• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Case-based reasoning in medical image diagnosis

Skjermo, Jo
Master thesis
Thumbnail
View/Open
124868_FULLTEXT01.pdf (2.696Mb)
URI
http://hdl.handle.net/11250/249947
Date
2001
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [3798]
Abstract
In the last several years, there has been an increased focus on connecting image processing and artificial intelligence. Especially in the field of medical image diagnostics the benefits for such integration is apparent. In this paper we present use of the Common Object Request Broker Architecture (CORBA), as the mean for connecting existing systems for image processing and artificial intelligence. To visualize this, we will use CORBA for connecting Dynamic Imager and JavaCreek. Dynamic Imager is an image processing software, that is especially suitable for setting up and test customized sequences of image processing operations. JavaCreek is an artificial intelligence software based on the Case-Based Reasoning (CBR) theory.

After connecting the two systems with CORBA, we proceed develop the specific image processing methods for data gathering, and a knowledge base for diagnosis in the artificial intelligence system. The image processing methods and the knowledge base are produced for one special knowledge domain, for visualizing how the proposed system can help in medical image diagnostics.

The task we use to visualize our approach, is detecting malignancy in breast tumors, from magnetic resonance (MR) images taken over time as contrast agents is injected. This is from a reasonably new method for deciding if a tumor is malignant or benign. All image processing methods and the knowledge base is produced to let the two systems cooperate to find and diagnose tumors.

The image processing methods, the knowledge model, and the selected software with CORBA connection, was the basis for our system implementation. The implementation was tested with data gathered during the development of the clinical method for determining if a tumor is malignant, from the MR images. In all 127 patient cases was available, where 77 has malignant tumors in the gathered images. The results was then compared with diagnosis methods based on manual detection, and on other image processing methods. Although the found results were promising, there was also found several areas for future work.
Publisher
Institutt for datateknikk og informasjonsvitenskap

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit