• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Periodic Orbits for Transcendental Hénon Maps

Nguyen, Huu Tai Terje
Master thesis
Thumbnail
View/Open
18325_FULLTEXT.pdf (1.660Mb)
18325_COVER.pdf (1.556Mb)
URI
http://hdl.handle.net/11250/2497843
Date
2018
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1761]
Abstract
This master thesis deals with periodic points of transcendental Hénon maps, a subject in complex dynamics. In particular, we investigate the existence of periodic points and the discreteness of the set of $k$-periodic points for certain values of $k$. The simplest case is $k=1$, the fixed points. We employ known results from the theory of entire functions to show that transcendental Hénon maps $(z,w)\mapsto (f(z)-\delta w,z)$, where $f$ has finite and non-integer-valued order, admit infinitely many fixed points. We also give a complete description for the existence of fixed points in the case $f$ is a general entire function. For values of $k$ greater than 1, it is of interest to determine when a $k$-periodic point $(z,w)$, fails to be an $m$-periodic point for all $m
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit