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Abstract

This master thesis deals with periodic points of transcendental Hénon maps, a
subject in complex dynamics. In particular, we investigate the existence of pe-
riodic points and the discreteness of the set of k-periodic points for certain val-
ues of k. The simplest case is k = 1, the �xed points. We employ known re-
sults from the theory of entire functions to show that transcendental Hénon maps
(z, w) 7→ (f(z) − δw, z), where f has �nite and non-integer-valued order, admit
in�nitely many �xed points. We also give a complete description for the existence
of �xed points in the case f is a general entire function. For values of k greater
than 1, it is of interest to determine when a k-periodic point (z, w), fails to be an
m-periodic point for all m < k. That is, when (z, w) is a genuine k-periodic point.
We provide complete characterizations for the cases k = 2 and k = 3. A simple
characterization in both cases when δ 6= 1, is that such points are genuine if and
only if they lie o� the diagonal ∆ = {(z, w) ∈ C2 : z = w}.

Let F be a transcendental Hénon map, and denote by Fix(F k), the set of k-
periodic points of F . It follows from elementary properties of the zero set of holo-
morphic functions of a single variable, that Fix(F ) and Fix(F 2) are discrete sets.
Under the additional assumption that the order of f is strictly less than 1/2, Lean-
dro Arosio, Anna Miriam Benini, John Erik Fornæss, and Han Peters have further
shown that Fix(F k) is discrete for all k ≥ 1 [8]. Their proof is based on a result by
Wiman on the minimum modulus of entire functions with small order. This raises
the question whether there are more general transcendental Hénon maps, where
the order of f is greater than or equal to 1/2, for which Fix(F k) is discrete for some
k ≥ 3. Using the implicit mapping theorem, we show the existence of such a map
in the case k = 3, where f(z) = fδ(z) is dependent on δ, and where fδ has order
equal to 1. For the case k = 4, using elementary properties of analytic sets in C2,
we are also able to show that the transcendental Hénon map (z, w) 7→ (ez−δw, z),
has a discrete set of 4-periodic points when δ2 = 1.

We give several existence results. For instance, we prove the existence of in-
�nitely many genuine 4-periodic points for the speci�c type of transcendental
Hénon maps of the form (z, w) 7→ (eg(z) + w, z), where g is some non-constant
entire function. Our technique is an estimate method which leads to almost ex-
plicit formulae. We start with the case g(z) = zd, a monomial of degree d ≥ 2, and
then generalize to the case when g is a transcendental entire function, using the
Wiman-Valiron method (Theorem 1.4.4) to look for solutions near points where
g looks like a polynomial of high degree. For the corresponding symplectic maps
(z, w) 7→ (eg(z)−w, z), using a completely di�erent approach, we are able to show
the existence of in�nitely many genuine 4-periodic points under the additional as-
sumption that g has a non-zero period p: g(z) = g(z + pZ) for all z. We also give
existence results on k-periodic points for more general values of k. We prove the
following main result: let F1(z, w) = (f(z)−w, z) be a symplectic transcendenal



Hénon map where f is odd and has non-zero period p. Then F1 admits in�nitely
many genuine k-periodic points for all k ≥ 2 prime. The case k = 5 is special and
the assumption that f be p-periodic, p 6= 0, can be disposed of. Finally, we give
two special results for k not prime: k = 6 and k = 8.
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Sammendrag på norsk

Denne masteroppgaven handler om periodiske punkter til transcendente Hé-
nonavbildninger, et tema i kompleks dynamikk. Mer spesi�kt, undersøker vi eksis-
tensen av periodiske punkter og diskretheten av mengden av k-periodiske punkter
for utvalgte verdier av k. De enkleste periodiske punktene er �kspunktene. Dette
er tilfellet k = 1. Vi benytter oss av kjente resultater fra teorien om hele funk-
sjoner1 til å vise at transcendente Hénonavbildninger (z, w) 7→ (f(z) − δw, z),
der f har endelig og ikke heltallig orden, har uendelig mange �kspunkter. Vi gir
også en fullstendig karakterisering for tilfellet der f er en generell hel funksjon.
For verdier av k større enn 1, er det interessant å spørre når et k-periodisk punkt
(z, w) ikke er et m-periodisk punkt for alle m < k. Det vil si når (z, w) er et ge-
nuint k-periodisk punkt. Vi gir fullstendige karakteriseringer i tilfellene k = 2 og
k = 3. I begge tilfellene, når δ 6= 1, er en enkel karakterisering at slike punkter er
genuine hvis og bare hvis de ikke ligger på diagonalen ∆ = {(z, w) ∈ C2 : z = w}.

La F være en transcendent Hénonavbildning. Vi betegner med Fix(F k), meng-
den av k-periodiske punkter til F . Det følger fra elementære egenskaper til null-
mengden til en holomorf funksjon av én variabel, at Fix(F ) og Fix(F 2) er dis-
krete mengder. Under antakelsen at f har orden ekte mindre enn 1/2, har Lean-
dro Arosio, Anna Miriam Benini, John Erik Fornæss og Han Peters, videre vist at
Fix(F k) er diskret for alle k ≥ 1 [8]. Beviset deres bruker Wiman sitt resultat
om minimum-modulus-funksjonen til hele funksjoner av lav orden. Dette tar opp
spørsmålet om det �nnes andre mer generelle transcendente Hénonavbildninger
hvor ordenen til f større eller lik 1/2, der mengden Fix(F k) er diskret for en eller
annen k ≥ 3. Ved bruk av implisitt avbildningsteoremet, viser vi eksistensen av
en slik avbilding i tilfellet k = 3, der f(z) = fδ(z) avhenger av δ og fδ har orden
like 1. For tilfellet k = 4 klarer vi også å vise, ved bruk av elementære egenska-
per til analytiske mengder i C2, at den transcendente Hénonavbildningen gitt ved
(z, w) 7→ (ez−δw, z), har en diskret mengde med 4-periodiske punkter når δ2 = 1.

Vi gir �ere eksistensresultater. Blant annet viser vi at de spesi�kke transcen-
dente Hénonavbildningene på formen (z, w) 7→ (eg(z) + w, z), der g er en ikke-
konstant hel funksjon, har uendelig mange genuine 4-periodiske punkter. Teknik-
ken vi benytter oss av, er en estimerings metode som leder til nesten eksplitte
formler. Vi starter med tilfellet g(z) = zd, et monom med grad d ≥ 2, for så å ge-
neralisere til tilfellet der g er en transcendent hel funksjon. For generaliseringen,
benytter vi oss av Wiman-Valiron metoden (Teorem 1.4.4) til å lete etter løsninger
i nærheten av der g ser ut som et polynom med høy grad. For de tilsvarende sym-
plektiske avbildningene (z, w) 7→ (eg(z)−w, z), beviser vi eksistensen av uendelig
mange genuine 4-periodiske punkter under tilleggsantakelsen at g har en periodie

1På engelsk: entire functions.



p ulik 0: g(z) = g(z + pZ) for alle z. Vi gir også eksistensresultater for mer gene-
relle verdier av k. Vi beviser følgende hovedresultat: la F1(z, w) = (f(z) − w, z)
være en symplektisk transcendent Hénonavbildning der f er en odde funksjon
med periode p 6= 0. Da har F1 uendelig mange genuine k-periodiske punker for
alle primtall k ≥ 2. Et spesielt tilfelle, er k = 5. Her kan en tillate perioden p = 0
(ingen periode) og fremdeles ha uendelig mange genuine 5-periodiske punkter.
Tilslutt gir vi to spesielle resultater der k ikke er et primtall: k = 6 og k = 8.
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Chapter 0

Introduction

0.1 Motivation and background
Let f : Cn → Cn be a holomorphic map. One writes f 2 = f ◦ f , and inductively
fm = f ◦ fm−1 for m ≥ 3. The map fm is said to be the m-th iterate of f . Com-
plex dynamics is a branch of complex analysis in which one studies the properties
of iterates of holomorphic maps. Of interest, is the behaviour of the sequence of
iterates {fm}m as m tends to in�nity. One speaks of the dynamics of the map f .
Given f , one divides the space Cn in two disjoint sets: the Fatou set of f : F (f),
and Julia set of f : J(f). On the Fatou set, the dynamics of f behaves nicely and
is predictable, while on the Julia set, the dynamics of f is chaotic. For ε > 0 small
and z0, z1 ∈ F (f) with 0 < |z1−z0| < ε, fm(z1) and fm(z0) remain close for large
m. Iterates of nearby points in the Fatou set behave in the long run, similarly. On
the other hand, for arbitrarily small ε > 0, if z0, z1 ∈ J(f) and 0 < |z0 − z1| < ε,
the iterates of z1 and z0 can behave drastically di�erent. There has been and still
is, extensive research on the properties of F (f) and J(f). Although our study will
not directly be involved with the Fatou set and the Julia set, it is not completely
unrelated.

In this master thesis, we investigate periodic behaviour and in particular, we
aim to say something interesting regarding periodic points of the type of maps
of the form F : C2 → C2, (z, w) 7→ (f(z) − δw, z), where δ ∈ C\{0}, and
where f is a transcendental entire function. A Periodic point of any map F , is a
point z such that F k(z) = z for some k ∈ N. Thus, the dynamics of F for such
a point, follows an orbit: z, F (z), . . . , F k−1(z), z and is predictable. Maps of the
form (z, w) 7→ (f(z) − δw, z) are called Hénon maps. When f is a transcen-
dental entire function, these are called transcendental Hénon maps, and when f
is a polynomial, these are called polynomial Hénon maps. While there has been
done extensive research on polynomial Hénon maps, very little is known about
transcendental Hénon maps. Most recent work has been done by Leandro Aro-
sio, Anna Miriam Benini, John Erik Fornaess, and Han Peters [8]. Their paper [8]
also discusses results aside from those related to periodic behaviour, but we will
restrict attention to the parts concerned with periodic points.
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CHAPTER 0. INTRODUCTION

The main focus, and indeed the goal, in this master thesis, has been to provide
new results related to periodic orbits for transcendental Hénon maps. As has al-
ready been pointed out, very little is known about the dynamics of transcendental
Hénon maps as of today, and this is also true for periodic behaviour of transcen-
dental Hénon maps. What is quite intriguing, or at least so the author feels, is that
although the notion of periodic orbits, is an elementary one in the �eld of (com-
plex) dynamics, there is still very little that is known even here when it comes to
transcendental Hénon maps. Thus, albeit being elementary, there is a lot to be dis-
covered regarding periodic behaviour of transcendental Hénon maps. The author
believes this makes research in this particular area exciting and interesting, and
indeed it is this that has been the main motivation of the author for this project.
There are some results related to periodic orbits of transcendental Hénon maps,
given in [8]. When it comes to these results, mainly only the cases k = 1 and
k = 2 are treated. As a result, of primary interest has therefore naturally been the
investigation of cases where k takes other values than 1 and 2, values for which [8]
already provides interesting results. However, of concern has also been whether a
k-periodic point is genuine or not. In this regard, it is natural to consider also the
case of lower values for k, such as k = 1 and k = 2, and therefore thus appropri-
ately, these two cases have been investigated as well.

Of course, in a study of periodic orbits of maps, the natural question which
surfaces, is the question concerned with the existence of periodic points. That be-
ing said, there certainly are other interesting problems as well which the author
does believe deserve further investion. For instance, in [8], Leandro Arosio, Anna
Miriam Benini, John Erik Fornæss, and Han Peters, give, what the author believes
to be, an interesting result on the discreteness of the set of periodic points of tran-
scendental Hénon maps (f(z)− δw, z). However the authors of [8] restricts here
to the case when the order of f is strictly less than 1/2. This naturally raises the
question whether there are more general transcendental Hénon maps, where the
order of f is greater than or equal to 1/2, with discrete set of k-periodic points for
some k ≥ 3. Motivated by this, in addition to focusing on the natural question
of existence of periodic points, there has also been made an e�ort in investigating
the discreteness of the set of periodic points of transcendental Hénon maps.

Finally, in addition to being interesting in its own right, the study of periodic
points also relates to other topics in dynamics, such as to the the study of the Fatou
and Julia set. Indeed, in [8], it is for instance, shown that a transcendental Hénon
map F (z, w) = (f(z) − δw, z) in the case δ 6= −1, has in�nitely many saddle
points of period 1 or 2. This in turn implies the non-emptiness of the Julia set of
F : J(F ) 6= ∅. See Corollary 3.6 in [8].

The author hopes that what has been said, provides motivation for studying
transcendental Hénon maps, complex dynamics, and what to come. Further mo-
tivation for the speci�c study of the dynamics of transcendental Hénon maps can
be found in the introduction of [8].
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CHAPTER 0. INTRODUCTION

0.2 Overview of content
Chapter 1 deals with the theory of entire functions and gives preliminary results
referred to and used in later chapters. We introduce the concept of a transcenden-
tal entire function and discuss two interpretations of such functions. The �rst is to
view these as holomorphic functions on all of C with a single essential singularity
at ∞, and the second is the interpretation of transcendental entire functions as
non-algebraic entire functions. We de�ne the maximum modulus of entire func-
tions and discuss the concept of the order of an entire function. We state and prove
an elementary, but important, result that relates the maximum modulus of an ar-
bitrary transcendental entire function to that of any polynomial, and discuss the
cardinality of the solution set of the equation f(z) = λP (z) where λ ∈ C, P is
any non-constant polynomial, and f is an entire function with �nite order. We also
state a result concerned with the possibilities for entire functions g and h when it
is known that the composite entire function h◦g has �nite order. Finally, we state
without proof, the Wiman-Valiron method (Theorem 1.4.4) for approximating any
transcendental entire function near points of maximum modulus by polynomials
of high degree, and Rosenbloom’s theorem (Theorem 1.4.1) on the cardinality of
the set of �xed points of a composition of two entire functions. All the results in
chapter 1, are known results.

Chapter 2 deals with �xed points of Hénon maps. We de�ne what is meant
by Hénon maps and what is meant by a k-periodic point of a general map. Then,
we employ some results on entire functions with �nite order from chapter 1 to
provide some special existence results on �xed points. Finally, we give a complete
characterization of the existence of �xed points for Hénon maps.

Chapter 3 deals with 2-periodic points of Hénon maps. We discuss the con-
cept of genuine periodic points, and give a characterization for 2-periodic points
of Hénon maps. We also discuss some existence results and describe the simple
dynamics of 2-periodic points of Hénon maps. In particular, we use the theorem
of Rosenbloom (Theorem 1.4.1) stated in chapter 1, to show that all transcenden-
tal Hénon maps of the form (f(z) − δw, z) with δ 6= −1, have in�nitely many
2-periodic points. The latter result origins from [8].

In chapter 4, we consider the discreteness of periodic points of transcendental
Hénon maps. Using elementary properties of the zero set of holomorphic func-
tions of a single variable, we determine that the set of �xed points and the set of 2-
periodic points of transcendental Hénon maps are discrete sets. This is a known re-
sult already in [8]. We state and prove the result in [8] which says that for all k ≥ 1,
Fix(F k) is discrete for all transcendental Hénon maps F (z, w) = (f(z) − δw, z)
where f has order strictly less than 1/2. Our proof is completely analogous to the
one given in [8]. We then proceed to show the existence of a transcendental Hénon
map Hδ(z, w) = (hδ(z)− δw, z) where Fix(H3

δ ) is discrete and the order of hδ(z)
is equal to 1. Our argument uses the implicit mapping theorem. Using also ele-
mentary properties of analytic sets in C2, we show that the transcendental Hénon
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CHAPTER 0. INTRODUCTION

map F (z, w) = (ez − δw, z) has discrete set of 4-periodic points when δ2 = 1.
These two results provide an a�rmative answer to the open question mentioned
in the previous section, at the end of paragraph 4.

Chapter 5 deals with transcendental Hénon maps with in�nitely many gen-
uine k-periodic points for certain values of k. It is the �rst part on the subject and
is considerably longer than all the other chapters. Chapter 6 is the second part.
In chapter 5, we deal with the cases k = 3 and k = 4. We consider genuine 3-
periodic points and give a complete characterization for these. Then we construct
examples of transcendental Hénon maps with in�nitely many genuine 3-periodic
points. We then move on to consider results for 4-periodic points of transcen-
dental Hénon maps. Our main result in this chapter, is an existence result for
4-periodic points for a certain type of Hénon maps: using an estimate method and
the Wiman-Valiron method (Theorem 1.4.4), we show the existence of in�nitely
many genuine 4-periodic points for the family of transcendental Hénon maps of
the form (z, w) 7→ (eg(z)+w, z) where g is a non-constant entire function. We �rst
consider the case g(z) = zd, a monomial with degree d ≥ 2, and then generalize to
the case when g is a transcendental entire function by using the Wiman-Valiron
method (Theorem 1.4.4) to approximate g by a polynomial of high degree near
points where |g| attains the maximum modulus of g. The case when g is a general
polynomial is completely analogous to the case when g is a monomial. Finally,
we prove that the family of symplectic transcendental Hénon maps of the form
(z, w) 7→ (f(z) +w, z) where f has a non-zero period p: f(z) = f(z+ pZ) for all
z, admits in�nitely many genuine 4-periodic points.

