, and use a GA with higher population size in the
late stages of optimization. Such a method would involve the best from
multiple methods, and would probably offer performance better than for any
of the methods on their own.

This could be further augmented by also alternating the evaluation meth-
ods. This does not need to be limited to only the simulator and the ANN.
Other simplification and approximations of the reservoir conditions could
also be used.

97

CHAPTER 8. FUTURE WORK

8.2 Parallel computing

The independent evaluation of fitness in GA populations makes the algo-
rithm very suitable for use in parallel computing. This has not been dis-
cussed in this dissertation because the ECLIPSE simulator already offers
parallel functionality. It is conceivable that the parallelism offered by the
ECLIPSE simulator is less efficient than the parallelism offered by GAs. Ex-
periments could be performed to compare performance of the parallelism in
both technologies.

A parallel GA used on ECLIPSE running in serial mode could be com-
pared to a serial GA used on ECLIPSE in parallel mode. We assume the
scheme using parallel GA can be shown to perform better than the scheme
using parallel ECLIPSE. GAs as optimization algorithms in a distributed
computation scheme would then perform even better in comparison to other
methods incapable of performing evaluations in parallel.

8.3 Training ANNs with the history data used

to develop simulator models

Figure 3.1 shows how the ECLIPSE simulator models are made using data
from the actual performance of a field. Other information about the geo-
logical properties of the reservoir can also be used. One can imagine using
this data directly to train ANNs to model reservoir behavior instead of go-
ing through the ECLIPSE simulator models for generating training data.
ANNs could be trained using the exact same data used to train the original
simulator models.

Time limitations were not the only reason for the author not investigating
this possibility. It requires a lot of domain knowledge about the geological
and fluidic properties of such reservoirs, as well as vast knowledge of the
workings of oil wells and oil production facilities in general. The author
does not possess this knowledge through studying informatics and AI. The
availability of such history data is also problematic. The author has not been
working on reservoirs that exist in the real world. This kind of information is
not readily available for anyone to use, and the author did not have access to
such data for this thesis. The data used to develop simulator models can also
include image data of the geology of the reservoir and similar information
that is hard to directly put into an ANN.

To perform the proposed training of ANNs would likely require a multi-
disciplinary effort as well as available real history data and geological infor-
mation for an oil field.

98

List of Figures

2.1 Evolution . 9
2.2 Search space optimization . 10
2.3 Convergence of a GA . 11
2.4 ANN structure . 13
2.5 Reservoir with multiple wells. This illustration shows the

Brugge case model using the ECLIPSE simulator tools. The
color shows concentrations of oil and water. 16

2.6 Horizontal injection and production well. This illustration is
borrowed from Zandvliet [29]. 17

2.7 Use of a simulator for optimization 19

3.1 Combination of methods . 25
3.2 Scheme 1 . 26
3.3 Scheme 2 . 28
3.4 Scheme 3 . 29
3.5 Scheme 3 2D . 31
3.6 Shoebox case . 32
3.7 Brugge case topology . 33
3.8 Brugge case . 34
3.9 Brugge producer well . 35
3.10 Shoebox case ANN . 44

4.1 Shoebox case results for scheme 1 49
4.2 Shoebox case results for scheme 2 50
4.3 Shoebox case results for scheme 3, all generations 51
4.4 Shoebox case results for scheme 3, 500 first generations 51
4.5 Shoebox case results for scheme 3, ECLIPSE generations . . . 52
4.6 Shoebox case results . 53
4.7 Scheme 1 results, good initial guess 56
4.8 Scheme 1 results, random initial guess 57
4.9 Scheme 1 solution vectors . 59

99

LIST OF FIGURES

4.10 Scheme 2 results, fitness plot 60
4.11 Scheme 2 results, solution real values 61
4.12 Scheme 3 results . 63
4.13 Scheme 3 results, ECLIPSE simulator generations 64
4.14 Learning rate experiment . 67
4.15 Learning rate experiment, last 20 epochs 68
4.16 Structure experiment, testing data error 69
4.17 Structure experiment, output layer error 69
4.18 Momentum rate experiment 70
4.19 Number of epochs experiment 71
4.20 Training case experiment . 72
4.21 Training data evaluation . 72
4.22 Training data evaluation 2 . 73
4.23 Genetic representation experiment 74
4.24 Population size experiment . 75
4.25 Population size experiment, best results 76
4.26 Crossover rate experiment, population size 8 77
4.27 Crossover rate experiment, population size 3 78
4.28 Mutation rate experiment . 78

5.1 Result comparison, fitness plot 81
5.2 Solution vector comparison . 83

100

List of Tables

4.1 Scheme 1 results . 58
4.2 Scheme 2 results . 61

5.1 Result comparison . 80

101

Bibliography

[1] Masoud Asadollahi et al. Production optimization using derivative free
methods applied to brugge field. In preparation, 2009.

[2] Jan Bj̊alie et al. Menneskekroppen: Fysiologi og anatomi. Gyldendal
Norsk Forlag, first edition, 2006. Chapter 2, p. 55–97.

[3] Rober Callan. The essence of neural networks. Prentice Hall Europe,
first edition, 1999.

[4] L.P. Dake. Fundamentals of Reservoir Engineering. Elsevier, 1998.

[5] Charles Darwin. On the Origin of Species. Dover Publications, Incor-
porated, 2006.

[6] David Edward Goldberg. The design of innovation. Springer, second
edition, 2002.

[7] John H. Holland. Adaption in natural and artificial systems. MIT Press,
1992.

[8] Kenneth A. De Jong. Evolutionary computation: a unified approach.
MIT Press, 2006.

[9] Eric R. Kandel et al. Principles of neural science. McGraw-Hill, fourth
edition, 2000.

[10] S. Kirkpatrick et al. Optimization by simulated annealing. Science, New
Series, 220(4598):671–680, 1983.

[11] Rolf J. Lorentzen et al. Closed loop reservoir management using the
ensemble kalman filter and sequential quadratic programming. 2009
SPE Reservoir Simulation Symposium, 2009.

[12] George F. Luger. Artificial Intelligence. Pearson Education Limited,
fifth edition, 2005.

102

BIBLIOGRAPHY

[13] Thomas Malthus. An Essay on the Principle of Population. Kessinger
Publishing, 2004.

[14] The MathWorks Inc. Matlab R2008b (r). http://www.mathworks.com,
1984–2008.

[15] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[16] Michael Nikolaou. An overview of industrial model predictive control
technology. Advances in Chemical Engineering Series, Academic Press,
1998.

[17] Jorge Nocedal et al. Numerical Optimization. Springer, second edition,
2000.

[18] Statistics Norway. Oil and gas. Avaliable:
http://www.ssb.no/emner/10/06/olje gass/, 2008.

[19] Young Whan Park et al. Process modeling and parameter optimization
using neural network and genetic algorithms for aluminum laser weld-
ing automation. The International Journal of Advanced Manufacturing
Technology, 37:1014–1021, 2008.

[20] David M. Prett et al. The Shell Process Control Workshop. Butter-
worths, 1987.

[21] David M. Prett et al. The Second Shell Process Control Workshop:
solutions to the Shell standard control problem. Butterworths, 1990.

[22] J. Qin et al. An overview of industrial model predictive control tech-
nology. Fifth International Conference on Chemical Process Control,
1997.

[23] S.S. Rao. Engineering optimization. Wiley-IEEE, third edition, 1996.

[24] Mark Ridley. Evolution. Wiley-Blackwell, third edition, 2004.

[25] Schlumberger. ECLIPSE 2008.1. http://www.slb.com/content/services/-
software/reseng/index.asp?, 1982–2008.

[26] William M. Spears. Crossover or mutation? Foundations of Genetic
Algorithms, 2:221–237, 1992.

[27] Oswaldo Velez-Langs. Genetic algorithms in oil industry: An overview.
Journal of Petroleum Science and Engineering, 47:15–22, 2005.

103

BIBLIOGRAPHY

[28] D. Yang et al. Integrated optimization and control of the production-
injection operation systems for hydrocarbon reservoirs. Pet. Sci. Eng,
pages 69–81, 2003.

[29] Maarten Johan Zandvliet. Model-based lifecycle optimization of well lo-
cations and production settings in petroleum reservoirs. Technische Uni-
versiteit Delft (http://repository.tudelft.nl/file/946615/379065), 2008.

104

	Title Page
	masteroppgave.pdf

