

Case-based reasoning in medical image diagnosis

Jo Skjermo

December 17, 2001

INTNU Trondheim
Fakultet for fysikk, informatikk og matematikk
Institutt for Datateknikk og informasjonsvitenskap

Abstract

In the last several years, there has been an increased focus on connecting
image processing and artificial intelligence. Especially in the field of medi-
cal image diagnostics the benefits for such integration is apparent. In this
paper we present use of the Common Object Request Broker Architecture
(CORBA), as the mean for connecting existing systems for image process-
ing and artificial intelligence. To visualize this, we will use CORBA for
connecting Dynamic Imager and JavaCreek. Dynamic Imager is an image
processing software, that is especially suitable for setting up and test cus-
tomized sequences of image processing operations. JavaCreek is an artificial
intelligence software based on the Cased-Based Reasoning (CBR) theory.

After connecting the two software systems with CORBA, we proceed
develop the specific image processing methods for data gathering, and a
knowledge base for diagnosis in the artificial intelligence system. The image
processing methods and the knowledge base are produced for one special
knowledge domain, for visualizing how the proposed system can help in
medical image diagnostics.

The task we use to visualize our approach, is detecting malignancy in
breast tumors, from magnetic resonance (MR) images taken over time as
contrast agents is injected. This is from a reasonable new method for de-
ciding if a tumor is malignant or benign. All image processing methods and
the knowledge model is produced to let the two system cooperate to find
and diagnose tumors.

The image processing methods, the knowledge model, and the selected
software with the CORBA connection, was the basis for our system imple-
mentation. The implementation was tested with data gathered during the
development of the clinical method for determining if a tumor is malignant,
from the MR images. In all 127 patient cases was available, where 77 has
malignant tumors in the gathered images. The results was then compared
with diagnosis methods based both on manual detection, and on other im-
age processing methods. Although the found results were promising, there
was also found several areas for future work.

Acknowledgement

When I approached the department of Computer and Information sci-
ence with my ideas for this paper, amanuensis Ketil Bg and professor Agnar
Aamodt both offered to help and guide my work. It was Ketil Bg that intro-
duced me to digital image processing, and Agnar Aamodt that introduced
me to artificial intelligence in the first place. Both helped tremendously with
defining and writing this paper, and directing me in the right direction.

Parts of the work described in this paper utilized the JavaCreek soft-
ware. Fellow student Frode Sgrmo, based on works from Aagnar Aamodt,
produced the JavaCreek software. Frode Sgrmo was extremely helpful in
the process of utilizing JavaCreek to its fullest extent, and explaining the
finer points in the use of this software.

The Dynamic Imager software was used in the work described in this
paper. The company Cetroon produces this software. The employee at
Cetroon was always helpful in suggesting improvements, or tracking down
bugs.

For the medical part of the work described in this paper, I had good
help from Geir Torheim and Kjell Arne Kvistad from the Regional Hospital
In Trondheim (RiT). Both Geir Torheim and Kjell Arne Kvistad has been
highly involved in develop the medical methods this paper utilizes, and has
help both in describing the works done until now, and also helped with
suggestions for improvements.

Finally, I wish to thank my family and friends for all the support during
the process of writing this paper.

Contents

GOAL

1.1 Introduction. 0.

1.2 Main goals and thesis requirements.

1.3 Subgoals.

BACKGROUND AND MOTIVATION.

2.1 Imntroduction.
2.1.1 A real world problem.
2.1.2 System introduction.

2.2 Our motivation. L

2.3 Contribution highlights.

2.4 Method of approach.

Framework.

3.1 Imntroduction.

3.2 Case-based reasoning and JavaCreek.
3.2.1 The CREEK System.
322 The CBRcycle..,
3.2.3 Creek and JavaCreek.

3.3 Dynamic Imager. L.
3.3.1 Modules.
3.3.2 Main features.o

3.4 MR in breast cancer.,
3.4.1 Introduction. L.
342 Tldata..
343 T2%data.o

3.5 CORBA e
3.5.1 Introduction. L.
3.5.2 Referencemodel.
3.5.3 Object Request Broker - ORB.
3.5.4 The CORBA naming service.

10
11
11
11
11
12
13

CONTENTS 4

4 Related research. 27
4.1 Image analysis. oo 28
4.1.1 Introduction. 28
4.1.2 Segmentation.. 28
4.1.3 Classification. oL oL 29

4.2 Magnetic Resonance. L oL 32
4.2.1 Introduction.o 32
4.2.2 The T1 MR imaging technique. 32
4.2.3 The T2* MR imaging technique. 33
4.24 Clarification. o000 33

4.3 Feature extraction and classification from T2*-weighted images. 34
4.3.1 Preprocessing. 34
4.3.2 Region Of Interest analysis and results. 35

5 Approach and results. 37
5.1 Introduction. 38
52 Model.o 39
5.2.1 Introduction, 39
5.2.2 Diagnosis and Artificial Intelligence. 39
5.2.3 Image manipulation., 40
5.2.4 CORBA for communication 40

53 System design. o oL 42
5.3.1 Introduction. 42
53.2 Programflow.. 42
5.3.3 The knowledge model. 43
5.3.4 JavaCreek CORBA connection. 48
5.3.5 Image presentation and Dynamic Imager modules. . . 50

5.4 Implementation description. 60
5.4.1 Introduction., 60
5.4.2 CORBA communication. 60
5.4.3 Dynamic Imager modules. 62

5.5 Example running and Results. 66
5.5.1 Introduction 66
5.5.2 The Javaclient.. oL, 66
5.5.3 Dynamic Imager client. 66

6 Result evaluation 71
6.1 Introduction. 72
6.2 Malignancy diagnosis and the knowledge model. 72
6.2.1 Introduction, 72
6.2.2 Results from others. 73
6.2.3 Result explanation and specification. 73

6.3 The Dynamic Imager client. 75

6.3.1 Introduction. 75

CONTENTS 5
6.3.2 The segmentation process. 75
6.3.3 The classification process. 76

6.3.4 The use of CORBA for connecting CBR and image
processing software. '
6.4 Result evaluation. 0 0L 7
7 Summary and future work. 79
7.1 Summary. e e 80
7.2 Future work. 82
7.2.1 General knowledge in JavaCreek. 82
7.2.2 The artificial neural network. 82

7.2.3 The use of motion segmentation for automatic ROI
definition. 82
7.2.4 The JavaCreek CORBA server. 83

A The Knowledge Model 86

List of Figures

3.1

3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4
5.5

5.6
9.7
5.8

5.9
5.10

5.11
5.12

5.13
5.14

Figure of the CBR cycle, reproduced from Aamodt, Plaze

1994 [4]. © oo
Figure of the explanation engine.
Figure of a module with 4 innput, and 1 output.
Figure of a module network with 4 modules.
Figure over the different T1 signal increase graph types. . . .
Figure of simple corba request.

Figureof aneuron.
Figure of a small neural network, consisting of connected neu-

Program flow for the system.
Top of the entity tree.
The ”si curv” part of the entity tree.
The rest of the measurable nodes.
The CORBA client module for the JavaCreek server CORBA

object, with the modules feeding it with data.
Figure of T1 part of the module nettwork.
Figure of T2* part of the module network.
Figure of the peripheral module, with the module’s feeding

datatoit.
Figure of the whole module nettwork.
1: T1 data image of tumor, 2: T2* data image of tumor, 3:

T1 with user ROI, 4: T2* with user ROL.
1: T1 motion segmented, 2: T2* motion segmented.
Different T1 ROI’s made from the motion segmentation im-

age, and the user defined TTROI
1: T1 signal intensity graph. 2: T2 signal intensity graph. . .
Displaying diagnosis from JavaCreek.

Chapter 1

GOAL

CHAPTER 1. GOAL 8

1.1 Introduction.

This thesis consists of seven parts plus appendices. Each part corresponds
logically to the stages involved in building the thesis. In the first part we
revive the goal of this thesis, and any problem statements. In the second
part we take a closer look at the background and motivation for this thesis.
In the third part we develop our method and framework for approaching our
goal. Part four is a closer look at earlier research our approach builds upon.
In part five we go from our framework, towards an implementation of an
experimental system for approaching our goal. In part six we take a closer
look at our results, in comparison with previous results. In part seven, we
sum up any findings and conclusions.

1.2 Main goals and thesis requirements.

In this thesis we will take a closer look at use of image diagnostic and
artificial intelligence for diagnosing medical images. The basic material will
be medical images where time is of importance, more specific, Magnetic
Resonance (MR) Images of female breasts, taken while a contrast agent is
injected.

From these images we will utilize methods from pattern recognition and
digital image processing to extract data from these images. The data will
then be used as a starting point to determine a diagnosis, by utilizing meth-
ods from artificial intelligence, and specifically case-based reasoning (CBR).
Both general domain knowledge and case specific knowledge will be used.

As the images utilized in this thesis are from a study of breast cancer,
the diagnosis we will be working towards, will be a determination if an image
sequence contains a malignant tumor, or not. A system solution for deter-
mining a diagnosis must be specified, and an experimental implementation
of the system solution must show essential parts of the system, and produce
sufficient data to compare results with earlier results.

To approach a solution to these requirements, the digital image manipu-
lation software ”Dynamic Imager” will be used for pattern recognition and
to get the acquired data to a form that can be utilized by an artificial intel-
ligence system. The artificial intelligence software ” JavaCreek” will be used
to find a diagnosis in the required form, from the provided data.

1.3 Sub goals.

From our goal and thesis requirements, we find at once that we have to

introduce at least three major sub goals that must be defined and solved:
Sub goal 1: As the available data is in the form of MR images, these datas

must be translated into a form that can be understood and manipulated

CHAPTER 1. GOAL 9

by the JavaCreek CBR system. By the goal description, Dynamic Imager
should be used to manage this.

Sub goal 2: For the JavaCreek CBR system to produce a diagnosis from
the data made available to it, the available general knowledge and ear-
lier experiment of the domain must be incorporated into the system. This
knowledge forms what is known as a "knowledge base”.

Sub goal 3: After Dynamic Imager has produced data in a form that can
be utilized by JavaCreek; the data must be made available to JavaCreek
from Dynamic Imager in some way. The third subgoal is therefore to find a
way to give JavaCreek the data from Dynamic Imager, and start JavaCreek
in the process of finding a diagnosis. As Dynamic Imager utilizes C++,
and JavaCreek Java, it is not a trivial problem to make this connection in
a non-manual way.

These three sub goals from now on form the basis for our approach to
solve our primary goal of producing diagnoses from the MR images.

Chapter 2

BACKGROUND AND
MOTIVATION.

10

CHAPTER 2. BACKGROUND AND MOTIVATION. 11

2.1 Introduction.

In this part we will take a closer look at the background and motivation for
this thesis. We will explain our motivation both from a local point of view,
as well as from an international, ”state of the art”, point of view.

2.1.1 A real world problem.

At the Regional Hospital of Trondheim (RIT), Norway, there is a depart-
ment of Radiology. This department has in the last years had an ongoing
study of utilizing MR imaging as a non-invasive method to diagnose if tu-
mors in breasts are malignant or not. Up to 127 patients have participated
in this study, after detection of a tumor. In this study, most evaluation of
the MR images has been conducted manually by pairs of physicians, with
exception of some semi-automatic preprocessing with the ”Dynalize” soft-
ware, developed internally at the department. A short overview of some
findings with special interest for this thesis, and the approach and results
can be found in chapter 3.

2.1.2 System introduction.

”Dynamic imager” is software for fast development of digital image process-
ing. The software is based upon the idea of modules. Each module is a
Dynamic Linked Library (DLL), and can communicate with other modules.
Dynamic Imager is therefore in all essence a graphic interface for connecting,
controlling and reusing DLL’s for digital image manipulation. The software
comes with many standard modules for digital image manipulation and seg-
mentation, but it is also quite easy to produce new modules using the C++
programming language. ”JavaCreek” is a CBR system written in the Java
programming language. In essence JavaCreek is artificial intelligence soft-
ware, where previous experience is stored, together with general knowledge
of the domain from which the experience originated from. The software can
then be used to solve new problems in this domain by utilizing both earlier
experience, and general knowledge. For a closer introduction to CBR and
JavaCreek see chapter 3.

2.2 Owur motivation.

This is in all essence a work where we contribute towards a system that can
understand medical images. Contributions towards such systems do exist
from before, and there is already much work done in this field. Why then is
this of interest for us?

The reason for our motivation is:

CHAPTER 2. BACKGROUND AND MOTIVATION. 12

e Internationally, the research field of malignant tumor detection in
breasts is of growing interest, as early detection and diagnosis is of
vital importance for the patients in question. By producing a semi-
automatic computational system for decision support in diagnose ma-
lignancy, based on the research done in the study at RIT. In this way
we hope we can contribute towards what in the far future may become
a fully automatic diagnosis system for detection and diagnosis of breast
cancer, based on artificial intelligence and digital image manipulation
and segmentation methods. Also, as the artificial intelligence software
we will utilize, is a CBR-based system, we hope that this work also
may be of benefit as educational support, and a knowledge repository
for this domain.

e Dynamic imager and JavaCreek are both highly available products.
As JavaCreek is a CBR-based system, one of the most known artifi-
cial intelligence methods available, and Dynamic Imager is a software
which enable fast and easily creation of digital image manipulation
and segmentation systems, a connecting method for these software is
of some interest. This because integrating a digital image manipula-
tion and an artificial intelligence system can open for use in a number
of other problems that requires diagnoses from digital image material.

e The JavaCreek CBR system is still under development. As such the
work done in this thesis is of interest to this development. As a rather
huge amount of data was made available to us from the study at RIT
earlier mentioned, this gave a chance to test out JavaCreek on a real
world problem where data was available in an abundant amount. At
the start of this work, this had not been tested in JavaCreek.

2.3 Contribution highlights.
The main scientific contributions of this thesis are:

e We present a way for connecting together, and utilizing the best from
both, digital image manipulation and artificial intelligence, by using
only readily available software, methods and standards.

e A "knowledge base” with general domain knowledge for diagnosis of
malignant tumors in breasts, based on interpretation of MR images of
breasts, for use in the JavaCreek CBR system.

e We present selected image segmentation and manipulation methods for
interpretation of digital MR images of breast, taken over time with use
of contrast agents, in the context of acquiring information on suspected
malignant tumors.

CHAPTER 2. BACKGROUND AND MOTIVATION. 13

e A prototype for a semi-automatic artificial intelligence system for diag-
nosis of malignant tumors in breasts based on the contributed knowl-
edge base, software connection and image manipulation methods.

2.4 Method of approach.

In this thesis we use an analytical approach for developing a way of connect-
ing the artificial intelligence software and the image manipulation software
in question (JavaCreek and Dynamic Imager). During the course of pro-
ducing this thesis we worked closely with two of the scientists responsible
for the earlier mentioned study of detection of malignant tumors from MR
images at RIT. Both the work done on modeling the knowledge base for
JavaCreek, and finding image manipulation methods for interpretation of
MR images in this context were based on selected articles from the men-
tioned study, and interviews with the two scientists, Kjell Arne Kvistad and
Geir Torheim. Based on this work, and the need to utilize the Dynamic
Imager and JavaCreek software, we were able to produce a model for our
approach, which enabled us to implement our prototype system for testing
our model.

Chapter 3

Framework.

14

CHAPTER 3. FRAMEWORK. 15

3.1 Introduction.

In this chapter we explain the systems, techniques and standards that forms
the framework for this thesis. First we take a closer look at case-based
reasoning and the JavaCreek system. Then we take a brief tour of the main
features of the Dynamic Imager system. We will also introduce the main
methods and findings in the work done at detecting malignant tumors from
MR images done in at RIT. In the end we describe the CORBA standard

for object communication.

3.2 Case-based reasoning and JavaCreek.

Case-based reasoning (CBR) is basically the process of solving a problem
by remembering a previous similar situation, by reusing information and
knowledge of that situation. This means that CBR is a problem-solving
paradigm that differs from other AT methods in many respects. CBR is able
to utilize the specific knowledge of previous experienced, concrete problem
situation, as well as general domain knowledge. This is possible because
CBR does not use only general knowledge of a problem domain for the
problem solving.

3.2.1 The CREEK System.

The Creek (Case-Based Reasoning through Extensive Explicit Knowledge)
system is an artificial intelligence system originally designed for solving di-
agnostics and repair problems. The reasoning method used in Creek are
Case-Based Reasoning (CBR). This means that a problem is presented to
the system as ”cases”, which can be described as a description of the prob-
lem. In the search for a solution to the problem, both earlier introduced
cases, and general knowledge of the domain are utilized. If a solution is
found for the problem, the solution is made part of the case, and the case
can be stored in the system for use in future problem solving. Se Aamodt
1991[1], Aamodt 1994[3] for a closer description of the Creek architecture
and design.

3.2.2 The CBR cycle.

The Case-Based reasoning process can generally be described as a cycle as
in Aamodt, Plaza, 1994 [4], and this is the main reasoning method in Creek.
When looked at from afar, a general CBR cycle may be described by the
following four processes:

1. RETRIEVE the most similar case or cases.

CHAPTER 3. FRAMEWORK. 16

2. REUSE the information and knowledge in that case to solve the prob-
lem,

3. REVISE the proposed solution.

4. RETAIN the part of this experience likely to be of use in future prob-
lem solving.

A new problem is solved by first making, as completely as possible, a
new case from the problem and the knowledge given by the problem de-
scription. This new case is then used to RETRIEVE one or more previously
experienced cases. The new cases and the case found in "retrieve” is then
REUSED in the process of trying to find a solution for the problem. This so-
lution is then REVISED. If the solution is found to be acceptable, the new
experience is RETAINED by incorporating it into the existing case-base
(knowledge repository).

Problem
NE1I='r
Zase
learnd hetrrved —.,
Case \CASE Hewr

T case

e Reuse

- '.III

tested o e

case sohved

- o) | case

*a______—_ﬂ__,-f’
P Rewvise .

Confirmed Suggested
Solution Solution

Figure 3.1: Figure of the CBR cycle, reproduced from Aamodt, Plaze 1994
[4].

CHAPTER 3. FRAMEWORK. 17

3.2.3 Creek and JavaCreek.

JavaCreek, described in Srmo 2000 [12] is a CBR implementation based
on the Creek system, and the CreekL implementation. In JavaCreek (and
CreekL) the knowledge representation is based on frames (Minsky 1975[11]),
where knowledge is represented in a semantic net. In this net, the semantic
meaning of entities is interpreted from their relations to other entities in the
net. An entity and the relations to and from it, defines a frame.

In JavaCreek a case is represented as a type of frame. At the start the
case will have related findings, as well as goal and solution constraints. As
the case is utilized in the CBR cycle, derived findings and possible solutions,
as well as explanations for why these where activated, is added to the frame.
If the case is solved, it will also have a solution/diagnosis, and an explanation
for how it was derived, contained in the frame.

The JavaCreek and CREEK system is based on an integrated model of
problem solving and learning in a computational system. As such JavaCreek
is an Explanation-Driven CBR system, which is especially suitable for prob-
lems in open and weak knowledge domain, and where at a detailed level a
goal is to find the explanation for why a diagnostic hypothesis should be
preferred over another, and not only to find a diagnosis.

In Explanation-Driven CBR system the primarily role of general knowl-
edge is to produce explanations to support and control the case-based pro-
cess. A generic mechanism, called the ”explanation engine” constitutes the
four fundamental reasoning methods in the CBR cycle. Each of the four
reasoning methods is split into the three subtasks ACTIVATE, EXPLAIN,
and FOCUS - as illustrated in 3.2

RETRIVE —— REUSE — REVICE — RETAIN
¥ A Yy A Yy
Focus Activate Focus Activate Focus Activate Foﬁs Ac#\rate

Explain Explain Explain Explain

Figure 3.2: Figure of the explanation engine.

The methods in the explanation engine operate briefly as follows:

o ACTIVATE takes the present goal and situation description, and gen-
erates a set of concepts suggested as relevant for further processing.
This method relies heavily on earlier cases.

o EXPLAIN builds support for the concepts suggested by ACTIVATE.
This method relies heavily on the general knowledge to sort the rele-
vance for each of the concepts.

CHAPTER 3. FRAMEWORK. 18

e FOCUS makes the final selection among the competing concepts, when

needed, and does so by, among other things, utilizing information of
the reasoning goal, and possible constraints.

For a more in-depth explanation on the ACTIVATE-EXPLAIN-FOCUS
cycle, see Aamodt 1993(2].

CHAPTER 3. FRAMEWORK. 19

3.3 Dynamic Imager.

Dynamic Imager (DI) is a multithreaded image processing visual experi-
menting environment. It is specially designed for easily setting up and test
customized sequences of image processing operations. DI simplifies the de-
veloping process by supplying the developer with a lot of the tools needed
in developing sequences of image processing operations, and is specifically
targeted towards scientists needing a fast experimental environment to an-
alyze their data. This chapter is deduced from the DI user manual. More
information about DI can be found at [5]

3.3.1 Modules.

In DI, a "module” is a standalone entity with parameters to the user or to
other modules. See figure 3.3 for an example of a module. Each parameter
is of one of the following types:

e Input parameters are a connecting point where other modules may
direct data that the module needs. In the user interface, an input
parameter shows as an input port.

e Qutput parameters are where the modules output data is directed.
An output parameter can provide data for input parameters on other
modules. In the user interface, an output parameter shows as an
output port.

e Control parameters are special parameters that enables the user to
control and tune whatever task a module is made to accomplish. These
parameters are not shown on a module, but rather in DI own interface
when a module is selected.

HEEN
FushData

Figure 3.3: Figure of a module with 4 innput, and 1 output.

CHAPTER 3. FRAMEWORK. 20

3.3.2 Main features.

A main feature of DI is that it provides an environment for creating and edit-
ing complex sequences of image processing operations, utilizing any number
of said operations. This is done by arranging and connecting each processing
operation (modules) in a pipelined complex data flow graph (called ”mod-
ule network”). In a module network, output parameters from modules are
connected to input parameters of other modules, and such form a graph. Se
figure 3.4 for an example of a module network.

Feriph T1 data \ T2 data
FushData

Figure 3.4: Figure of a module network with 4 modules.

Another main feature of DI is the automatic module scheduling. In
traditional image processing software the program flow is often manual, and
if an error is done early on, stepping back to the point of error is necessary.
When the error is corrected, all the steps that were backtracked must be
made again. In DI you can at any time make a change to how a single
processing task is done, and be presented with the modified output without
having to manually re-execute all the following steps.

The simplicity in producing your own modules that you can use in a
module network is one of the most important main features if DI. In DI,
developers are presented with a rich API for developing their own modules
(In the C or C++ computing language). This API gives the developer many
functions to use in determining how a module connects to other modules for
input or output of data, as well as adding user interface to the modules.

CHAPTER 3. FRAMEWORK. 21

3.4 MR in breast cancer.

3.4.1 Introduction.

Each year more then 2000 women in Norway are diagnosed with breast can-
cer, and the death rate is approximately 800 a year. This makes breast
cancer one of the most deadly malignant diseases for women [9]. It’s com-
monly agreed that early detection is of significant importance for the chance
of survival. In this context ”detection” is not only detection of a tumor, but
also the determination if the tumor is malignant.

A description and a discussion of how to find, and determine if a tumor is
malignant with MR, can be found in the doctor thesis of Kjell Arne Kvistad
([6])- The method is based on diagnosis from MR images of the breasts,
over a period, while contrast agents affect the outcome of the T1 and T2*
MR imaging techniques.

The rest of this section describes how these image dates is used to find
tumors, and diagnose any malignancy. The remaining part of this section is
divided into two parts. Each part is about data acquisition, and the methods
used to detect malignancy in tumors, for two special MR, image techniques,
named T1 and T2*. For an introduction to MR in general and these two
techniques, see 4.2. The section is based on Kvistad [6], Kvistad [8] and
Kvistad [9].

3.4.2 T1 data.

In the T1 data acquisition process, 44 images were taken from over the
whole breasts. This process was repeated 9 times in short succession. The
whole procedure took 59 seconds. After the first 10 seconds, a contrast agent
was injected (a process that took 10 second). The result is that the image
dates can be viewed as a film over what happens when the contrast agent
is injected and spreads through the tissue. This makes visual detection of
tumors and ROT’s (regions of interests) quite easily, as the contrast agent
penetrates a tumor faster then the surrounding tissue, resulting in a higher
increase in intensity in pixels in the tumor, than in the surrounding tissues,
as the contrast agent spreads. Because of the way the T1 MR images are
taken (as described in 4.2, penetration of contrast agent into the tissue, will
lead to an increase in the pixel intensity.

T1 signal intensity curve.

In the T1 data set, the average signal intensity in the ROI for each imaging
pass, is plotted in a curve. Because the contrast agent increases the pixel
intensity in the ROI based on the type of its tissue, the rate and level of
increased intensity of the pixels in the ROI will indicate what type of tissue
the ROI contains. The form of the curve is then decided to be one of five

CHAPTER 3. FRAMEWORK. 22

predetermined forms, as seen in figure 3.5. The higher the number of the
form type, the higher chance for a malignant tumor. This comes directly
of how the graph is produced. The more contrast agent in a position, the
higher the signal intensity of the corresponding voxel. This gives that a
curve of type 5, describes an area where the contrast agent penetrates the
tissue fast, before being ”washed out” by the blood stream. As malignant
tissue is easier for this contrast agent to penetrate and be washed out of then
normal tissue, because of increased growth (which need an increase supply of
blood), a type 5 graph indicate a malignant tumor to a much higher degree
than a graph of type 1. It was found that graphs of type 3,4 and 5 indicated
malignant tumors, to increasingly higher degree.

Figure 3.5: Figure over the different T1 signal increase graph types.

Signal intensity increase.

Not only the form of the curve from the T1 ROI data is useful. As the
data can be divided in data before contrast agent injection, and after the
injection, the difference between the values just prior to injection compared
with the value just after injection is of importance. Again the fact that
the tissue in a malignant tumor will have a higher and faster penetration of
contrast agent than a non-malignant tumor, or normal tissue, was utilized.
The higher difference between the signal intensity before and after injecting
the contrast agent, the better is the indication that the ROI in question
is a malignant tumor. This means that a simple threshold value can help
determine if a tumor is malignant. This threshold was set to be at 90%
increase in Kvistad [8]. If the found increase in signal intensity was over
90%, it was a good indication that the ROI was indeed a malignant tumor.

Spiculele.

A malignant tumor has by definition a very high degree of growth in com-
parison with the other tissues in that area, and this growth will be uneven.
This is because growth requires constant access to nutrient, which inside the
body is provided by the blood. Therefore the growth in a malignant tumor
will be higher along blood vessels that the tumor borders to or encompasses.

CHAPTER 3. FRAMEWORK. 23

Because of this uneven growth, the edges of the tumor will appear ”jagged”,
or what is called ”spiculele”. As of the reason a tumor may have a spiculele
shape, the presents of spiculele tumor, indicates that the tumor is malig-
nant. In the work this chapter is based on, the determination if a tumor
was of a spiculele shape was done manually by physicians.

Peripheral contrast.

Looking at the peripheral signal intensity of a tumor, in contrast to the
tumors center, can also give clues as to determining if the tumor is malignant.
If the contrast agent penetrates the tumor faster in the edges, then it does
towards the center, it implies a significant amount of new blood vessels in
the edge. As new blood vessels imply growth, and growth in a tumor implies
malignancy, a high and clear peripheral contrast when the contrast agent
penetrates the tumor, indicates a malignant tumor. The determination if a
tumor had a high and clear level of peripheral contrast was done manually
by physicians.

3.4.3 T2* data.

After a ROI was detected in the T1 data images, the T2* data acquisition
was started. The T2* image data is collected only from the part of the chest
where ROI was spotted. 40 images was taken in this sequence, and after the
first 10 images a rapid injection of contrast agent was administered. Because
of the way the T2* MR images are taken (as described in 4.2), penetration of
contrast agent into the tissue, will lead to an increase in the pixel intensity.

T2* signal dropp

In the acquired data from the T2* process, the signal intensity in a malig-
nant tumor can be seen to drop as the contrast agent is injected. Taking the
average percentage in intensity drop inside a ROI defining the tumor, from
just prior, to just after the injection of the contrast agent, will therefore in-
dicate if a tumor is malignant. As in the subsection describing the T1 signal
increase, we can use a threshold value to help determine the malignancy. In
this case the threshold was set to be 180% in Kvistad [8].

CHAPTER 3. FRAMEWORK. 24

3.5 CORBA

3.5.1 Introduction.

The Common Object Request Broker Architecture (CORBA) is a refer-
ence model (CORBA&S) from the Object Management Group [10]. This
reference model describes in detail a system for handling of distributed ob-
ject. As more and more implementations of this model become available,
more and more computer languages are supported, where clients and object
implementations can communicate regardless of which language they are
implemented in, or on which system they are running.

3.5.2 Reference model.

The reference model of CORBA consists of the following components:

e Object Request Broker (ORB): which enables objects to transparently
make and receive requests and responses in a distributed environment

e Object Services: a collection of services (objects and interfaces) that
support basic functions for using and implementing objects. An ex-
ample of this is a CORBA naming service that allows lookup of object
references.

e Common Facilities: a collection of services that many applications
may share, but witch are not as fundamental as the Object Services.
For instance, a system management system could be described as a
Common Facility.

e Application Objects: which is product of a single vendor or developer.
These are not standardized by OMG. This is the top layer of the
Reference Model.

In the rest of this chapter we will take a closer look on the ORB and the
CORBA naming service, which is an Object Service.

3.5.3 Object Request Broker - ORB.
Basic operation.

Fig 3.6 shows a client sending a request to an object implementation. The
client is the entity that wishes to perform an operation on the object, and
the object implementation is the code and data that actually implements
the objects.

The ORB is responsible for all the mechanisms required to execute the
request. This include such things as finding the object implementation,

CHAPTER 3. FRAMEWORK. 25

Server
Client ObjEC‘[
ORB ORB

IoP

Figure 3.6: Figure of simple corba request.

ready the object for the request, and to communicate the data in the re-
quest. In the meantime, the client sees only an interface that is completely
independent of such tings as the objects localization, which language it is
implemented in and all other things that are not defined in the objects inter-
face. The communication between the ORB of the client and the ORB of the
Object is done with OMG’s Internet Inter-ORB Protocol (IIOP) standard
for communication between distributed objects through the Internet.

IDL Language mapping.

Interface definition Language, defined by OMG, is a language that is used
to describe the interfaces to a CORBA object. This is done to ensure a
consistent mapping between different computer languages. An example of
an IDL definition of an object follows:

interface Echo

String sayEcho(in string message);

This defines an object named ”Echo”, with the interface ”sayEcho”,
which takes a string input, and returns a string. This IDL definition does
not say anything about what ”sayEcho” does or how it does it.

Stubb files.

From the IDL definition of the objects, the objects must be translated to
objects in the language wanted by the developer. As the IDL do not give any
information on how an object will perform the tasks defined by its methods,
a translated object only forms a basis for the developer.

Any implementation of CORBA has a language mapper that can trans-
late the IDL to ”stubb” files for the language that implementation of CORBA

CHAPTER 3. FRAMEWORK. 26

supports. The stubb files generated for a client and for an object is different,
as the stubb files do not only contain the objects description, but also the
code needed to utilize CORBA as communication protocol. The developer
uses the stubb files as parents for his own versions of the objects on the
server side, by using the well-known object oriented approach of inherence.
On the client side he uses the generated stubb files as ordinary objects that
he can call methods on, and the CORBA code in the object will forward any
method invocations to the server objects. The generated code that handles
the CORBA communication in the stubb files, are what is known as ORB.
That means every object and every client have its own ORB.

3.5.4 The CORBA naming service.

The Corba naming service is an Object Service that most implementation
of the CORBA standard has a version of. To understand what a naming
service does, we have to look at how a client ORB finds an object.

Interoperable Object Reference - IOR.

In ITIOP, the coomunication protocol used in CORBA implementaions, a
client finds an object by the objects address in the computer network. This
address is known as an Interoperable Object Reference (IOR). The IOR
is manufactured by the objects ORB when an instance of the object is
generated. If several instances of the same object are generated, each will
get its unique IOR address. As any clients that will invoke methods on an
instance of the object needs the IOR to find the object, some method must
be used to give the client access to the correct IOR address it needs.

In simple applications any instances of the used objects may print the
IOR, so the user may give the client the object IOR as innput to the client
by hand, but this is not something that is feasible in larger application with
a lot of objects and clients.

The Naming service.

Instead of handling IOR’s manually, a naming service can be used. A naming
service is an Object Service where the IOR of object instances are mapped
against names. This means that an instance of a CORBA object can register
its IOR into a naming service application, when it starts. The IOR for an
instance of a object is registered together with a name. This name used is
determined by the developer, and can therefore be known before startup in
both the client and server objects. When a client wants to invoke a method
in an object instance registered in a naming service, its ORB can find the
IOR to use, by simply request the IOR from the naming service by using
the name as a lookup key.

Chapter 4

Related research.

27

CHAPTER 4. RELATED RESEARCH. 28

4.1 Image analysis.

4.1.1 Introduction.

Image analysis has historically often been divided into two more or less
distinct parts, Segmentation and Classification. In segmentation the main
objective has been to find areas of similarities (segments) in images, which
could signify an object as unique as possible. An example of this is an
algorithm that would try to find distinct areas in mammography images.
Classification, on the other hand, is the process of taking the areas from
Segmentation proceses, and try to say something more about the segments.
An example of this could be an algorithm that takes areas found in mam-
mography images with a segmentation algorithm, and try to categorize these
segments into the different types of tissues found in breasts.

As in most other cases, we also find that we must do both Segmentation
and Classification if we are to succeed in solving our problem.

4.1.2 Segmentation.

As we assume that a domain expert quite easily can detect the basic area
of interest in our data, the main Segmentation problem is to fine-tune the
area of interest, and to reduce noise in the data. As our data is in the
form of a sequence of images from stationary positions in a breast, two old
segmentation methods will be of special interest. The metods in question
are Motion detection and Region growth.

Motion detection.

In an image sequence, motion is in its simplest form nothing more than a
change in the intensities of the pixel values in an image between the pictures
in the sequence. This can be compared with what happens when contrast
fluid influence tissues in an MR image sequence. One of the simplest ap-
proaches for detecting changes between two image frames f(z,y,t;) and
f(z,y,t;) taken at time ¢; and ¢;, respectively, is to compare the two images
pixel by pixel. One procedure for this is to form a difference image, which
may be defined as:

dij {1if (abs(f(z,y,t:) — f(z,y,t;))) > 0} {0ifotherwise}

A threshold can reduce or totally remove noise. Unfortunaly, the use
of a threshold can also remove small or slow moving objects, as these do
not attribute much to the difference image. To avoid this problem we accu-
mulate the difference between all the frames comparisons instead of using
a threshold in each comparison. An example of this is the AADI method
proposed in [13].

CHAPTER 4. RELATED RESEARCH. 29

In the AADI method the basic idea is to ignore changes that occurs
only sporadically over a frame sequence and can therefore be attributed to
random noise. In this method an accumulative difference image is formed by
comparing a reference image with every subsequent image in the sequence.
For each difference between pixels in the reference frame and the present
comparison frame, the pixel value in that position in the difference image
is increased with 1. In the resulting difference image after this method, the
degree of motion in a position is described by the pixel value in that position.
The higher the pixel value, the higher degree of motion in that position.

Region growth.

An old and well-known image segmentation method is Region Growth by
pixel aggregation. Region Growth is a procedure that groups pixels or sub
regions into larger regions. The simplest region growth algorithm is pixel
aggregation. In this algorithm a ”seed point” is the starting point. From
this starting point the neighboring pixels are either added to the region or
not, depending if the point in question has similar properties as the ”seed
point” (or the present region at this time interval as a whole), or not. This
is done in a recursive manner until no more neighboring points could be
added to the region. If a neighboring pixel has similar properties to the seed
point or region, or not, can be determined in many manners. For instance
you could use a threshold by which a new pixel value should not difference
from the seed point.

Early references on region-oriented segmentation are Muerle and Allaen
[14] and Brice and Fennema [15].

4.1.3 Classification.

As our system has a link from the Image Manipulation system to a CBR
system, the classification problem here is mostly to translate information
acquired from the segmentation algorithms, to a symbolic form that is sup-
ported in CBR. Luckily, some of this translation is quite easy, and mostly
involves calculating intensity growth or decrease in percentage in a region
of interest described by segmentation. However, one crucial translation is
to categorize a graph acquired by the previously mentioned translation, into
one of five categories. An often used and well-documented method for this
sort of classification is to use an Artificial Neural Network, from now referred
to as an ANN.

Artificial Neural Network (ANN).

An ANN is based on the use of a multitude of elemental nonlinear computing
elements called "neurons” (as seen in figure 4.1), organized, as networks
reminiscent of the way in which neurons are believed to be interconnected

CHAPTER 4. RELATED RESEARCH. 30

in the brain. By successive presentation of training sets of patterns, these
nets of neurons can be trained to classify new input patterns on the basis
of the training sets. Interest in neural networks started already in the early
1940s, as exemplified by the work of McCullock and Pitts [16], who proposed
neuron models in the form of binary threshold and state change between 0
and 1 as a basis for modeling neural system. A network consisting of neurons
can be seen in figure 4.2.

Figure 4.2: Figure of a small neural network, consisting of connected neu-
rons.

Today, in most networks, a neuron is a function where the input is
weighted with a weight variable for each input, and where the hard-limiting
threshold activation function has been replaced by a soft-limiting ”sigmoid”
function. Here is an example of a sigmoid function:

1
M) = =T 5 6,96,

Backpropagation in ANN.

In Rumelhart, Hinton and Williams [8], a new training algorithm for mul-
tiplayer perceptron nets was described. This method, called ”generalized

CHAPTER 4. RELATED RESEARCH. 31

delta rule for learning by back-propagation” is a quite effective learning al-
gorithm for multiplayer networks. Although there is no way to insure that
the training algorithm finds the best solution for a problem, it’s assured that
it will work towards finding a better solution then it has at the moment.

The basic idea of the generalized delta rule is to find each neuron’s
contribution to the error for a test pattern, and then correct all the weights
that this neurons send output to. The degree that a weight is corrected is
in proportion to the error contributed by the nodes that send input to it.
In most modern ANN a sigmoid function instead of a threshold activation
function. This means that for most cases the generalized delta rule has been
rewritten to take this into account.

CHAPTER 4. RELATED RESEARCH. 32

4.2 Magnetic Resonance.

4.2.1 Introduction.

Magnetic resonance (MR) is a technique used primarily in medical settings to
produce high quality images of the inside of the human body. MR is based on
a phenomenon involving magnetic fields and radio frequency electromagnetic
waves. This phenomenon was independently discovered by Felix Block and
Edward Purchell, for which both were awarded the Nobel Prize in 1952.
Between 1950 and 1970 MR was developed and mostly used for chemical
and physical molecular analysis. In 1971 Raymond Damadian [10] showed
that the nuclear magnetic relaxation times of tissues and tumors differed,
and therefore motivating the use of magnetic resonance for detection of
disease.

Spinn, nucleus and contrast agents.

Some atoms nucleus has a magnetic property called ”spinn”. Such nucleus
will behave as small magnetic fields. This is the basic magnetic phenomenon
that MR is based on. When a particle with a net spinn is placed in a
magnetic field, its spin will influence the particle to align it to the magnetic
field, just like a magnet would. When it’s aligned with the magnetic field it
is in its low energy state, while it is said to be in a high-energy state when
it’s aligned in an opposite magnetic direction to the external field. When a
particle with spinn is in a magnetic field it can undergo a transition between
energy states if hit by a photon, that has en energy that matches the energy
difference between the low and high-energy states to the particle.

The hydrogen atom has a nucleus that has spinn. Hydrogen is an atom
in abundance in the human body, as the human body is mostly composed of
fat and water, both materials mostly composed of hydrogens. The human
body is composed of approximately 63 percentage of hydrogen, and therefore
MR has historically, primarily used hydrogen nucleus to depict the human
body.

Since the midst-eighties, however, scientist started to use contrast agents
of Gadolinium to acquire better images. Gadolinium is a rare-earth metal
which has very strong paramagnetic properties. This, with its capability to
interact with adjacent water protons, gives serious improvements in both T1
and T2* (the major MR imaging techniques used in MR diagnostic imaging).

4.2.2 The T1 MR imaging technique.

In the T1 imaging technique, the particles in the area of the magnetic field
are saturated with photons, so to force a translation of enough of the par-
ticles to get a balance between particles of high and low energy state (in
an saturated state). The time it takes before the particles rearrange to a

CHAPTER 4. RELATED RESEARCH. 33

low energy state is then measured. As an area contains different tissues,
that contains different amounts of particles with spin, the time before a low
energy state for the different areas in observation will differ, and this time
can be measured. The values gathered for each area can then be used to
make a T1 MR image, where each pixel corresponds to a small area. This
means that the T1 MR image indirectly is a representation of what tissues
the depicted areas consists of.

4.2.3 The T2* MR imaging technique.

When the particles in an area of the magnetic field are in a saturated state,
the particles will rotate about the direction of the external magnetic field, in
a frequency equal to the frequency of the photon that caused the transition
of energy state. However, this rotation will decrease over time because of
influence of adjacent particles, and also because of regional differences in the
external magnetic field. The time it takes before this rotation to decrease
will differ between areas of particles that can be measured, and an MR T2*
image can be obtained. A T2* image is therefore, as for T1 MR images, a
representation of the tissues the depicted areas consists of, but as the method
used to aquire the data was different from the T1 method, the image will
also be different.

4.2.4 Clarification.

When we in T1 and T2* talk of small areas, we are actually talking about
the smallest areas we can measure the magnetic energy status in. Such an
area is called a voxel, and can in most modern MR system be down to 3
cubic millimeters. As T1 or T2* is used, an ”average” particle type a voxel
consists of is measured, and an image are produced, where the value of a
pixel is determined by the particle type the corresponding voxel has most
of. For more information on the spin effect, T1 and T2* imaging techniques,
and MR in general, see The Basic of MRI [11].

CHAPTER 4. RELATED RESEARCH. 34

4.3 Feature extraction and classification from T2*-
weighted images.

In this section we will take a close look at the result found in a relative
new article from Torheim, Godtlibsen, Axelson, Kvistad, Haraldset, Rinck
[17]. The article describes different approaches to classify T2*- weighted
breast MR images, suggest a semiautomatic ROI definition tool, compares
the result with or without noise reduction, and also analize any differences
between ROI and pixel-by-pixel based analysis. The T2*-weighted image
data used in the study, was the same as used in this thesis. A total of 127
patients with solid breast tumors were examined. Of the 127 patients, 70
was diagnosed with breast cancer, by histopathologic examination, mam-
mography, ultrasound and so on.

4.3.1 Preprocessing.

Before being able to analyze a ROI, the ROI must be defined. The method
used to define the ROI is described here. We also discuss noise reduction
and the two ways the analysis utilizes the pixels in a ROIL.

Noise reduction and Semiautomatic ROI definition.

The noise reduction algorithm used was the Similar Curves filter as de-
scribed in Torheim [17]. In short, similar curves filter, is a smoothing pro-
cess utilizing only the similar neighbor curves. In the analysis, the selected
analysis methods were run on data on which noise reduction was both run
and not run.

The region of interest was found by utilizing a region growth algorithm.
As the data consists of images taken over time, the data can be seen as a
film over the changes in each pixel over time. If normalizing the intensity
values to between 0 and 1, and then graph the intensity changes for a pixel,
we get a curve over the intensity changes over time.

The starting point for the region growth algorithm was defined as the
point where the intensity curve most closely resembled a reference curve.
The reference curve was made to resemble the intensity curve of a pixel
inside a malignant tumor. The comparison was done by calculating the
correlation coefficient between the reference curve and the time-intensity
curve of interest.

ROI average or pixel-by-pixel based analysis.

The analysis of the image data in this article are not directly based on the
pixels, but rather on the curves generated from the pixels. However, as
there in this case also were regions of interest, the curve generation can be
done by two methods. The first method is the normal method, where a

CHAPTER 4. RELATED RESEARCH. 35

curve is generated for each pixel. In the other method the whole region of
interest is looked on as one area, and the curve is generated by the average
signal intensity to all pixels in the region of interest, for each time step.
As of these two different methods, the analysis was performed with curves
generated from both methods.

4.3.2 Region Of Interest analysis and results.

The article described in this section, try’s out several methods for analysis
of the ROI’s in question. In this subsection we take a closer look at some of
the results and finding of the analysis.

The analysis methods.

Several well known analysis methods were tried out. Minimum enhance-
ment threshold, Fisher’s linear discriminant function, Probabilistic Neural
Net, Error Backpropagation Net and the use of Correlation Coefficient, were
tested. The test method used to compare the different analysis and classi-
fying was leave-one-out cross validation. In this test method, each finding
is tested against all other findings in turn. For instance, in this case, there
were 127 patient cases. For each of the patient cases, the data and known
diagnosis of all the other patient cases, were used to define any variables in
the classifying method, and in any training needed by sub-symbolic methods
used.

Results and findings.

The minimum enhancement threshold was found to be as good as or better
classification method than the other methods tested. This can be seen in
table 6.1 and 6.2.

Noise reduction and curve production.

The curves used in the analysis methods were all produced from the average
intensity in whole ROI’s, as this was found to be better then producing
curves for each pixel. The reason for this was assumed to be that movement
between the image frames, made the values in a position inaccurate. It was
assumed that image realignment methods and that a course segmentation
to remove the part of the breast that was closest to the lungs (and therefore
moved most when the patient breathed), could reduce the errors introduced
by movement. However, this was not tried.

The results found by the different analysis methods were all from analysis
after noise reduction, as noise reduction improved the results for all analysis
methods. As the similar curves filter noise reduction method utilizes only

CHAPTER 4. RELATED RESEARCH. 36

similar neighboring curves to smooth a pixel, it also reduces the movement
noise that was found to highly influence the results.

Chapter 5

Approach and results.

37

CHAPTER 5. APPROACH AND RESULTS. 38

5.1 Introduction.

In this chapter we will explain our approach for meeting the goal of this
thesis, as described in chapter 1. We will first present a model for our
software, and explain any choices we have taken, with regard to the theories
and methods described earlier in this thesis. A system design for the system
will then be presented, and explained. From the system design we present an
implementation description, and finally we present the results from testing
the implementation.

CHAPTER 5. APPROACH AND RESULTS. 39

5.2 Model.

5.2.1 Introduction

In this section we will present a model for approaching the goals of this
thesis, as described in chapter 1. This is done by extracting the main findings
from the framework, and the related research for this thesis, as described in
chapter 3 and 4. With these findings in mind, we can then show that our
approach for designing a system that will be able to solve the task at hand,
is well founded.

In chapter 3 we presented works that described the use of MR images
taken over time while contrast agent was inserted, to diagnose malignancy
in breast tumors. The data acquisition and the extraction of relevant in-
formation from the MR images were in some respect computer aided, but
the diagnosis of malignancy in a tumor was done manually. The methods
and findings from these works will be the basis for our approach. We will
strive to utilize image manipulation methods to make the data extraction
from the MR images, and the diagnosis itself, more automatic.

Some parts of our model will already be decided at this point, by the
goal description for this thesis that was presented in chapter 1. The goal
description states that Dynamic Imager 3.3 and JavaCreek 3.2 is to be
used as the software for image processing and for producing diagnosis. The
inner workings of both of these systems will therefore highly influence our
approach. Even if our goal description specifically dictates the use of these
systems, this is in no way a coincidence. Both of these systems are of the
highest quality in their fields, and were designed especially for such use as
they are used for in this thesis.

5.2.2 Diagnosis and Artificial Intelligence.

As presented in section 3.2, JavaCreek is a well-suited artificial intelligence
system for solving diagnosis problem. It was stated that case-based reason-
ing system based on Creek was especially good at problem solwing in open
and weak domains. An open domain is a domain witch cannot be realis-
tically modeled unless relation between the target system and the external
changing world are included, and a weak theory domain is a domain where
not all important concept relations are known. Medical diagnosis knowledge
domain, are by nature mostly open and weak knowledge domains, and so
it is for out knowledge domain. Not all concepts about breast cancer, or
how all the known concepts influences the diagnosis is well known, and ex-
ternal knowledge must also be included, as for instance the menstrual cycle
of the patient at the time of acquiring the MR data seems to be of some
importance.

The use of JavaCreek for the diagnosis part of our software therefore
seems well founded. As JavaCreek utilizes both previous cases and general

CHAPTER 5. APPROACH AND RESULTS. 40

knowledge for the problem analysis and diagnosis, the main work in uti-
lizing JavaCreek for diagnosis of malignant breast tumors, was to find and
generalize any available domain knowledge and the implication connecting
the domain knowledge and the cases to any diagnosis.

5.2.3 Image manipulation.

In section 3.3 we took a closer look at Dynamic Imager. This software is
made specifically for scientists needing a fast experimental environment for
image processing. Dynamic Imager provides a number of modules for image
manipulation. Another feature of this system is the way the parameters
for modules are handled, that effectively removes the need for making user
interfaces. But, in our opinion the main feature is the ease to produce new
image manipulation modules for the system. Together these features make
Dynamic Imager an excellent choice for the software in which we produce
and test the image manipulation methods needed to extract data from the
available image material.

5.2.4 CORBA for communication

One of the problems in the work described in this thesis was finding a way
to connect the system for image manipulation and the artificial intelligence
system. JavaCreek is a system implemented in Java, while Dynamic Im-
ager, and user-implemented modules, are implemented in C++. This made
connecting the two systems to a non-trivial problem. Java is per definition
a programming language that should not try to utilize non-java software,
as Java is an interpreted computer language made in a ”write once, run
everywhere” way. In essence this means that using well known methods for
software connection, like native calls should be avoided.

Instead of using methods for software communication that was made for
software on one computer, we therefore chose to utilize methods for software
communication over networks. As long as the software in question knows the
same ”language” (protocol), the language in which the software is produced
in, does not matter.

There is nothing that says that the different parts of the software must
communicate over a network, even if the communication methods are made
for that goal. The software parts can easily be placed on the same physical
computer. This means that using methods for communication over networks,
we can use different computer languages in developing our software, as they
speak the same language (protocol) when communicating with parts written
in another language. And the different parts of the software can also run
on different computers in the network, which may be used in the future to
develp a version of the software that supports sutch as loadbalancing or the
use of one centralized knowledge domain usable for several remote users at

CHAPTER 5. APPROACH AND RESULTS. 41

the same time.

In section 3.5 we described the Common Object Request Broker Archi-
tecture (CORBA). As described, when utilizing CORBA, the system devel-
oper does nor need to define or implement any protocol for the communica-
tion between any clients and servers, as this is already defined.

As of this we see that the use of CORBA can be much easier than, for
instance, normal client/server communication using TCP/IP. Client/server
communication using TCP/IP is the best known computer communica-
tion methods for client/server software, as it is the protocol of choice on
the largest computer network on the earth, the Internet. However, use of
TCP/IP most often requires the software developer to develop his own pro-
tocols that uses TCP/IP as transport protocols, if he can’t use some of the
already developed protocols, as the well known protocols of HTTP, FTP,
SMTP and so on.

Another feature that speaks highly for the use of CORBA for the commu-
nication is that it was produced especially for connecting objects, and both
Java and C++ (as is the computer languages we utilize), is object-oriented
languages. Both of these points indicates that CORBA should probably be a
better choice for communication in our instance, than, for instance, normal
client /server communication using TCP/IP.

CHAPTER 5. APPROACH AND RESULTS. 42

5.3 System design.

5.3.1 Introduction.

In this section we will present the system design for an implementation
showing the main feature needed to achieve our goal. First we will present
the overall program flow for the system. We then will take a closer look at
the building of the knowledge base for JavaCreek. How the knowledge base
is built, determines what findings a case will consist of. As the knowledge
base will differ for most problem, we will try to define and determine a
CORBA interface to JavaCreek that is general enough to be used also for
other knowledge bases. However, how to use such an interface will always
be influenced and determined by the knowledge model (and especially the
findings a case can consist of). We will therefore present the CORBA calling
interface in Dynamic Imager in respect to our knowledge model. At the end
of the section, an introduction to the image manipulation methods used can
be found.

5.3.2 Program flow.

The overall program flow is highly influenced by the fact that Dynamic
Imager and the JavaCreek software are to be used. At the start of the
work leading up to this thesis, JavaCreek did not have any easily usable
user interface for controlling or starting a case-based reasoning cycle with a
new case. What was available of user interfaces was a utility for building
knowledge bases. During the production of this thesis, this has changed,
and new tools with user interfaces have been introduced into JavaCreek, as
JavaCreek is still a work in constant change. Nevertheless this did indicate
that producing the user interface for our work inside JavaCreek was not our
first choice at the time.

As one of the main features in the Dynamic Imager software, was the
ease of producing user interfaces to each image module, taking advantage
of this feature seemed highly appropriate. Processing modules in DI can
be arranged into a module network, where each module by definition can
have its own user interface. This gives the opportunity for producing a
user interface that highly interconnects with the program flow, as it is the
way the modules are connected into a module network that determines the
program flow inside DI.

As of this the main program flow for our system is described below. See
figure 5.1 for an overview of the program flow.

e In Dynamic Imager: The MR image data for a new case are loaded
into the system, and the image processing modules needed to produce
any findings needed for building a new case in the case-based reasoning
system are activated. Any changes of how any of the modules should

CHAPTER 5. APPROACH AND RESULTS. 43

behave, like manual tweaking and corrections, are available in the user
interface of each module. The user is at all time presented with the
various results of the image processing methods.

e When the user is satisfied with the image processing, he can, from
the interface of a module, inside Dynamic Imager, activate the build-
ing of a new case, and starting the case-based reasoning cycle in
JavaCreek. Utilizing CORBA, for calling methods in JavaCreek, does
this. Calling methods in JavaCreek using the CORBA interface, will
run the case-based reasoning cycle on the new case, and produce a
solution/diagnosis for this case. All this will occur in the background,
and automatically as soon as the user starts the process.

e When the case-based cycle has produced a diagnosis, the diagnosis is
returned to Dynamic Imager through the CORBA interface, and then
presented to the user by the user interface of Dynamic Imager.

corha
O
cation,

. . TIEW case
Tmage Seqrentation. — Classification.

data —_

ORE ORB CBE - cycle.

Display diagnosis Tnagnosis
touser.

Figure 5.1: Program flow for the system.

As seen in figure 5.1, describing the progam flow, the user will at all time
only interact with modules in the Dynamic Imager software. The user can
actually to some degree abstract away the fact that it is case-based reasoning
with JavaCreek that is the foundation for the diagnosis producing part of
the system.

5.3.3 The knowledge model.

Introduction

As stated in section 3.2 , JavaCreek utilizes a semantic net to store cases
and the general domain knowledge. In such a net the cases are stored as
frames. A frame consists of entities and relations to and from, which form the

CHAPTER 5. APPROACH AND RESULTS. 44

basis for the knowledge represented in the net. Each entity has a relation
to another entity; which gives the semantic meaning of that entity. This
means that building a knowledge model for diagnosing malignancy in breast
tumors, can be done by defining relevant entities and the relation between
them. In JavaCreek, entities are described by their typical properties, which
are inherited by more specialized entities. This means that other entities
and their relations to an entity can describe the entity in question. From
this we can build our knowledge model by producing a tree of entities and
the relations between the entities.

Relation strength.

In the CBR cycle, in the retrieve process, the relations between entities are
used as paths to spread the activation of other cases to be examined for
similarities. In some cases this leads to the return of several cases that have
the same amounts of entities that correspond with the case of interest. In
such cases, picking the most similar case to the new one, can be difficult
if we have nothing more than the relations between the entities to decide
from. Therefore, each relation between entities also gets a strength value
associated with it. This value then becomes a part of the general knowledge,
and describes which relations have most influence on the connection between
frames (read cases).

As of today, the JavaCreek CBR system accepts relation values, although
the values are still not incorporated into the CBR cycle. Hopefully, a future
version will fully incorporate this concept, so we opt to give all our relation
strength values. All our strength values for the relations were statistically
calculated from the available patient data, by utilizing normal averaging
over the relevant findings of entities where the relations connects them with
the same parent entity. For instance, the ”si curv” entity (which describes
which curve the T1 signal increase are categorized as), is the parent for
five other entities, one for each type of curve. The strength of each relation
between the ”si curve” and the five children entities was therefore calculated
by average the number of findings of each type of curve in the patient data.
The results of our calculations were then discussed with scientists from RIT,
to ensure the correctness.

The tree.

To build the knowledge model we first build the entity tree, and then define
the relations and their strengths. We begin with the parent for all the
entities, the top node in our entity tree. From this node we divide the entities
into three categories. The categories are: "measurable”, ”observable” and
”diagnosis”. These are subclasses of the top node in our tree.

The ”observable” node has one subclass, the "mens” node. This node

CHAPTER 5. APPROACH AND RESULTS. 45

has three value entities associated with it, describing the menstrual capac-
ity of a patient. The value nodes are ”premenopause”, ”postmenopause”
and ”hrt”. The ”premenopause” stands for still menstrual active, ”post-
menopause” stands for a patient which no longer has periods, while a pa-
tient with "hrt” is undergoing hormone therapy, and the menstrual cycle can
therefore be upset. The diagnosis node has two value entities associated with
it, the malignant and the benign entity, which should explain themselves.
The entity tree so far can be seen in figuer 5.2

Top node
subclassof—" —
Diagnosis _—" \ ™~
(= subcl;ssuf ’“‘m@‘}““f
1 e
\ —
/ Measurable \\\Bﬂwﬂervable
hasvilue hagvalue A
! _ "
Malignant Benigh hml_-_x_gx"'f N . et

- y h
pre) \ /

Figure 5.2: Top of the entity tree.

The measurable node has five subclasses which we will discuss separately.
These are:

e ”si curv”, the curve of the T1 signal increase.

e "tissue”, the tumor’s composition.

e ”"shape”, the tumor’s appearance.

e 7t1”, the signal increase after contrast agent injection in T1.

e 7t2” the signal decrease after contrast agent injection in T2.

All of these subclasses correspon correctly with the consepts presented
in section 3.4.

The ”si curv” node has five value entities associated with it, one for each
curve type the T1 data can be described as. These are named ”curv1”,” curve2”
and so on. The dividing into the different curves was described in subsection
3.4.2. The "si curv” part of the tree can be seen in figure 5.3

The "tissue” node has two value entities describing if the tumor has
higher peripheral penetration of contrast agent, than the tumors center, in
the T1 data. The values are ”periph” and ”noperiph”. The concept is
described in 3.4.2.

CHAPTER 5. APPROACH AND RESULTS. 46

Measurable

suh'ﬂ:ia&wf

Figure 5.3: The ”si curv” part of the entity tree.

The ”"shape” node has two value entities describing the shape of the
tumors in the T1 data. The values are "spic” and "nospic”, specifying if a
tumor has a spiculele shape or not, as described in 3.4.2.

The ”t1” node has two value entities describing if the signal increase
after contrast injection in the T1 data, is over a threshold value or not. The
values are ”highenhance” and ”lowenhance”, stating that the value was over
the threshold or not, respectively. This is closer described in 3.4.2.

The ”t2” node has two value entities, describing the signal decrease in
a tumor in the T2 data after contrast injection. The values are ”highdrop”
and ”lowdrop”. The "highdrop” node states that the signal decrease was
more than a threshold value. For more information see 3.4.3.

The tree with all these nodes can be seen in figure 5.4

leasurable

Z

\
hﬂ\?h}e h:*val'ue h nvilue

Figure 5.4: The rest of the measurable nodes.

The relations.

From the entity tree we can now describe the relations between the diagnosis
entities and all other entities, the value entities. For each value entity in our

CHAPTER 5. APPROACH AND RESULTS. 47

tree,

we insert a relation to either the malignant or the benign diagnosis

entity. All the relations are of the type "Implies”, as we cannot say that any
value entity with certainty gives a malignant or benign tumor. Each of the
”TImplies” relations also has an explanation strength set, as described earlier

in this subsection.

The

For the value entities belonging to the ”si curv” node, the ”curvl”
and ”curv2” have an ”implies” relation to ”"benign”, while ”curv3”,
7curv4” and ”curvb” relate to the "malignant” diagnosis entity.

For the value entities belonging to the ”tissue” node, the "noperiph”
has an ”implies” relation to benign, while ” periph” relates to the " ma-
lignant” diagnosis entity.

For the value entities belonging to the ”"shape” node, the "nospic” has
an ”implies” relation to benign, while ”spic” relates to the ” malignant”
diagnosis entity.

For the value entities belonging to the ”t1” node, the ”lowenhance”
has an ”"implies” relation to benign, while "highenhance” relates to
the "malignant” diagnosis entity.

For the value entities belonging to the ”t2” node, the ”lowdrop” has
an ”implies” relation to benign, while "highdrop” relates to the ”ma-
lignant” diagnosis entity.

For the value entities belonging to the ” mens” node, the ” premenopause”
has an ”implies” relation to benign, while " menopause” and ”hrt” re-
lates to the "malignant” diagnosis entity.

cases.

From all this we can now describe cases. A solved case in the knowledge
model will have a finding from each group of value entities in the tree, and

a solution. Here is an example of a solved case:

Case 1:

— HasFinding;:
— curv2

— mnospic

— noperiph

— lowenhance
— lowdrop

— premenopause

CHAPTER 5. APPROACH AND RESULTS. 48

— HasSolution:
* benign
— HasStatus

* solved

5.3.4 JavaCreek CORBA connection.
Introduction.

In our system design, CORBA was stated as the communication layer be-
tween the Dynamic Imager and the JavaCreek systems. Methods in JavaCreek
were to be called from modules in Dynamic imager, and the results of any
calculations done in JavaCreek from the calls, were to be returned to Dy-
namic Imager for further calculation and to be displayed to the user of
the system. For the Dynamic Imager client CORBA module, this was a
straightforward task, as the Dynamic Imager software was produced with
such an approach in mind. Each module in Dynamic Imager can themselves
handle data presentation to the user, and communicate with other modules.
On the other hand, in JavaCreek, there were problems with this approach.
JavaCreek was produced to work from user interfaces highly integrated with
the logic of the CBR cycle; which produced some extra complexity to our
approach.

The JavaCreek CORBA server object

To utilize JavaCreek, a CORBA server object had to be manufactured. This
object had to work around any user interfaces, and directly into the main
CBR part of the system. In essence this meant that, after stripping away
any user interface, an object that interacted with the objects and methods
used for controlling the CBR cycle in JavaCreek, just as a user interface
would, could be produced. This new object could then be controllable from
CORBA. In this context, the JavaCreek CORBA server object can be seen as
a "wrapper” and controller for the whole CBR cycle, just as a user interface
controller object would. To get a CORBA object that had full control over
the CBR cycle for a knowledge model, the methods had to be quite specific
in their tasks.

The work that users must be able to do using the CORBA server object
for JavaCreek, can in all essence be divided into two major tasks.

e Preprocessing and Case - building. Before anything else can be done, a
knowledge model must be loaded. When a knowledge model is loaded,
the system is ready for work, and a Case can be produced for use in
the CBR cycle.

CHAPTER 5. APPROACH AND RESULTS. 49

e CBR cycle: After a new case has been loaded, the CBR cycle can be
started with that case. Full control over the RETRIEVE, REUSE and
RETAIN parts of the CBR cycle is required. Also, special care for
the REVISE part of the CBR cycle has to be integrated, as this is not
handled automatically in JavaCreek (se chapter 5 for more information
on this).

Each of these two main tasks was again divided into several minor tasks.
For instance, each main part of the CBR cycle, was again divided into
separate tasks for each of the Activate-Explain-Focus sub cycles. Also the
loading of a knowledge model and the insertion of a new case are separate
subtasks. In JavaCreek, the program flow and the objects relations between
each other are actually the same as this dividing of the tasks. With this in
mind, the building of the server object was quite straight forward, as each
subtask for the server object can be directly mapped over to the JavaCreek
program flow.

The methods in the JavaCreek CORBA server object were therefore set
to be as follows.

e Connect, load the knowledge model, and initialize the environment.

Build the new case to test.

For the RETRIEVE part of the CBR cycle:

— a.Run activate.
— b.Run explain.

— ¢.Run focus.

For the REUSE part of the CBR cycle:

— a.Run activate.
— b.Run explain.

— ¢.Run focus.

For the RETAIN part of the CBR cycle:

— a.Run activate.
— b.Run explain.

— c¢.Run focus.

o Check if the knowledge model with the new solved case should be
stored.

Building the JavaCreek CORBA server object from this ensures that
the use of the public methods for the server object, inherits the conceptual
model of the CBR cycle and JavaCreek.

CHAPTER 5. APPROACH AND RESULTS. 50

Extras for data gathering and cross validation.

The data available for this study was mainly data already gathered and
studied by scientists at RIT* | and therefore was only available to us in a
textual form. We did get one set of image data, but that was clearly not
enough for a proper scientific test of the whole proposed system. The textual
data was however a full description of the findings, so utilizing these data,
we could at least perform a full test of the proposed knowledge model, and
the JavaCreek CBR systems performance on this knowledge domain.

To manage this, we introduced another method in the CORBA interface
object that came in addition to the methods for normal use of the object.
This method was for starting and controlling a ”leave one out cross vali-
dation” test of the knowledge model with the textual data available. This
gave us the opportunities to compare this part of our results with results
presented in earlier works in this field. This comparison and some earlier
results can be found in 6

Discussion.

As the JavaCreek CORBA server object described follows the conceptual
model of how the CBR cycle works, and as the knowledge model to be used
is a parameter to the server object from the client, the object will in reality
be a universal network (using CORBA) interface for JavaCreek. The method
for the cross validation of the patient’s data, is on the other hand, especially
for this thesis, and cannot be easily used for other knowledge domains.

5.3.5 Image presentation and Dynamic Imager modules.
Introduction.

The client side of the system is a network of modules in Dynamic Imager.
The modules in this network read in the data of the T1 and T2* MR image
set from a patient case, and processes this data. After the data has been
processed, the resulting findings are sent to the JavaCreek CBR system
for acquiring a diagnosis and an explanation for this diagnosis, which are
returned to the Dynamic Imager for presentation to the user. The communi-
cation with JavaCreek are handled on the JavaCreek side by the JavaCreek
server Object, while a special module in Dynamic Imager acts as a client,
communicating with this object.

The CORBA client module.

The module that performs the communication with the JavaCreek CORBA
server object, is a special case when it comes to modules in Dynamic Imager.
This module is in essence the client for the JavaCreek CORBA server object.
This module works in such a way that it accepts the input for building a case

CHAPTER 5. APPROACH AND RESULTS. ol

in a knowledge domain and the place the knowledge model for that domain
can be found. The client module then calls methods in the JavaCreek server
object, activating first the loading of the relevant knowledge model, and
then builds a case with the data available. The server object then returns
the status of these operations to the client who then activates the CBR cycle
for the case. The client uses the available methods in the server object in
sequence, and gets a status report for the result of calling every method.

The form of the case data that the client’s CORBA module accepts, is
a semicolon-separated list containing the value found, and the relation type
this value has. The list can contain any numbers of values and relations. The
other input to the client CORBA module, is the filename and location for the
knowledge model this case should be run in. This means that this module
is in no way usable only for this special knowledge domain and dataset, but
is in fact a general module for accessing JavaCreek from Dynamic Imager
module networks. To achieve this, there are done no assumptions on which
findings a case should contain, or even what knowledge model the case should
be run against.

For diagnosing malignancy in breast tumors, utilizing the knowledge
model described in 5.3.3, a case will consist of finding according to the
knowledge model:

Has finding value from: mens.

Has finding value from: tissue.

Has finding value from: shape.
e Has finding value from: T1.

e Has finding value from: T2.

e Has finding value from: si curv.

The semicolon-separated list sent to the JavaCreek client CORBA mod-
ule in Dynamic Imager will therefore be of a form similar to the example
below:

Has finding;premenopause;has finding;periph;has finding;spiculele;has find-
ing; lowenhance;has finding;lowdrop;has finding;curv3

As for any knowledge model used, the order of the type - value pairs is
of no consequence.

In figure 5.5, we can see the CORBA client module, together with the
modules providing the data for the module, for our knowledge model.

Tasks in Dynamic Imager.

As in most image analysis software, the task to be done in Dynamic Imager
for our problem can be divided into two, segmentation and classification.

CHAPTER 5. APPROACH AND RESULTS. 92

Feriph T1 data T2 data
filename PushData

CorbaCreek

Jay e

Figure 5.5: The CORBA client module for the JavaCreek server CORBA
object, with the modules feeding it with data.

However, the Dynamic Imager modules that deal with classification for this
domain are not there to try to diagnose cancer malignancy by themselves,
as in most image analysis software. JavaCreek handles the main analysis
and classification when it comes to the final diagnosis in this system, as it
is a system especially suitable for medical diagnosis tasks. This hopefully
reduces the needed complexity of the image classification methods needed,
as the task where image classification is needed is simply to get the relevant
findings for building a case from the segmented MR, images.

The segmentation part of the process is to find and isolate a region of
interest defining a tumor in the MR image data set.

To summarize, the tasks that must be done in Dynamic Imager, are,
first to find an interesting tumor in the image material by segmentation,
and then use classification methods for determining the values needed to
build a case for JavaCreek. The process of finding a ROI in the T1 and
T2* image datasets is a semi-automatic process in our system. For the T1
image dataset, we first need to find the area in the breast (which slice series)
where the tumor is located, while in the T2* dataset this is already done by
definition. Then, for both image data sets, the exact area the tumor covers
must be defined, before any classification can be done. The classification
can be divided into parts corresponding with the JavaCreek case building
blocks, except for the menstrual state, as this is a value that the user must
insert. In our prototype system the T1, tissue and ”si curv” findings are
calculated from the T1 image data set, while the T2 finding is calculated

CHAPTER 5. APPROACH AND RESULTS. 93

from the T2* image data set. The shape finding, is at present a value
inserted from manual inspection. The way we utilized Dynamic Image for
our segmentation and classification needs, will be described in the rest of
this chapter.

Detection of tumor in T1.

The T1 image dataset is a collection of images taken over the whole breast
as a contrast agent is injected. The first task for the system will be to
find a breast slice sequence of images where the tumor is highly visible.
The injection of the contrast agent makes the detection of the tumor in the
images quite easy, as the tumor reacts to the agent. A module for displaying
the images one by one, but in a sequence corresponding with the slice, was
used for displaying the separate MR images. This means that the user could
browse the image sequence of each slice and manually check if the contrast
fluid interacted with any tumors. When the user finds the tumor, he marks
the image number in the data set for further use. A separate module was
made for sorting the images in the T1 data set. This module accepts an input
parameter on the image number of interest, and sends out the sequence of
the images in the slice of the breast that the tumor is in.

ROI definition

From the images taken over time of a slice (the T2* data set is in that form,
while the T1 dataset is in that form after the module just described), we
need to define a ROI that covers only a suspected tumor. Region Growth,
as we described in chapter 4.1 is one of the oldest and easiest segmentation
methods. Because of the simplicity of the region growth method, we decided
to use this method if it could produce adequate results. However, the data
we had available was not a static image, but a sequence of images that had
to be treated as such. This meant that using the region growth method on
one image from the sequence would produce a ROI that would not be ideal
for all the images in the sequence (as the patient breathes and moves during
the MR imaging, and the contrast agent is working over time).

A method for taking the contrast agent into account could be, for in-
stance, to make a new averaged image from all the images in the sequence.
However, this would not be a viable solution because the motion between
the image frames would make an averaging of pixels produce a smoothing
effect in the images. The more motion between the image frames, the more
the average image would be smoothed, and much information would be lost.
This indicated that we needed to find a method for composing one image
from the image sequence before region growth could be applied, that didn’t
remove too much of the information in the image.

In chapter 4.1, we presented the motion segmentation method. Using

CHAPTER 5. APPROACH AND RESULTS. 54

the motion detection algorithm, an image containing only the motion from
an image sequence can be produced. The relationship between motion and
the image sequences we work with may not be apparent at first view, but
after a closer look the connection is quite clear. The Image sequence we
work with contains images where contrast agent penetrates the breast over
time. Anything that happens over time can be described as a change over
time, and so motion can be described as a change. For us this means that
there is actually no practical difference in an image sequence of an object
moving over the image position, and an image sequence over a tumor’s MR
resonance changing as contrast agent penetrates the breast. If present, a
tumor will be the object in an image sequence that changes most as the
contrast agent is injected, this is also the object that will be most visible in
the new image after a motion segmentation of the image sequence.

Even after applying the motion detection algorithm, there will still be
some noise from the motion and breathing of the patient. This will produce
some areas of high contrast in the new images, especially near the lungs.
However, the new image after applying the motion detection algorithm can
be the base image for a region growth algorithm. The results from first ap-
plying the motion segmentation algorithm, and then use the region growth
algorithm on the resulting image, could produce a ROI that was quite ade-
quate for our needs.

The region growth algorithm has to have defined a ”seed point” inside
the region that is to be found. One method for defining the seed point
could be to use the point of highest intensity in the image from the region
growth algorithm. However, this would not guarantee that the selected seed
point actually was inside the tumor, as some of the patient’s breathing could
induce quite high intensity on some areas, and some of the instruments used
trying to reduce motion in the patient had moving parts that showed up
in this image. The region growth algorithm as defined in 4.1, also needs
a "cutoff” value. For our module this parameter is a percentage value,
describing the cutoff from the max and min value found in the ROI (as
maximum value in the ROI can vary a lot from one data set to the next, a
normal cutoff value would not be good enough). The value is changeable by
the user, but for our data set, a value of 23 was found to be quite good.

To insure that the seed point for the region growth algorithm was inside
the tumor in our prototype system, we therefore made the user responsible
to apply a region covering the whole of a manually detected area that could
contain a tumor. This made our method for finding the ROI to actually
be a method for better defining the user indicated area of interest. It also
introduced the need for a manual detection of possible tumors in the T2*
image data sequence. For the module network, the ROI specification now
encompasses several modules, depending if the data set is from the T1 or the
T2* MR method. For the T2* data set, we utilize some pre-made modules
for visualizing the data, and select an area encompassing the suspected

CHAPTER 5. APPROACH AND RESULTS. 95

tumor. The image data sequence is passed through a module with the
motion detection algorithm, which produce a new motion segmented image.
This image, together with the manually selected area, is then sent to a
module with the region growth algorithm.

The resulting image from the region growth module is a ROI encom-
passing the parts of the selected area that changes most during the image
sequence (during contrast agent injection). For the T1 data set, the proce-
dure is almost identical. The only difference is that the data set contains
image sequences from slices over the whole breast, while we are interested in
only the slice where the suspected tumor is best visible. The selection of the
slice of best quality is a manual procedure that is simply to find an image
where the suspected tumor is visible. The image number, together with the
whole data set is then sent to a module we produced for stripping away
everything except the image sequence of the wanted slice. This sequence is
then treated exactly as the sequence in the T2* data set. The parts of the
module networks that handle this for the T1 and T2* can be seen in 5.6
and 5.7. The figures show the module network for the part that handles the
data findings for both the T1 and T2* data set.

import binary
orthoslicer 30 Splitt

L
show dataset haotion Segmentatinn-]

.
Region Growth

T1 data

i

Figure 5.6: Figure of T1 part of the module nettwork.

CHAPTER 5. APPROACH AND RESULTS. o6

import hinary

orthoslicer 30

W
show dataset
pegin oy

hation Segmentatinn-‘

Region Growth

T2 data

Figure 5.7: Figure of T2* part of the module network.

T1 signal intensity.

From the ROI and the image sequence for the T1 data set, we can now
find the T1 signal increase value, and the signal curve, as described in 3.4.2.
Finding the signal increase curve was the simple task of average the signal
intensity values inside the ROI for each image in the sequence of the selected
slice of the breast. This gave a value for each frame in the sequence that
forms the signal increase curve.

From this curve we where now able to calculate the signal increase in
the tumor after the contrast agent was injected. As the contrast agent was
injected during the second MR pass, the signal increase was calculated from
the difference between the second and the fourth image in the sequence.
This from the fact that during the second pass, the contrast agent had not
yet penetrated to the tumor, while during the fourth pass the tumor had
been penetrated.

T1 curve categorizing.

Although we have found the signal intensity curve over the signal increase
for the T1 data set, it is not in a form that can be utilized by JavaCreek, or
the CORBA interface to JavaCreek. In accordance with chapter 3.4.2, and
the CORBA interface, we must categorize the curve into one of five types. In

CHAPTER 5. APPROACH AND RESULTS. o7

chapter 4, we introduced Backpropagation artificial neural networks. ANN
with the Backpropagation learning algorithm is a good method for pattern
recognition and categorizing. In its simplest form, a curve can be seen as a
pattern, and therefore using a Backpropagation artificial neural network for
categorizing should yield good results.

We build a module in Dynamic Imager for this. The module accepted
the data values for the curve as input. These values were normalized to
values between 0 and 1, before sent through an artificial neural network
made especially for classifying the curve type of the signal intensity increase
in the T'1 image sequence. On startup, this module loads the weights for its
network from files, produced earlier during backpropagation training, by a
module made especially for the backpropagation training.

T2* signal intensity drop.

From the ROTI and image sequence for the T2* MR data, we could calculate
the T2* signal intensity drop. This drop was in accordance with chaptersub-
sect: T2, calculated as the average intensity difference from inside the ROI,
between the second image frame, and the lowest intensity value found after
frame number four. Again this is the difference between before contrast
agent injection, and after injection, as for the T1 intensity increase.

Peripheral difference, spiculele and coding of findings.

In chapter 3, we discussed the difference in contrast agent penetration of
the peripheral area of a malignant tumor with regard to the core part. In
a module for discovering any peripheral difference, we need to know the
difference from a tumor’s core part and the peripheral parts. Instead of
trying to find a new algorithm for this, we can here reuse the region growth
module used earlier. If we reuse the region growth module, but use a higher
cutoff value, we produce a ROI covering less of the tumor. A new module
was produced, that accepts this new ROI, together with the origianl ROI and
the found T1 image sequence. This module uses the ROI’s to define what is
the core if a tumor, and what is the peripheral area. The module checks if
there is faster peripheral penetration of the contrast agent, by comparing the
average intensity value for the core and the peripheral parts in the images
before and after the injection of the contrast agent. The periperhal module,
with the module feeding data to it, can be seen in figure 5.8

The last finding needed for building a case using the CORBA interface
module, for this knowledge domain, is the shape of the tumor as described
in chapter 3.4. As of today, to define if a tumor has a spiculele shape is
a manual task. A user looking at the ROI of the T1 data sequence sees
quite easily if a tumor has a spiculele shape (as seen in REF image of ROI).
This finding is set in a special module that collects all the other findings,

CHAPTER 5. APPROACH AND RESULTS. o8

orthoslicer 30

show dataset

| &

Fegian Grnwth-]

irnport binary

Splitt

hation Segmentatiuﬂ

=
Region Growth 2

Figure 5.8: Figure of the peripheral module, with the module’s feeding data

to it.

CHAPTER 5. APPROACH AND RESULTS. 99

translates them into the string that the CORBA client module accepts as
input, and waits for the user to start the CBR cycle.

Overall module network

In figure 5.9, the whole Dynamic Imager module network can be seen, with
displaying modules for all the steps, including displaying modules.

B Ioynamicimager - [corbacreeknew] -[ojx|
[2] e Edt Pun Lbrary Yiew Window Help 18] x|

DEE L BEE? wr 1 = (QQ[w: o

=80 Orgenized by madule site] import binary 2
20 Shtant A AStatistics di oot birtary
& lorthoslicer 30 i I
3 o S| b

=
lshow dataset | -
d show dataset 7 e d;(;sg(2
=
IMation Segmentation IRegion Growth 4

Network Modules <how dataset 5 -]

I Suspend network execution IRegion Growth 3 r
ishow dataset &

Whislevdl | 1L "

Black level 0y . _ .
¥ Automaticaly calculate Whils level and Black level Region Growth | [Region Growth 2 | |show dataset 3 | |show dataset B

Qutput vincow [Datase!
petasstnane z W
lshow dataset 4

Send diawing |

=

[T

= C3 Buiktin modu

=03 Ci\mtipmodh...\Releasetcarbacreek. dl
N

perioh IT1 data
= —
loraph dataset 2

| h datasel
CorbaCreek
For e, press Fl (SEZT] I -

Sstert | 11 & 51 || B, | B Wi, .| Tiavatresk | iRelesse | @dcorbacre..| W stunios...| (s comp. [Dynami.. Elsearchr..| T EVE oo

Figure 5.9: Figure of the whole module nettwork.

CHAPTER 5. APPROACH AND RESULTS. 60

5.4 Implementation description.

5.4.1 Introduction.

Utilizing JavaCreek, CORBA and Dynamic Imager, we were able to produce
a prototype system for our system overview. The production of a knowledge
model especially for our problem domain, a general CORBA interface for
JavaCreek, and several modules for Dynamic Imager, including a CORBA
client module for the JavaCreek server object was necessary. Here we will
take a closer look at the implementation of the CORBA interface, and some
of the modules we produced for Dynamic Imager.

5.4.2 CORBA communication.

As for all CORBA objects, the implementation of the CORBA server object
for JavaCreek and the client module for Dynamic Imager that we described
in this chapter is based on an IDL file, as described in chapter 3.4. The IDL
file for the task described in this chapter, is shown here:

//IDL file for corbacreek, a CORBA interface to JavaCreek.
//It is a part of the JavaCreek package.
module javacreek{
//This part of JavaCreek is called corbacreek.
module corbacreek {
//the interface of the server object is called corbaServer.
interface corbaServer{

//Load KM.

//This methode loads a KM, if no KM is given, load the MR cancer KM.
//innput: string, path to km.

void prep(in string KM);

//Make the working case.

//innput: name and descriotion of the new case.
//pre: km must be loaded.

void prepCase(in string casename,in string casedesc);

//Fill inn values for the working case.

//methode for building the case, call for eatch relation-value pair.
//innput: relation type and its value.

//pre: prepCase must have been called.

void ccMakeCase(in string relation,in string value);

//RETRIVE

CHAPTER 5. APPROACH AND RESULTS. 61

//methodes for the RETRIVE part of the CBR cycle.
//These must be called in sequence.

//calles the retriveActivateResult in JavaCreek.
//pre: the new case must be finnished buildt with ccMakeCase-calles.
void ccRetrieveActivateResult();

//calles the retriveExplainResult in JavaCreek.
//pre: ccRetriveActivateResult must be called.
void ccRetrieveExplainResult();

//calles the retriveFocusResult in JavaCreek.

//pre: ccRetriveExplainResult must be called.

//ret: string with result of the RETRIVE part of CBR cycle.
string ccRetrieveFocusResult();

/ /REUSE
//methodes for the REUSE part of the CBR cycle.
//These must be called in sequence.

//calls the reuseAcrivateReslut in JavaCreek.
//pre: ccRetriveFocusResult must be called.
void ccReuseActivateResult();

//calls the reuseExplainReslut in JavaCreek.
//pre: ccReuseActivateResult must be called.
void ccReuseExplainResult();

//calls the reuseFocusResult in JavaCreek.

//pre: ccReuseExplainResult must be called.

//ret: string with result of the REUSE part of CBR cycle.
string ccReuseFocusResult();

//RETAIN
//methodes for the RETAIN part of the CBR cycle.

//calls the retainActivateResult in JavaCreek.
//pre: ccReuseExplainResult must be called.
void ccRetainActivateResult();

//calls the retainExplainResult in JavaCreek.
//pre: ccRetainActivateResult must be called.
void ccRetainExplainResult();

CHAPTER 5. APPROACH AND RESULTS. 62

//calls the retainFocusResult in JavaCreek.

//pre: ccRetainExplainResult must be called.

//ret: string with result of the RETAIN part of the CBR cycle.
string ccRetainFocusResult();

//For testing with java client, not for public release.

//calling this methode activates the leave one out cross validataion
//testing of the knowledge domain for the MR breast cancer domain.
string testFocus();

Using the Visipro IDL compilers for Java and C++ from Borland, we
could make the CORBA ORB code for the Dynamic Imager client (C++),
and the JavaCreek server object (Java). For the server object, the methods
were connected with the JavaCreek methods corresponding to the methods.
For the Dynamic Imager client the calling of the server objects methods
follows the CBR cycle.

The last method in the JavaCreek CORBA server object is for testing
out the knowledge model specified earlier in this chapter. When calling the
method in question a knowledge model as described in this chapter is made,
and the cases of the available patient data is inserted into the knowledge
model. The cases were inserted with their diagnosis, and were set as solved
in the knowledge model. Then one case at the time was extracted from the
knowledge model (set as not solved), and run through the CBR cycle against
the knowledge model (containing all the other cases), for producing a new
diagnosis. The found diagnosis was then logged and sent as output, before
the case was introduced into the knowledge model again (with its correct
diagnosis and set as solved).

A small client was made in Java using an ORB made with the Java IDL
compiler from the IDL file. The client is used for calling test method in the
server object, and start the testing of the knowledge model. The results of
this can be found later in this chapter.

5.4.3 Dynamic Imager modules.

There were in all seven dynamic imager modules produced especially for our
system. These modules’ functionality has been described earlier in this chap-
ter, and we will here describe some implementation specifics, and describe
the input and output for each of these modules.

CHAPTER 5. APPROACH AND RESULTS. 63

The ”Split” module.

This module is used for getting the sequence for a specific slice of the breast.
The module accepts as input the whole T1 image sequence, and as a user
input, the number of an image in the whole sequence, that is inside the
sequence wanted.

The ”"motion segmentation” module.

Accepts an image sequence as input and executes a motion segmentation
algorithm with the innput sequence images. The module output the buildt
motion image. In this module we do not only use the normal motion seg-
mentation algorithm, as motion between the frames in an image sequence
would make almost all points be countet. Instead, in this module, we cal-
culates motion for a 3x3 neighboring area of eatch pixel. This seems to give
quite a good result.

The ”region growth” module.

The "region growth” module accepts as input an image, and a ROIL. The
module then utilizes the region growth algorithm on the input image to
produce a new ROI. The module finds the pixel with the highest signal
intensity inside the input ROI, and uses this as the ”seed point” for region
growth. This module also accepts a user input of a ”cutoff” value. This
value is the percentage for the cuttof point for the region growth. That
is, for a pixel, determining if it can be included in the growing region, is
determined by its signal intensity in comparison to the highest and lowest
signal intensity of the input image, and the ”cuttoff” percentage value.

The ”periph” module.

The ”periph” module takes the T1 slice image sequence, a ROI defining the
whole tumor, and a ROI defining the core part of the tumor as input, and
finds if there has been faster penetration of contrast agents in the peripheral
parts of the tumor, than in the core. It does this by comparing the aver-
age signal values in the peripheral parts aganist the core parts, during the
injection of the contrast agent. As the contrast agent penetrates the breast
just before image 3, the assumption is that if the following holds true, the
tumor has a higer peripheral penetration than in its core.

e The average values for pixels in the edge before injection is less than
the average values in the edge after injection.

e The average values for the pixels in the core before injection is less
than the average values in the edge before injection.

CHAPTER 5. APPROACH AND RESULTS. 64

e The average values for the pixels in the core after injection is less than
the average values in the edge after injection.

As we had only one complete test set, we make no claims to the validity
of this assumption. A discussion on this assumption can be found in chapter
6.

The ”T1 data” module.

The T1 data module has three main tasks. It produces a T1 signal increase
graph, a T1 signal increase value, and it categorizes the T1 increase graph.
It accepts as input an image sequence (with 9 images from one slice of a
breast), and a ROI (for our network, the ROI from the "region growth”
module). The signal increase graph is produced by averaging the signal
values for the pixels inside the ROI, for each image. The graph therefore
gets 9 values. The T1 signal increase value, is on the other hand calculated
as the percentage difference between the second and the fourth image in the
sequence, as these are from before and after the injection of the contrast
agent. As for the categorization of the graph, an artificial neural network
is used. The network has 10 input nodes (9 for the graph points and one
with an innout of 1), 8 hidden nodes (also one with an innout of 1), and 5
output/resulting nodes (one for each of the five graph types). The output
nodes that get the highest output define the type of an input graph. The
input to the network is the 9 values from the graph, normalized to values
between 0 and 1.

A special module was made for the backpropagation training of the
weights in the network. 70 of the patient cases were used for training,
and the training was stopped after 60 of the cases were correctly classified.
A learning rate of 0.05 was used.

The T1 data module gives both the T1 percentage signal increase value,
and the graph type as integer output. The graph type is then a value
between 1 and 5, for the five graph types. It can also output the graph itself
as a dataset, for displaying for manual insection.

The ”T2* data” module.

The T2* data module accepts the T2* image sequence and a ROI as input
(again the ROI is in our network defined by a region growth module). This
module averages the signal values found inside the ROI for each of the 40
images in the sequence. It then finds the average signal intensity of the
first 10 images (before contrast agent injection), and then calculates the
difference between this value and the lowest signal value after the tenth
image. The T2* signal percentage decrease value is the output value of
this module, and again the graph itself can be sent as a dataset output for
displaying for manuel inspection.

CHAPTER 5. APPROACH AND RESULTS. 65

The ”send data” module.

The send data accepts the output of the T1 data, T2* data and periph
modules, as input. It also accepts, as user input, the menstrual status of
the patient, and the spiculele status of the tumor in question. The user
also has an ”activate” button in this module, for sending the ouput. The
output of this module is the string of finding and values that the corbacreek
module accepts as input. When pressing the ”activate” button, the user
sends the output, and if the module is connected with a corbacreek module,
will therefore activate that module.

The ”corbacreek” module.

The corbacreek module accepts as input a string of semicolon separated
relation types, and their values. It also accpets a file-path as input. The
filepath is used to the CORBA JavaCreek server object to try to load a
knowledge model. As user input it accepts a case-name and description
for the case. The module that connects to the JavaCreek CORBA server
object and starts calling the methodes for loading the specified knowledge
model, bulding the case, and activating the RETRIEVE and REUSE parts
of the CBR cycle with that case. After these parts of the CBR cycle, the
modules display the results of the cycle, and asks the user if the case should
be incorperated in the knowledge model. This can be seen as the REVICE
part of the CBR cycle, as JavaCreek in itself has no special methodes for
this part of the cycle. If the user selects to accept, the RETAIN part of
the CBR cycle is activated. If the user selects not to accept, the module
terminates and the RETAIN part of the CBR cycle is not executed on the
server with the present case.

CHAPTER 5. APPROACH AND RESULTS. 66

5.5 Example running and Results.

5.5.1 Introduction

In this section we will describe a couple of test run of our system, and
present the results of these test. One of the tests was made with a small
Java client that activated the ”testFocus” method in the JavaCreek server
object, for leave one out cross validation of the knowledge model, while the
other test was of the whole system, including both the JavaCreek server and
the Dynamic Imager network. This last test was with one image data set
acquired from RIT especially for this.

5.5.2 The Java client.

The Java client that was built especially for activating the testFocus()
method in the JavaCreek CORBA server object was used for this test. When
activated, the testFocus method loaded the knowledge model, and populated
it with all our patient cases. Then a ”leave one out cross-validation” test was
run with these cases. One case at the time was extracted from the knowl-
edge model, and the CBR cycle was activated with the case. The result was
logged, before the case was inserted into the knowledge model again (with
its correct diagnosis). There were 127 cases in total, with 70 diagnosed as
malignant, and 57 as benign. This gave us the following results:

True positive: 55

True negative: 50

As the JavaCreek correctly diagnosed 55 of the 70 malignant cases, the
JavaCreek system with our knowledge model, gets a sensitivity of 79 per-
centage. The system correctly diagnosed 50 of the 57 benign cases; which
gives a specificity of 89 percentage.

5.5.3 Dynamic Imager client.

Here we will present a test of the Dynamic Imager client, and its CORBA
connection to the JavaCreek CORBA server object. This test was run with
one image dataset provided by RIT, for just this reason. The dataset consists
of the T1 and the T2* image sequences for one patient case; which was
diagnosed having a malignant tumor.

Before using the Dynamic Imager module network we had produced for
this task, we first had to start a CORBA naming service (for handling the
IOR for the server object), and then the JavaCreek CORBA server object.
The server object then binds its IOR to the naming service, and is ready for
use.

CHAPTER 5. APPROACH AND RESULTS. 67

Loading, displaying and defining the tumor.

After loading the two image sequences for T1 and T2*, we had to find man-
ually the tumor in the T1 display module. The image number of an image
where the module was apparent was then inserted into the ”split” module.
Then we drew a figure covering the tumor in the displayed images of both
the T1 and T2* data set. The displayed images of the breast and the drawn
figures for both the T1 and T2* data can be seen in image 5.10. The results
of the ”motion segmentation” modules for T1 and T2* can be seen in image
5.11

The motion segmentation module together with the user defined ROI is
used for finding the final ROI in the ”region growth” module. In figure 5.12,
we can see the result of the region growth modules in our network.

Figure 5.10: 1: T1 data image of tumor, 2: T2* data image of tumor, 3: T1
with user ROI, 4: T2* with user ROI.

CHAPTER 5. APPROACH AND RESULTS. 68

Figure 5.11: 1: T1 motion segmented, 2: T2* motion segmented.

Figure 5.12: Different T1 ROI’s made from the motion segmentation image,
and the user defined T1 ROI

CHAPTER 5. APPROACH AND RESULTS. 69

The data found.

Using the ROI found with one of the ”region growth” modules, and the
T1 sequence for the relevant slice of the breast, the ”T1 data” module can
calculate the signal increase graph, the graph type and the signal increase
percentage. The graph found can be seen in figure 5.13. This graph was
categorized as type 4, and the T1 signal increase percentage was found to be
189%. The actual graph type was 5 and the actual signal increase percentage
found by the scientist at RIT, was 203%. As the found walue was above 90%,
this was translated to a "highenhance” finding in the pushdata module.

The module for finding high peripheral penetration of contrast agent,
found a high penetration, which corresponds with the manual finding for
this case.

The " T2* data” module, used for finding the percentage signal intensity
drop, found a signal drop on 25% in comparison to 23% which was the RIT
scientist’s finding. The graph for the T2* signal intensity can also be seen in
5.13. As the found value was above 20%, this was translated to ”highdrop”
in the pushdata module.

- o - 2 —

= |

- I S VIVTY

:] '

- jI £ NIFS Wi
- ! V]

- f /

Figure 5.13: 1: T1 signal intensity graph. 2: T2 signal intensity graph.

Activating the CBR cycle in JavaCreek.

After all the data was found, and the menstrual status and spiculele finding
were inserted, the ”corbacreek” module could be activated. The CBR cycle
in JavaCreek was then activated with the case, and a diagnosis was produced.
The diagnosis found by the system was that the found tumor was malignant,
as was the manual diagnosis from the scientist at RIT. An image of the
Dynamic Imager software displaying the diagnosis, and asking if the user
wants to incorporate this into the knowledge model can be seen in figure
5.14. As seen in the figure, the user is first presented with the best case
from the RETRIEVE part of the CBR cycle. As seen, all the strengths
are 0.5, from the fact that explanation strengths are still not supported in

CHAPTER 5. APPROACH AND RESULTS. 70

JavaCreek. The next information is the found diagnosis, with a short quote
on how sure the server is that the diagnosis was correct. Together with
this quote, the system should actually print out an explanation for why
the diagnosis was as sure as the quote stated, but the part of JavaCreek
producing this explanation is also still under development.

= — - -
S

The best focused case of RETRIVE :

relation P20 H116 has solution malignent {strength 0.5) -
relation P20 H116 has finding postmenopause (strength 0.5) ¢
relation P20 H116 has finding highenhance {strength 0.5) n
relation P20 H116 has finding highdropp (strength 0.5) —
relation P20 H116 has finding periph {strength 0,53
relation P20 H116 has finding spic (strength 0.5)

relation P20 H116 has finding curv4 (strength 0.5)

= L
nt. of ackivated cases : = 105 th
malignient er en svaerk stabil, sikker og rimelig lgsning pd tests, test tes
Do you wish bo accept this explenation? .

N
Yes Mo | I
L e

—
show dataset & filename FPushData

]
show dataset B

Figure 5.14: Displaying diagnosis from JavaCreek.

Chapter 6

Result evaluation

71

CHAPTER 6. RESULT EVALUATION 72

6.1 Introduction.

In this chapter we will evaluate our proposed system solution to the goal
definition as described in chapter 1, and the results from our prototype
system agenst other results in the domain of diagnosing malignancy in MR
image sequences. As much of our work is based on the work presented in [6]
[8] [9] [12], there are several different sources for data to compare our results
with.

In our goal definition we divided our goal into three sub goals. We will
utilize these three sub goals as basis for determining the degree of success
in solving our main goal. The sub goals were:

e Connecting the Dynamic Imager system with the JavaCreek CBR sys-
tem.

e Image segmentation and classification with Dynamic Imager, to pro-
duce data for JavaCreek.

e Diagnosis of malignancy with the JavaCreek CBR system.

In this chapter we will first discuss the proposed solutions for each sub
goal. For the sub goal of diagnosis, we will compare our results with other
relevant works. For the sub goals of connecting the JavaCreek and Dynamic
Imager software, and the Dynamic Imager segmentation and classification,
the evaluation will be based on our prototype implementation, and the re-
sults from trying our system with the provided dataset.

6.2 Malignancy diagnosis and the knowledge model.

6.2.1 Introduction

Here we will take a closer look at the results we got from our test of the
JavaCreek CBR system with our proposed knowledge model (as described in
chapter 5). For the test we used 127 patient cases, where 70 were malignant.
The results we got were:

e True positive: 55 (the number of malignant tumors detected correctly).
e True negative: 50 (the number of benign tumors detected correctly).

e Sensitivity: 79% (55 malignant tumors of 70 possible detected, gives
a success rate of 79% in detecting malignancy correctly).

CHAPTER 6. RESULT EVALUATION 73

Parameters True positive True Negative Sensitivity Specificity
Min.enhanc. 59 52 84 91
Fisher’s linear. 56 53 80 93
Prob. Neural Net 58 51 83 89
Backprop. Net 58 47 83 82
CcC 56 45 80 79

Table 6.1: Classification after noise reduction of data set.

Parameters True positive True Negative Sensitivity Specificity
Min.enhanc. 58 51 83 89
Fisher’s linear. 56 51 80 89
Prob. Neural Net 57 49 81 86
Backprop. Net 55.5 45.5 79 79
CC 52 46 74 81

Table 6.2: Classification before noise reduction of data set.

e Specificity: 88% (50 benign tumors of 57 possible detected, gives a
success rate of 88% in detecting benign tumors correctly).

These results will form the basis for our evaluation together with results
from other works that utilize the same data set used in our works, or parts
of it.

6.2.2 Results from others.

The patient dataset used for our test of our proposed JavaCreek knowledge
model, was the same as used in several other articles. Among other, in Srmo
[12]. The main results from the different methods tried with the T2* data
in the article (as described in chapter 3.4, can be seen in table 6.1 and table
6.2.

The patient dataset was also used as basis for the article ” Breast Lesions:
Evaluation with Dynamic-enhanced T1-weigted MR Imaging and with T2*-
weighted First-Pass Perfusion MR Imaging” [8], as described in chapter 3.4.
The scientist using both the T1 and T2* data from the data set, got by semi-
automatic diagnosis the results for different methods described in table 6.3

6.2.3 Result explanation and specification.

From the results of other methods using the same data set, we see that the
use of the JavaCreek software with our knowledge model yields almost, but
not quite, as good results as using the methods for utilizing the T2* data as
seen in table 6.1 and table 6.2. When comparing with the results from using

CHAPTER 6. RESULT EVALUATION 74

Parameters True positive True Negative Sensitivity Specificity
T2* signal decr.above 20% 57 54 79 93
T1 grafhs. 63 46 88 79
T1 signal incr. above 90% 64 39 89 67
Spiculele 60 46 83 79
Peripheral 53 46 74 82

Table 6.3: Results from different methods presented in [8].

only single methods as described in table 6.3. The reasons that our proposed
method does not compare to the T2* based methods, can be several, but
we will here present two.

T1 data vs. T2* data.

In our knowledge model we utilize findings from both the T1 and the T2*
data set as basis for the diagnosis. However, in ”Differentiating benign and
malignant breast lesions with T2*-weighted first pass perfusion” [12], and
in [8], parts of the conclusions and discussions states that the use of the
T1 data for locating a tumor, and then using this to acquire T2* data of
the tumor for the diagnosis, is better than any use of the T1 data set for
diagnosing. This may indicate that the use of the findings from the T1 data
sets may actually diffuse the diagnosis process, in comparison to using only
the T2* data. This may be seen by comparing the results in table 6.1 and
6.2 against table 6.3

The use of relation strengths, or not?

In our knowledge model we did calculate and include strengths for all rela-
tions. This was not explicitly mentioned and explained in our description of
our system. The reason for this was simply the fact that the JavaCreek CBR
software does not yet support the use of the relation strengths part of the
CREEK CBR model. This, among other things, leads to the fact that the
relevance of the different findings was not weighted. Among other things,
the T2* signal decrease was far stronger weighted than any of the findings
based on the T1 data set, or the observable findings. Also the findings from
the T1 data were found to have different weights for the diagnosis. For in-
stance, if the tumor had a spiculele shape or a high peripheral penetration
of contrast agent, it was found to have not as strong influence towards a
diagnosis of malignancy as the T1 signal increase percentage or curve type.
The fact that the JavaCreek did not support the use of weighing, did unfor-
tunately not allow us to test the influence of the weights on the diagnosis,
or the correctness of the calculated weights. The weights values found by
normal statistical calculations, can be seen in the ”mrcancerdomain.java”

CHAPTER 6. RESULT EVALUATION 75
file, in appendix A.

6.3 The Dynamic Imager client.

6.3.1 Introduction.

As only one full patient case image data set was provided for this work, the
evaluation of the different Dynamic Imager modules was hard. However,
this does not imply that our approach for solving the main problem can’t be
evaluated. In this section we will take a closer look at the image processing
methods implemented with the modules, both the segmentation and the
classification part. We will also evaluate the use of CORBA for connecting
the Dynamic Imager and the JavaCreek software.

6.3.2 The segmentation process.

The segmentation process for both the T1 and T2* image data, are both
loaded by the ”Import Binary” module, a module provided in the Dynamic
Imager software. The ”"show dataset” module (and the ”orthoslicer 3D”
module for the T1 data set) that is used for the manual ROI definition, is
also a module provided with the software. However, the rest of the modules
used in the segmentation process are produced especially for the task at
hand.

The segmentation process is in implementation handled in a divided
fashion. First motion segmentation is used to make a tumor more clear and
easier to see both manually and for the system. The result of the motion
segmentation of both the T1 and the T2* data can be seen in image 5.11.

In the motion segmentation image from the T1 data set, spotting the
tumor is quite easy. However, in the T2* motion segmented image, spotting
the tumor is not as intuitive as in the T1 motion segmented image. As the
position of the tumor in both segmented images will (at least to some degree)
correspond, this is not a problem, as the second part of the segmentation
process is based on manual ROI definition as well as the motion segmented
images.

In the second part of the segmentation (for both the T1 and the T2*
data), the final ROI is calculated from the motion segmentation produced
image, and a manually defined ROI, by utilizing region growth on the result
of the motion segmentation modules, inside the manually defined ROI’s (the
original image and the manual defined ROI’s are showed in image 5.10). As
the user have access to both the original image and the motion segmentation
produced images when defining the ROI’s, he can utilize the T1 data as a
reference when defining the ROT for the T2* data. Examples of final ROI’s
defined by the region growth module, can be seen in image 5.12.

CHAPTER 6. RESULT EVALUATION 76

As only one data set was available for the implementation and testing of
our prototype, we can in no way state that the methods used are sufficient
for the task at hand. However, we will state that the methods may at least
be usable for a domain expert, as a basis for further development of the
concept of the overall system design as described in chapter 5.3.

6.3.3 The classification process.

The modules used for classification in our prototype implementation all use
either the T1 data sequence of the selected slice, or the T2* data sequence,
and one or more defining ROI’s. The different modules and their input
are shown in figure 5.6, figure 5.7 and figure 5.8. As seen in the figure, the
peripheral module needs ROI’s defined by two ”region growth” modules. We
found cutoff values for these modules by trial and error. We implemented
the process of selecting a cutoff-value in the region growth module was done
by using a slider for selecting values, where the resulting ROI changed as
the user used the slider. This was necessary as we did not have enough data
sets to check if any global values could be found. This also holds true for
the region growth modules used for the modules specified for gathering the
T1 and the T2* specific data (the "T1 data” and the ”T2 data” modules).

In the T1 data module we had an artificial neural network for categoriz-
ing the T1 intensity signal increase. This neural network was described in
chapter 5.4.3, and normal backpropagation was used for the training of the
network. As the graph values for each patient case were provided, we could
train this network. We selected 70 graphs from all the five graph categories
(14 graphs from each categories). As the graphs provided were not produced
in our prototype system, and that it was the shape of the graph and not
the values of its data that was the selecting factor for the categorizing of
the cure, we normalized the data to values between 0 and 1. As the graph
found and used was highly determined by the ROI used, this was done for
ensuring that the network would produce results that could be used with
our produced graphs. However, as the network was used for categorizing the
graph produced for the one patient image set provided, the result indicated
that more and better-tuned training might be in order. The graph produced
should by all rules be categorized as a type 5 graph (as seen in image 5.13,
but the resulting categorizing done by the artificial neural network yielded
a type 4 graph for our test patient case. This, together with the fact that
we stopped training after only 60 of the 70 patient graphs were correctly
classified, indicates that this network can be greatly improved.

For the T1 signal increase percentage, the T2* signal decrease percentage
and the determination of peripheral penetration, as described in chapter
5.4.3, the Dynamic Imager modules did produce results that corresponded
well with the results earlier for the specific data set with other methods.
However, as our approach for acquiring the results differ from other methods

CHAPTER 6. RESULT EVALUATION 7

used (especially, our ROI’s does of course not correspond with earlier tests),
some differences are to be expected. These differences make a comparison
of the results from our methods and earlier found results difficult, as a
comparison by values would not yield any valid results.

6.3.4 The use of CORBA for connecting CBR and image
processing software.

The CORBA interface to JavaCreek was tested using both the Java client
used for the testing of the knowledge model, and the Dynamic Imager client
module. All tests and use of the CORBA server extension for JavaCreek
worked as intended, as long as the use was in compliance with the intended
use. We did not manage to get the use of CORBA in itself to trigger an
error, or fail in achieving the intended goals. However, using the interface
wrongly was fully possible, and would result in errors. An example of such
use would be to call the methods in the server object in the incorrect order.

The use of the CORBA client API, enabled us to easily produce a Dy-
namic Imager module for connecting to JavaCreek, controlling the CBR
cycle and presenting the resulting diagnosis. As the API we produced for
this was general, this gives the possibility for using this approach for utiliz-
ing JavaCreek for other problems. In Dynamic Imager use of this method
would imply producing a new module using the CORBA server API. As
the CORBA standard used is supported by several computer languages and
compilers, this approach would also be quite usable for connecting other
software, or producing standalone clients.

6.4 Result evaluation.

We will now again revisit the sub goals presented in chapter 1, and compare
the goals with our results to evaluate our work. This will give an indication
for our overall success.

e Connecting the Dynamic Imager system with the JavaCreek CBR system:
This part goal must be said to be achieved with good results. Not only
did we manage to connect the Dynamic Imager with the JavaCreek
system, but also gave an API for connecting to JavaCreek with any
application that can be produced or enhanced to support CORBA.

e Image segmentation and classification with Dynamic Imager, to produce data for JavaCreek:
The success of this sub goal can be questioned, as most of the results
could not be evaluated by the lack of test data. However, we assumes
that the module network produced can be easily used by an domain
expert to produce good results, as there is constant presentation of
any findings, and there are ample possibilities for ”tweaking” of the
modules.

CHAPTER 6. RESULT EVALUATION 78

e Diagnosis of malignancy with the JavaCreek CBR system:

The results for the diagnosis procedure using the JavaCreek knowl-
edge model presented in this thesis, was presented earlier in this chap-
ter. The results were comparable or better than most T1 data based
methods presented earlier in this thesis. However, the system did not
impress when compared to the results from the newer T2* based re-
sults presented in chapter 4.3. However, his did no surprise as our
approach was mostly influenced by the T1 based methods, and that
the JavaCreek system does not yet support the use of explanation
strengths.

In our goal description, the handling of time in the data set was espe-
cially mentioned. As the JavaCreek system in itself does not support cases
over time as of today, we worked from the assumption that handling the
time aspect was best done before the JavaCreek was utilized for the diag-
nosis. The T1 signal intensity graphs categorizing, was a developed method
for translate time based knowledge to symbolic values in this knowledge
model, and shown to be of use in diagnosing malignancy. The use of motion
segmentation to define the ROI’s needed, was on the other hand based our
assumption that this would utilize the extra information the time based data
could provide, compared to only using static images. In our opinion, based
on the achieved results, we still assumes this to hold true, and that this
method can be further developed toward a fully automatic ROI definition
tool for this knowledge domain, as soon and if, more image patient data sets
are made available.

From the evaluation of the sub goals, and the handling of time in the data
sets, we can conclude that our mayor goal of producing a system that by
connecting existing software for image processing and artificial intelligence
witch could be used for diagnosing malignancy in breast tumors from MR
data was mostly successful. Although parts of our system did not give results
that were better than other automatic or semiautomatic methods used for
the same diagnosing, we think that the overall system design, as a whole,
can be seen to solve the main goal.

Chapter 7

Summary and future work.

79

CHAPTER 7. SUMMARY AND FUTURE WORK. 80

7.1 Summary.

Before presenting the areas where we feel that future work from this thesis
may yield worthwhile results, we will present a summary of the thesis.

In chapter 1 we presented our goal for this thesis. The main goal was
to connect the Dynamic Imager image-processing environment with the
JavaCreek artificial intelligence system, for approaching an automatic sys-
tem for diagnosis of malignancy in breast MR images. The image data sets
was taken over time as contrast agent was injected into the patient, and
contained data gathered using both the T1 and T2* MR techniques. This
meant that using existing, and developing new methods for utilizing the time
dependent information in the data set, was a great opportunity to increase
the diagnosis accuracy, in comparison with methods using only static data.

As the goal of our work included testing methods for diagnosis malig-
nancy in tumors from MR data sets, we early (in chapter 5 stated that a
prototype system had to be produced and used for the testing. This proto-
type was based on the results from earlier work in diagnosing malignancy
in breast MR images, and from the field of image processing. Dynamic
Imager and JavaCreek was presented for explaining the selection of this sys-
tems for the task at hand, and we also evaluated two computing network
standards, the TCP/IP client/server approach and the CORBA approach,
for connecting the JavaCreek and the Dynamic Imager software together.
Earlier results, software presentation, image processing methods, the MR
data gathering methods and the standards for network computing, was all
presented in chapter 3 and chapter 4.

In chapter 5, we first presented our reasons for selecting the CORBA
standard for the integration of Dynamic Imager and JavaCreek. The reasons
for selecting CORBA was several, but the main reasons where the ease
of implementation, and the added possibilities compared to the TCP/IP
client /server based approach. From the selection of CORBA, we went on to
describe our overall design strategy for our prototype system, from the use
of Dynamic Imager modules for image processing, to utilizing the CORBA
as an interface to JavaCreek, and finally to utilizing the JavaCreek CBR
system for the diagnosing.

Next we described the knowledge model that we produced for JavaCreek
for the knowledge domain, based on the earlier works in the filed presented
in chapter 3 and 4. We also presented the work done for utilizing CORBA
for the integration process, the Dynamic Imager modules produced, and the
module network used in Dynamic Imager for the image processing part of
the overall system. Finally, in chapter 5, we presented the running of the
overall system, and the results acquired.

In chapter 6 we compared the results we of our system, with comparable
system and methods. From this comparison we concluded that although our
goal was in most areas and for the system as a whole successful, much work

CHAPTER 7. SUMMARY AND FUTURE WORK.

still remains on parts of the system.

81

CHAPTER 7. SUMMARY AND FUTURE WORK. 82

7.2 Future work.

As stated in the last section, much work still remains for our system. Also,
several areas has during the work on this thesis, shown itself to be worthy
of closer inspection and more work. We will at the end of this thesis now
present these areas that we find of most importance.

7.2.1 General knowledge in JavaCreek.

The produced knowledge model for the knowledge domain included general
domain knowledge as strengths to the implications in the model. These
strengths should influence the reasoning process in JavaCreek. Unfortuanly,
the JavaCreek system does not fully support this part of the Creek CBR
method, and therefore the results obtained by using this knowledge model
might be improved a great deal when the use of explanation strengths be-
come supported. As the JavaCreek system is under constant development,
this part will probably be available in the not too far future, and should
then be reevaluated.

7.2.2 The artificial neural network.

In our system approach, we used a module in the Dynamic Imager part of
the system; to categorize the T1 based signal intensity graphs. At NTNU
there is now work being done to include use of artificial neural networks di-
rectly into JavaCreek, for similar translation from sub symbolic knowledge,
to symbolic knowledge that can be used in the reasoning process. As our
neural network showed sign of not being trained sufficient, the use of such an
integrated network would be of great interest, as a connection of the reason-
ing mechanism in JavaCreek and the training of such an integrated network
has been mentioned. Such integration would also imply that the learning of
the network could actually change as more cases were incorporated into the
knowledge model, and more knowledge was made available.

7.2.3 The use of motion segmentation for automatic ROI
definition.

In the Dynamic Imager part of our system, we utilized motion segmentation
in the semiautomatic process of defining ROI’s. This method could well be
made fully automatic if more work was done on this field, and the method
was connected with other image segmentation methods. An requirement for
further study into this would of course be that more test image data sets
was available.

CHAPTER 7. SUMMARY AND FUTURE WORK. 83

7.2.4 The JavaCreek CORBA server.

Finally, we will mention the JavaCreek CORBA server. As of today this
server can be used for utilizing JavaCreek from any existing or new systems,
as long as they can utilize CORBA. However, as of today, a serious short-
coming exists in the server. Only one user at a time can access the server,
and must fully finish the CBR cycle with a case before another user may
use the server. The users is not warned if the server is already in use, and
this can therefore lead to errors and even crashes. Further development of
the CORBA server could remove this shortcoming, and make a knowledge
model usable for several simultaneous users, making any knowledge model
a true knowledge repository, accessible by users around the world.

Bibliography

[1]

2]

[3]

[4]

[5]
[6]

[7]

8]

[9]

Agnar Aamodt : A Knowledge-Intensive, Integrated Approach to
Problem Solving and Sustained Learning PhD thesis at University
in Trondheim, NTH, 1991, Trondheim.

Agnar Aamodt : Ezplenation-Driven Retrival, Reuse and Learning

of Cases Proceeding of EWCBR-93, First European Workshop on
Case-Based Reasoning, Kaiserlautern, Nov, 1993. pp 279-384.

Agnar Aamodt : Ezplenation-driven case-based reasoning In S.
Wess, K. Althoff, M. Richter (eds.): Topics in Case-based reason-
ing. Springer Verlag, 1994. P. 274-288

Agnar Aamod, Enric Plaza : Case-Based reasoning; Foundation is-
sues, methodological variations, and system approaches. Al Commu-
nications, Vol.7, No. 1, Marc 1994, pp. 39-59

Ceetron : www.ceetron.com

Kjell Arne Kvistad : MR in breast cancer, A climical study Dr.
theisis, Norwegian University of Science and Technology, Faculty of
Medicine, Trondheim - Norway. ISBN 82-7964-015-0.

K. A. Kvistad, S. Lundgren, H. A. Fjsne, E. Smenes, H.-B Smethurst,
O. Haraldseth. Differenting benign and malignant breast lesions with
T2*-weighted first pass perfusion imaging Acta Radiologica 40 (1999)
: 45-51. ISSN 0284-1851.

Kjell A. Kvistad, Jana Rydland, Jari Vainio, Hanne B. Smethurst,
Steiner Lundgren, Hans E. Fjsne, Olav Haraldseth. Breast Lesions:
Evaluation with Dynamic Contrast-enhanced T1-weighted MR Imag-
ing and with T2*-weighted First-Pass Perfusion MR Imaging In Ra-
diology 2000; 216:545-553

Kjell A. Kvistad, Inger J. Bakken, Ingrid S. Gribbestad, Benny Ehrn-
holm, Steinar Lundgren, Hans E. Fjsne, Olav Haraldseth. Character-
ization of Neoplastic and Normal Human Breast Tissues With In

84

BIBLIOGRAPHY 85

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

Vivo HMR Spectroscopy in Journal of Magnetic resonance imageing
10: 159-164.

CORBAX&S, Object Management Group (OMG) : www.omg.com

Marvin Mingky : A Framework for Representing Knowledge, In P.
Winston (ed.): The psychology of computer vision. McGraw-Hill,
1975, p. 211-277

Frode Sgermo : Plausible Inheritance, Semantic Network Inference
for Case-Based Reasoning. Master thesis, Norwegian University of
Science and Technology, Department of Computer and Information
Science, 2000

Jain, R. : Segmentation of Frame Sequences Obtained by Mowving
Observer. Report GMR-4247, General Motors Research Labaratories,
Warren, Mich.

Muerle, J.L, and Allen, D.C [1968]. Ezperimental Evaluation of Tech-
niques for Automatic Segmentation of Objects in a Complex Scene.
In Pictoral Pattern Recognition, (G.C. Cheng et al., eds.) Thompson,
Washington, D.C.

Brice, C.R., and Fennema, C.L. [1970]. Scene Analysis Using Regions.
Artificial Intelligence, vol. 1, pp.205-226.

McCulloch, W.S, and Pitts, W.H [1943]. A Logical Calculus of the
Ideas Imminent in Nervous Activity. Bulletin of Mathematical Bio-
physics, Vol. 5, pp 115-133.

Geir Torheim, Fred Godtlibsen, David Axelson, Kjell Arne Kvistad,
Olav Haraldset, Peter A. Rinck. Feature extraction and classification
of dynamic contrast-enhanced T2*-weighter breast image data De-
partment of Anesthesia and Medical Imaging. Norwegian University
of Science and Technology. Trondheim, Norway. Under develpment,
part of the work presented at ISMRM 2000

Appendix A

The Knowledge Model

package corbacreek;

import javacreek.representation.x*;
import java.io.x;

import java.util.Vector.x;

import javacreek.x*;

import java.util.StringTokenizer;

public class mrcancerdomaintest {
public mrcancerdomaintest(KnowledgeModel km)<{
km.name = "MrCancerDomain";
km.title = "MR - Breast Cancer domain by Jo Skjermo.";
km.comment ="This domain is used to demonstrate the corbacreek interface.";

//public String casen()=new String();
System.out.println("Adding a few entities...");

try{

//The parameters in the domain

Parameter topNode = new Parameter (km,"top node","Top node of the parameter tree.",null);
Parameter observable = new Parameter (km,"observable","Observable Parameter.",null);
Parameter measurable new Parameter(km,"measurable","Measurable Parameter.",null);
Parameter diagnosis = new Parameter(km,"diagnosis","The diagnoses for this domain",null);

//The observable Parameters
//Parameter age = new Parameter (km,"age","The patients age",null);
Parameter mens = new Parameter (km,"mens",'"Menstruational status",null);

//The measurable Parameters

Parameter si_curv = new Parameter(km,"si_curve","Signal curve of Tl-test",null);
Parameter tissue = new Parameter (km,"tissue","Peripheral penetration of outer tissue of t
Parameter shape = new Parameter (km,"shape","The shape of the tumor",null);

Parameter tl = new Parameter(km,"t1","Signal enhancment in tumor with T1",null);
Parameter t2 = new Parameter (km,"t2","Signal decrease in tumor with T2" ,null);

86

APPENDIX A. THE KNOWLEDGE MODEL 87

//The Solutions/diagnoses

Finding malignent = new Finding(km,"malignent","The tumor is malignent",null);
Finding benign = new Finding(km,"benign","The tumor is benign",null);

Finding notknown = new Finding(km,"notknown","The tumor can be anything",null);

//The possible age Findings.
//Finding lowage = new Finding(km,"lowage","The patient is below 44years old",null);
//Finding highage = new Finding(km,"highage","the patient is 44 years or older",null);

//The possible mens Findings.

Finding premenopause = new Finding(km,"premenopause","The patient is premonopause",null);
Finding postmenopause = new Finding(km,"postmenopause","The patient is postmenopause",nul
Finding hrt = new Finding(km,"hrt","The patient is undergoing hormone replacement therapy'

//The possible si_curv findings.

Finding curvl = new Finding(km,"curvl","T1 time-signal intensity curve classification val
Finding curv2 = new Finding(km,"curv2","T1 time-signal intensity curve classification val
Finding curv3 = new Finding(km,"curv3","T1 time-signal intensity curve classification val
Finding curv4 = new Finding(km,"curv4","T1 time-signal intensity curve classification val
Finding curvb = new Finding(km,"curv5","T1 time-signal intensity curve classification val

//The possible tissue finding
Finding periph= new Finding(km,"periph","Peripheral penetration noticed",null);
Finding mnoperiph= new Finding(km,"noperiph","No periheral penetration spotted.",null);

//The possible shape finding
Finding spic= new Finding(km,"spic","The tumor has a piculele shape",null);
Finding mnospic= new Finding(km,"nospic","The tumor has a normal shape",null);

//The possible t1 finding
Finding lowenhance= new Finding(km,"lowenhance","The Tl-enhancing is below 90%",null);
Finding highenhance= new Finding(km,"highenhance","The Tl-enhacing is above or equ 90% "

//The possible t2 finding
Finding lowdropp= new Finding(km,"lowdropp","The T2-decrease is below 20%",null);

Finding highdropp = new Finding(km,"highdropp","The T2-decrese is above or equ 20%",null.

//The Subclasses of topNode

new Subclass0f (observable,topNode) ;
new Subclass0f (measurable,topNode);
new SubclassOf (diagnosis,topNode);

//The Subclasses of the observable Parameters
//new Subclass0f (age,observable) ;
new SubclassOf (mens,observable);

//The Subclasses of the measurable Parameters
new SubclassO0f (si_curv,measurable);
new SubclassOf (tissue,measurable);

APPENDIX A. THE KNOWLEDGE MODEL 88

new Subclass0f (shape,measurable);
new SubclassOf(tl, measurable);
new SubclassOf (t2,measurable);

//The possible Soulutions (subclasses and solution)
new HasValue(diagnosis, malignent);

new HasValue(diagnosis, benign);

new HasValue(diagnosis, notknown);

//Possible findings for the observable parameters

//the possible findings for mens.
new HasValue(mens,premenopause) ;
new HasValue(mens,postmenopause) ;
new HasValue(mens,hrt);

//Possible findings for the measurable parameters
new HasValue(si_curv,curvil);
new HasValue(si_curv,curv2);
new HasValue(si_curv,curv3);
new HasValue(si_curv,curv4);
new HasValue(si_curv,curvb);

new HasValue(tissue,periph);
new HasValue(tissue,noperiph);

new HasValue(shape,spic);
new HasValue(shape,nospic);

new HasValue(tl,lowenhance) ;
new HasValue(tl,highenhance);

new HasValue(t2,lowdropp);
new HasValue(t2,highdropp);

//Some implications
//Relation Relasjon = new Relation();

//Implication between age and mens?

Implies Imp = new Implies(curvl,benign);
Imp.setExplanationStrength(0.9);

Implies Impl = new Implies(curv2,benign);
Impl.setExplanationStrength(0.8);

Implies Imp2 = new Implies(curv3,malignent);
Imp2.setExplanationStrength(0.6) ;

Implies Imp3 = new Implies(curv4,malignent);

APPENDIX A. THE KNOWLEDGE MODEL 89

Imp3.setExplanationStrength(0.75);

Implies Imp4 = new Implies(curvb,malignent);
Imp4.setExplanationStrength(0.9) ;

Implies Imp7 = new Implies(noperiph,benign);
Imp7.setExplanationStrength(0.8);

Implies Imp8 = new Implies(periph,malignent);
Imp8.setExplanationStrength(0.75);

Implies Imp9 = new Implies(spic,malignent);
Imp9.setExplanationStrength(0.8);

Implies Impl0 = new Implies(nospic,benign);
Imp10.setExplanationStrength(0.85);

Implies Impll = new Implies(lowenhance,benign);
Impll.setExplanationStrength(0.6);

Implies Impl2 = new Implies(highenhance,malignent);
Impl2.setExplanationStrength(0.6);

Implies Impl13 = new Implies(lowdropp,benign);
Imp13.setExplanationStrength(0.7);

Implies Impl4 = new Implies(highdropp,malignent);
Impl4.setExplanationStrength(0.7);

Implies Impl5 = new Implies(premenopause,benign);
Impl5.setExplanationStrength(0.2);

Implies Imp16 = new Implies(postmenopause,malignent);
Impl6.setExplanationStrength(0.2);

Implies Impl7 = new Implies(hrt,malignent);
Impl7.setExplanationStrength(0.15);

//Some eksamples of causes
//new Causes(banana,monkeyFeeling) ;

//cases

Case casel=new Case(km,"examplecasel","benign",null);
//new HasFinding(casel,lowage);
new HasFinding(casel,curv2);

new HasFinding(casel,nospic);

new HasFinding(casel,noperiph);
new HasFinding(casel,lowenhance);
new HasFinding(casel,lowdropp);
new HasFinding(casel,premenopause) ;
new HasSolution(casel, benign);
casel.setStatus(Case.SOLVEDCASE) ;

//THE REAL CASES SHOULD COME HERE.

//HOWEVER, AS WE DID NOT GATHER AUTHORISATION
//T0 REPRINT THEM HERE, THE CASES HAS BEEN
//REMOVED.

APPENDIX A. THE KNOWLEDGE MODEL 90

}catch (ConceptAlreadyExistException e){System.out.println("ConseptAlreadyExists: "+e.getl

}

public static void main (String[] args)

{
KnowledgeModel km = new KnowledgeModel() ;
new mrcancerdomaintest (km) ;

}