Chapter 6, the �nal chapter, is a continuation of chapter 5 and the second part
on transcendental Hénon maps with in�nitely many genuine k-periodic points.
We provide a systematic way of reducing the system of equations determining k-
periodic points of symplectic transcendental Hénon maps (f(z) − w, z) where f
is odd, by half. We then use this method to show that such maps admit in�nitely
many genuine 5-periodic points. We further use this method to get the main result
of the chapter: let F1(z, w) = (f(z) − w, z) be any symplectic transcendental
Hénon map where f is odd and p-periodic with p 6= 0. Then F1 admits in�nitely
many genuine k-periodic points for all k ≥ 2 prime. The proof of the main result
uses a Rosenbloom-type result which we provide (Theorem 6.2.3): if L(z) is any
�rst order polynomial and g(z) is a transcendental entire and periodic function,
then the equation P (z) = g(z), has in�nitely many solutions. Finally, we give two
special results in the case k is not prime for k = 6 and k = 8.
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Chapter 1

Some Theory of Entire Functions

Our main objectives of study in this master thesis, are transcendental Hénon maps.
These are holomorphic maps of of the form F : C2 → C2, (z, w) 7→ (f(z)−δw, z)
where δ is a non-zero complex number and f a transcendental entire function.
Thus, it is natural to expect that the study of entire functions will play an important
role, and provide useful information. In this chapter, we de�ne what is meant by
transcendental entire functions, study themaximummodulus and the order of entire
functions, and give some preliminary results from the theory of entire functions
which will be used in the later chapters. References for the material we present
in the �rst three subsections, are for instance [2] and [1]. In the fourth and last
subsection, which concerns the Wiman-Valiron method (Theorem 1.4.4) and the
theorem of Rosenbloom (Theorem 1.4.1) on �xed points of composites of entire
functions, separate references will be given. We note here that z is called a �xed
point of the map h, if h(z) = z. We will denote the set of �xed points of h, by
Fix(h).

1.1 Transcendental entire functions
The �rst step in a study of transcendental Hénon maps must be to understand
what is meant by transcendental entire functions.

De�nition 1.1.1. An entire function is said to be a function which is holomor-
phic on the whole complex plane C.

Thus, if f is an entire function, it can be represented by its Taylor series about
the origin (or any other point):

f(z) =
∞∑
n=0

anz
n. (1.1)

Example 1.1.2. Any polynomial P (z) =
∑n

j=1 ajz
j is entire. Also, the trigono-

metric functions sin(z) and cos(z) are entire functions, and so is the exponential
function ez .

7



CHAPTER 1. SOME THEORY OF ENTIRE FUNCTIONS

A known result is Liouville’s theorem:

Theorem 1.1.3. Any bounded entire function is constant.

By de�nition, the only possible singularity of an entire function f , must be at
∞. Liouville’s theorem 1.1.3, shows that in the case that f has no singularity at
∞, or in the case that f has a removable singularity at ∞, f is constant. There
are two other cases: the case that f has a pole at ∞, and the case that f has an
essential singularity at ∞. In the case that f has a pole at ∞, to determine the
nature of f , we can consider the pole of f(1/z) at z = 0. Let f(z) =

∑∞
n=0 anz

n.
Then: f(1/z) =

∑∞
n=0

an
zn

, and there exists someN such that an = 0 for all n > N .
Hence: f(z) =

∑N
n=0 anz

n, and f is a polynomial of degree at most N . In the case
that∞ is an essential singularity (not removable, nor a pole), we say by de�nition
that f is a transcendental entire function.

Remark 1.1.4. The term transcendental also generalizes to meromorphic func-
tions, but we will only be concerned with entire functions. For those interested
in the general de�nition, we give it here. Recall that a meromorphic function, is
one that is holomorphic everywhere except possibly at isolated singularities, all
of which are poles.

De�nition 1.1.5. Let f be a meromorphic function. Then, if z = ∞ is a regular
point or a pole, f is said to be rationally meromorphic or a rational mero-
morphic function. If z = ∞ is an essential singularity, then f is said to be a
transcendental meromorphic function.

Thus, the essential thing about transcendental functions, is that they have an
essential singularity at ∞. We will soon also give an interpretation of the term
transcendental as being non-algebraic. However, for our purposes, it su�ces to
think of transcendental entire functions as non-polynomial entire functions. For
holomorphic functions with essential singularities, we recall that there is a deep
result in single-variable complex analysis: the Great Picard theorem. For transcen-
dental entire functions, we get the following version of the Great Picard theorem:

Theorem 1.1.6. Let f be a transcendental entire function. Then f assumes all
complex values in�nitely often with the exception of at most one exceptional
value.

Example 1.1.7. A good example is the exponential function ez , which has an
essential singularity at∞. Its exceptional value is 0. For any other complex value
A, we have ez = A for any z ∈ S, where S := ln |A| + i (Arg(A) + 2πZ), and
where Arg(A) denotes the principal argument of A. We notice that S has in�nite
cardinality, so there are in�nitely many z for which ez = A.

1.2 The order of an entire function
Let f be an entire function and let r > 0. We will use the following notation:

8



CHAPTER 1. SOME THEORY OF ENTIRE FUNCTIONS

M(f, r) := sup
|z|=r
|f(z)| = max

|z|=r
|f(z)|. (1.2)

The function M(f, r) is called the maximum modulus of f(z) for |z| = r. We
�rst consider the simple case when f is non-transcendental. That is, when f is a
polynomial. We will use the following asymptotic notation:

f(z) ∼ g(z) as z → z0 ⇐⇒ lim
z→z0

f(z)

g(z)
= 1. (1.3)

Theorem 1.2.1. Let P (z) =
∑n

j=0 bjz
j be a polynomial of degree n. That is,

bn 6= 0. Then:

|P (z)| ∼ |bn| · |z|n as |z| → ∞. (1.4)

Proof. By the triangle inequality, we have:

|P (z)| ≤
n∑
j=0

|bj| · |z|j = |bn| · |z|n
(

1 +
|bn−1|
|bn| · |z|

+ · · ·+ |b0|
|bn| · |z|n

)
. (1.5)

Let ε > 0. Then for |z| su�ciently large,
n−1∑
j=0

|bj |
|bn|·|z|n−j ≤ ε. Thus, for |z| su�ciently

large, we have:

|P (z)| ≤ |bn| · |z|n(1 + ε). (1.6)

Similarly, using the reverse-triangle inequality, we get:

|P (z)| ≥ |bn| · |z|n
(

1− |bn−1|
|bn| · |z|

− · · · − |b0|
|bn| · |z|n

)
, (1.7)

and for su�ciently large |z|, we then have |P (z)| ≥ |bn| · |z|n(1−ε). We conclude
that for su�ciently large |z|, we have:

1− ε ≤ |P (z)|
|bn| · |z|n

≤ 1 + ε. (1.8)

Because this is true for any ε > 0, the assertion follows.

Corollary 1.2.2. Let P (z) =
∑n

j=0 bjz
j be a polynomial of degree n. That is,

bn 6= 0. Then:

M(P, r) ∼ |bn|rn as r →∞. (1.9)

Proof. Let |z| = r in Theorem 1.2.1. We can replace |P (z)| with M(P, r) in the
double inequality (1.8).

9
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We now discuss the maximum modulus of any transcendental entire function
relative that of any polynomial. We will show that the former grows considerably
faster than the latter as r →∞.

We will also use the following asymptotic notation:

f(z)� g(z) as z → z0 ⇐⇒ lim
z→z0

f(z)

g(z)
= 0. (1.10)

With this, we have the following result:
Theorem 1.2.3. Let f be a transcendental entire function and let P be any poly-
nomial. Then:

M(P, r)�M(f, r), as r →∞. (1.11)
Proof. Let f(z) =

∑∞
n=0 anz

n and let P (z) =
∑m

j=0 bjz
j , with say bm 6= 0. Let

ε > 0. Then it follows from Corollary 1.2.2 that for r > 0 su�ciently large, we
haveM(P, r) ≤ |bm|rm(1+ε). On the other hand, we know that an = f (n)(0)/n!.
By Cauchy’s integral formula, we have:

f (n)(0) =
n!

2πi

ˆ
|z|=r

f(z)

zn+1
dz. (1.12)

Hence:

|an| ≤
M(f, r)

rn
. (1.13)

Thus:
M(f, r) ≥ |an|rn. (1.14)

Or equivalently:
1

M(f, r)
≤ 1

|an|rn
. (1.15)

This is true for all n. By assumption, as f is transcendental, there are in�nitely
many n such that |an| 6= 0. We choose one such n with n > m. Then we get for r
su�ciently large:

M(P, r)

M(f, r)
≤ |bm|r

m(1 + ε)

|an|rn
. (1.16)

Because n > m, letting r →∞, we get the desired result.

It follows that for anym, no matter how large,M(f, r)�M(zm, r) as r →∞.
That is, the maximum modulus of a transcendental entire function grows much
faster than that of any monomial.

A transcendental entire function can also be interpreted as being a non-algebraic
entire function (Proposition 1.2.6). The de�nition of an algebraic function is as fol-
lows:
De�nition 1.2.4. A function f is said to be algebraic in some domainD1, if there

1A domain is an open and connected set.

10
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exist polynomials P0, . . . , Pn (of arbitrary degrees) with Pn 6≡ 0 and n ≥ 1, such
that:

P0(z) + P1(z)f(z) + P2(z)[f(z)]2 + · · ·+ Pn(z)[f(z)]n = 0 (1.17)

for all z ∈ D.

Remark 1.2.5. The condition n ≥ 1 is important, otherwise all functions are
algebraic. Indeed, we could have chosen any f and let P0(z) ≡ 0 . Note also that
if f(z) = P (z) is a polynomial, then f is algebraic. Indeed, for n = 1, we can let
P0(z) = −f(z) and P1(z) ≡ 1.

Proposition 1.2.6. Let f be a transcendental entire function. Then f is non-
algebraic.

Proof. Suppose for contradiction that f is algebraic. Then there are polynomials
P0, . . . , Pn with Pn 6≡ 0 and n ≥ 1, such that:

P0(z) + P1(z)f(z) + P2(z)[f(z)]2 + · · ·+ Pn(z)[f(z)]n = 0 (1.18)

for all z ∈ C. It follows by Theorem 1.2.3, that M(f, r)→∞ as r →∞. Let z(r)
be such that |z| = r and |f(z(r))| = M(f, r) with r > 0. Then there exists some
r0 > 0 such that for all r ≥ r0, we have f(z(r0)) 6= 0. We choose r ≥ r0, divide
(1.18) evaluated at z = z(r) by [f(z(r))]n, and let r → ∞. By Theorem 1.2.3, we
get:

lim
r→∞

Pn(z(r)) = 0. (1.19)

However, this is impossible by Theorem 1.2.1. This contradiction proves the as-
sertion.

We now discuss the notion of the order of an entire function, an important
concept in the theory of entire functions. The order of an entire function provides
a way of measuring its maximum modulus relative to that of the exponential func-
tion.

De�nition 1.2.7. Let f be an entire function. Then its order, denoted by ρ(f), is
said to be given by:

ρ(f) = lim sup
r→∞

log logM(f, r)

log(r)
. (1.20)

To motivate this de�nition, we consider as a standard reference, the transcen-
dental entire function f(z) = ez . It follows that M(f, r) = er. We would like to
compare it to the maximum modulus of the function g(z) = ez

k for some k > 1. It
is easy to see that M(g, r) = er

k . To compare the growth of the maximum moduli
of the two, it is natural to look at:

lim sup
r→∞

M(g, r)

M(f, r)
= lim sup

r→∞

er
k

er
. (1.21)

11
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However, this is equal to∞ and therefore does not provide a very good comparison
between the two maximum moduli. We would like to get a result involving k as
this is really what sets one of the functions apart from the other. In hope of getting
a better comparison, we instead �rst the take logarithm of each of the maximum
moduli. Thus, we consider:

lim sup
r→∞

log(M(g, r))

log(M(f, r))
= lim sup

r→∞

rk

r
. (1.22)

This is still∞. To accommodate for this, we take the logarithm once more before
taking the limit superior. Thus, we are �nally led to consider:

lim sup
r→∞

log log(M(g, r))

log log(M(f, r))
= lim sup

r→∞

log(rk)

log(r)
. (1.23)

Now, this is equal to k, and we have a better comparison of the growth of the max-
imum moduli of the two functions.

From our considerations, we also get the following useful interpretation of the
order of of an entire function: if ρ(f) <∞, the growth of the maximum modulus
of f is similar to that of the function z 7→ ez

ρ(f) .

We will use the value of ρ(sin(z)) later in an example dealing with �xed points
of a transcendental Hénon map (see Example 2.3.4) and therefore consider the
following example here:

Example 1.2.8. Let f(z) = sin(z). We want to show that ρ(f) = 1. Because we
have:

f(z) = sin(z) =
eiz − e−iz

2i
, (1.24)

we can intuitively understand this by using the interpretation that M(f, r) grows
similar to the maximum modulus of ezρ(f) . It is intuitively clear that the maximum
modulus of f grows similar to that of eiz . To do this rigorously, we determine
M(f, r). We recall the following Taylor series:

sin(z) = z − z3

3!
+
z5

5!
− z7

7!
− · · · (1.25)

sinh(z) = z +
z3

3!
+
z5

5!
+
z7

7!
+ · · · (1.26)

The triangle inequality gives, for |z| = r:

|f(z)| ≤ r +
r3

3!
+
r5

5!
+
r7

7!
+ · · · = sinh(r) =

er − e−r

2
. (1.27)

12
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It follows thatM(sin(z), r) ≤ er−e−r
2

. However, for z = −ir, we have |z| = r and:

sin(ir) =
er − e−r

2i
. (1.28)

Therefore:

| sin(ir)| = er − e−r

2
≤M(sin(z), r). (1.29)

We conclude that M(sin(z), r) = sinh(r) = er−e−r
2

. Thus:

ρ(sin(z)) = lim sup
r→∞

log log
(
er−e−r

2

)
log(r)

= lim sup
r→∞

log log
(
er
(

1−e−2r

2

))
log(r)

= lim sup
r→∞

log
(
r + log

(
1−e−2r

2

))
log(r)

= lim sup
r→∞

log
(
r
(

1 + 1
r

log
(

1−e−2r

2

)))
log(r)

= lim sup
r→∞

log(r) + log
(

1 + 1
r

log
(

1−e−2r

2

))
log(r)

= 1. (1.30)

In a similar manner, we can show that ρ(cos(z)) = 1.

1.3 Results on functions of �nite order
Our starting point is the following two simple observations regarding the zero set
of an entire function.

Proposition 1.3.1. Let f be an entire function. Then f is never-vanishing if and
only if there exists some entire function g such that:

f(z) = eg(z) (1.31)

for all z.

Proof. Assume f is never-vanishing. Because f is never-vanishing, we can de�ne
g(z) = log(f(z)) for any analytical branch of the logarithm. Conversely, if we
have f(z) = eg(z), then clearly f is never-vanishing.

We will use the following notation. Let f be any map and let Df denote its
domain of de�nition. We denote the zero set of f by Z(f). That is:

Z(f) = {z ∈ Df : f(z) = 0}. (1.32)

Corollary 1.3.2. Let f(z) be an entire function. Then Z(f) has �nite cardinality
if and only if there exist some non-zero polynomial P and some entire function g,
such that:

f(z) = P (z)eg(z) (1.33)

for all z.

13
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Proof. Suppose that Z(f) has cardinalityN and let z1, . . . , zn be the �nitely-many
zeros of f with respective multiplicities m1, . . . ,mn. That is,

∑n
i=1mi = N . Then

we can write:

f(z) =
n∏
i=1

(z − zi)mih(z), (1.34)

where h is a never-vanishing entire function. Hence, by Proposition 1.3.1, there is
some entire function g such that h(z) = eg(z). Finally, we note that

∏n
i=1(z−zi)mi

is a polynomial. We may denote it by P (z). It follows that f(z) = P (z)eg(z).
Conversely, if f(z) = P (z)eg(z), then Z(f) = Z(P ), which has �nite cardinality
by the fundamental theorem of algebra.

We note that Proposition 1.3.1 provides the case |Z(f)| =∞.

Corollary 1.3.3. Let f be an entire function. Then Z(f) has in�nite cardinality
if and only if there is no polynomial P and no entire function g such that we have
f(z) = P (z)eg(z) for all z.

We state the following three lemmas without proof. The proofs can be found
for instance in [2].

Lemma 1.3.4 ([2], Lemma 2.7.3). Let f be a transcendental entire function and let
P and Q be polynomials with P 6≡ 0. Then:

ρ(f(z)P (z) +Q(z)) = ρ(f(z)). (1.35)

This is intuitively easy to understand. We know from Theorem 1.2.3, that the
maximum modulus of f has a growth rate much greater than that of both P and
Q. Therefore, in the expression f(z)P (z) + Q(z), it will be f that is crucial, and
the growth of the maximum modulus of f(z)P (z) + Q(z) is determined by that
of f . Thus, f(z)P (z) +Q(z) and f(z) should have the same order.

Lemma 1.3.5 ([2], Lemma 2.7.4). Let P, g, and Q be polynomials with P 6≡ 0.
Then:

ρ(P (z)eg(z) +Q(z)) = deg(g(z)). (1.36)

This result is also intuitively easy to understand. We know that we have
ρ(P (z)eg(z) + Q(z)) = ρ(eg(z)). This is Lemma 1.3.4. Now, because g is a poly-
nomial, it has a leading term, say bnzn. Then we know from Theorem 1.2.1, that
|g(z)| ∼ |bn| · |z|n as |z| → ∞, so eg(z) can be expected to have a maximum
modulus which grows like that of ezn . The order of the latter is n = deg(g).

Lemma 1.3.6 ([2], Lemma 2.7.5). Let f(z) = eg(z) where g is an entire function.
If the order of f is �nite: ρ(f(z)) < ∞, then g is a polynomial. Consequently,
ρ(f) ∈ N.

14
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It is insightful to look at what happens when g is not a polynomial. For in-
stance, if g(z) = ez . Then f(z) = ee

z and it is easy to verify that ρ(f) = ∞.
Indeed, it is easy to see that M(f, r) = ee

r . Thus, log log(M(f, r)) = log(er) = r,
and we get:

lim sup
r→∞

log log(M(f, r))

log(r)
= lim sup

r→∞

r

log(r)
=∞. (1.37)

We now come to the two main results of this subsection which we will use
later in chapter 2.

Theorem 1.3.7. Let f be a transcendental entire function and suppose that f has
�nite non-integer-valued order. Let P be any non-zero polynomial, and let λ be
any complex number. Then the equation:

f(z) = λP (z), (1.38)

admits in�nitely many solutions.

Proof. Suppose for contradiction that the assertion is false. Then the equation
f(z)−λP (z) = 0 has only �nitely many solutions. By Corollary 1.3.2, there exist
a non-zero polynomial Q and an entire function g, such that

f(z)− λP (z) = Q(z)eg(z). (1.39)

That is:

f(z) = λP (z) +Q(z)eg(z). (1.40)

But then by Lemma 1.3.4, we have ρ(f) = ρ(eg(z)). Because ρ(f) <∞ by assump-
tion, it follows that ρ(eg) <∞. By Lemma 1.3.6, we must have then ρ(f) ∈ N. But
this contradicts that f has non-integer-valued order. This completes the proof.

The next result deals with the case that f has �nite and integer-valued order.
The conclusion is the same as that of Theorem 1.3.7 with at most one exceptional
value for λ.

Theorem 1.3.8. Let f be a transcendental entire function with �nite integer-
valued order and let P be any non-zero polynomial. Then, for at most one ex-
ceptional value of λ, the equation:

f(z) = λP (z), (1.41)

admits in�nitely many solutions.

Proof. Suppose for contradiction that this is false. Then there are at least two
exceptional values λ = a and λ = b with a 6= b for which the equation given by:
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f(z) − λP (z) = 0, has only �nitely many solutions. Thus there exist non-zero
polynomials Q1, Q2 and entire functions g1, g2 such that:

f(z)− aP (z) = Q1(z)eg1(z) (1.42)
f(z)− bP (z) = Q2(z)eg2(z). (1.43)

As in the proof of Theorem 1.3.7, we conclude that ρ(egi) ∈ N for i = 1, 2. So gi is
a polynomial of �nite degree ρ(f), for i = 1, 2. We subtract equation (1.43) from
equation (1.42) and get:

Q1(z)eg1(z) −Q2(z)eg2(z) = P (z)(b− a) := R(z), (1.44)

where R(z) is non-zero because: P is non-zero and a 6= b. We di�erentiate equa-
tion (1.44) and get:

(Q′1(z) +Q1(z)g′1(z))eg1(z) − eg2(z)(Q′2(z) +Q2(z)g′2(z)) = R′(z). (1.45)

The two equations (1.44) and (1.45) can be combined into the single equation:[
Q1(z) −Q2(z)

(Q′1(z) +Q1(z)g′1(z)) −(Q′2(z) +Q2(z)g′2(z))

] [
eg1(z)

eg2(z)

]
=

[
R(z)
R′(z)

]
. (1.46)

Let us de�ne:

A = A(z) =

[
c(z) d(z)
e(z) f(z)

]
:=

[
Q1(z) −Q2(z)

(Q′1(z) +Q1(z)g′1(z)) −(Q′2(z) +Q2(z)g′2(z))

]
(1.47)

x = x(z) =

[
x(z)
y(z)

]
:=

[
eg1(z)

eg2(z)

]
(1.48)

b = b(z) =

[
b1(z)
b2(z)

]
:=

[
R(z)
R′(z)

]
. (1.49)

Then equation (1.46) becomes:

Ax = b. (1.50)

We want to prove that det(A) 6≡ 0. Then, when det(A) 6= 0, we can solve for x.
By continuity, det(A) 6= 0 holds on some open subset. The uniqueness principle
then provides entire solutions. When det(A) 6= 0, we get:

x = A−1b. (1.51)

We have:

det(A) = c(z)f(z)− d(z)e(z)

= Q2(z)(Q′1(z) +Q1(z)g′1(z))−Q1(z)(Q′2(z) +Q2(z)g′2(z))

= Q2(z)Q′1(z)−Q1(z)Q′2(z)

+Q1(z)Q2(z)g′1(z)−Q1(z)Q2(z)g′2(z)

= Q1(z)Q2(z)(g′1(z)− g′2(z)) +Q2(z)Q′1(z)−Q1(z)Q′2(z). (1.52)
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Suppose for contradiction that det(A) ≡ 0. We divide equation (1.52) byQ1(z)Q2(z)
and then get for z such that Q1(z)Q2(z) 6= 0:

g′1(z)− g′2(z) +
Q′1(z)

Q1(z)
− Q′2(z)

Q2(z)
= 0. (1.53)

Integrating equation (1.53), gives:

g1(z)− g2(z) = ln
Q2(z)

Q1(z)
+ C, (1.54)

where C is some constant. Taking the exponential of both sides in equation (1.54),
yields:

eg1(z)

eg2(z)
=
Q2(z)

Q1(z)
eC , (1.55)

which can be rearranged to give:

Q1(z)

Q2(z)
eg1(z)−g2(z) = eC . (1.56)

However, dividing equation (1.42) by (1.43), we �nd when Q1(z)Q2(z) 6= 0:

f(z)− aP (z)

f(z)− bP (z)
=
Q1(z)

Q2(z)
eg1(z)−g2(z). (1.57)

Thus, we have:

f(z)− aP (z)

f(z)− bP (z)
= eC . (1.58)

That is, after rearranging:

f(z)
(
1− eC

)
= P (z)

[
a− beC

]
, (1.59)

for all z such that Q1(z)Q2(z) 6= 0. We have a 6= b and therefore by equation
(1.58), that eC 6= 1. But then from equation (1.59), we get:

f(z) = P (z)
a− beC

1− eC
. (1.60)

This now holds everywhere by the uniqueness principle. But this contradicts that
f is transcendental. Hence it follows that det(A) 6≡ 0, and we can solve for x. We
get:

x = A−1b =
1

det(A)

[
f(z) −d(z)
−e(z) c(z)

]
. (1.61)
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Substituting from equation (1.47) - (1.49), yields:

[
eg1(z)

eg2(z)

]
=

1

det(A)

[
−(Q′2(z) +Q2(z)g′2(z)) Q2(z)
−(Q′1(z) +Q1(z)g′1(z)) Q1(z)

] [
R(z)
R′(z)

]
=

1

det(A)

[
−R(z)(Q′2(z) +Q2(z)g′2(z)) +R′(z)Q2(z)
−R(z)(Q′1(z) +Q1(z)g′1(z)) +R′(z)Q1(z)

]
. (1.62)

But equation (1.62) is impossible because the right-hand side is a vector whose
components are rational functions, while the left-hand side is a vector whose com-
ponents are transcendental functions. This proves the assertion.

Let h(z) = g(z) = ez . Then ρ(h ◦ g) = ∞. This suggests that in the case
ρ(h ◦ g) <∞, there are restrictions on what kind of entire functions h and g can
be. In fact, we know from Lemma 1.3.6 that if ρ(eg(z)) <∞, then g is a polynomial.
Lemma 1.3.6 is a special case of the following more general result:

Theorem 1.3.9 ([2], Theorem 4.14.3). Let h and g be entire functions and suppose
that ρ(h ◦ g) <∞. Then:

(i) either g is a polynomial and ρ(h) <∞, or

(ii) g is not a polynomial, but ρ(g) <∞, in which case ρ(h) = 0.

Example 1.3.10. Let g and h be entire functions and suppose that ρ(h) > 0 and
that g is transcendental. Then ρ(h ◦ g) =∞: the possible cases for when we have
ρ(h◦g) <∞, are given by Theorem 1.3.9. Because g is transcendental, only (ii) can
occur, but in this case, ρ(h) = 0 which contradicts the assumption that ρ(h) > 0.
In particular, if ρ(f) > 0 where f is transcendental, we have ρ(fk) = ∞ for all
k ≥ 2.

1.4 The Wiman-Valiron method and the theorem
of Rosenbloom

The following results from the theory of entire functions, will play a major role in
the later chapters. We state them here without proof, but provide references. The
following is Rosenbloom’s theorem on the �xed points of the composite of two
entire functions:

Theorem 1.4.1. Let f and g be entire functions, set h(z) = f(g(z)), and suppose
that Fix(h) has �nite cardinality. That is, suppose that h only has a �nite number
of �xed points. Then:

(i) either f is a polynomial, or

(ii) g is constant or the identity function z 7→ z.
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The proof of Rosenbloom uses techniques from the Nevanlinna theory. The
original reference for Theorem 1.4.1 is [11], but the statement can also be found
in for instance, the introduction of [12].

We will be interested in transcendental entire functions. An immediate conse-
quence of Theorem 1.4.1 is then the following corollary:

Corollary 1.4.2. Let f and g be two transcendental entire functions, and set
h(z) = f(g(z)). Then Fix(h) has in�nite cardinality.

Example 1.4.3. Let f be a transcendental entire function. Then the equation

z = f(f(z) + z), (1.63)

has in�nite many solutions. Indeed, let g(z) = f(z) + z. Then z is a solution of
equation (1.63) if and only if z ∈ Fix(f ◦ g). Because f is a transcendental entire
function, so is g, and the assertion follows from Corollary 1.4.2. As we shall see
in chapter 6, this example actually shows that symplectic transcendental Hénon
maps F1(z, w) = (f(z) − w, z) where f is odd, has in�nitely many genuine 5-
periodic points.

Finally, we consider the Wiman-Valiron theorem or method. Let g be a a tran-
scendental entire function. The Wiman-Valiron theorem or method, lets us ap-
proximate g and the derivatives of g, near points where |g| assumes the value of
the maximum modulus of g, by a polynomial of generally high degree. Let us write
for g:

g(z) =
∞∑
n=0

anz
n. (1.64)

Because g is entire, the sequence |an|rn tends to 0 as n→∞ for all r > 0. Denote
the maximum term of this sequence by µ(g, r), and let N = N(r) be the largest
index such that |aN |rN = µ(g, r). The function N increases with r, and we call
it the central index for g. With this terminology, the following version of the
Wiman-Valiron method can be found in [5]:

Theorem 1.4.4. Let g(z) be a transcendental entire function and let r > 0. Let
N = N(r) denote the central index for g and let M = M(g, r) denote the max-
imum modulus of g(z) for |z| = r. Let α > 1/2. Let ζ be such that |ζ| = r and
|g(ζ)| = M . Then for all z such that |z − ζ| < r

Nα , the functions g(z) and g′(z)
can be written in the forms:

g(z) =

(
z

ζ

)N
g(ζ)(1 + δ0) (1.65)

g′(z) = N
zN−1

ζ
g(ζ)(1 + δ1), (1.66)
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where δ0 and δ1 tend to 0 uniformly with respect to z as r → ∞ for values of r
chosen outside some exceptional set E with �nite logarithmic measure:

lm(E) =

ˆ
E

1

t
dt <∞. (1.67)

We will use Theorem 1.4.4 when we prove the existence of in�nitely many
genuine 4-periodic points for transcendental Hénon maps of the form given by
F (z, w) = (eg(z) + w, z) where g is a transcendental entire function, in chapter
5. References for Theorem 1.4.4 are for instance [5] and [6]. The latter: [6], is
considerably more detailed.

20



Chapter 2

Existence of Fixed Points

2.1 De�nition of periodic points
Let F be a map. We will use the following notation for the iterates of F :

F 1 ≡ F, F 2 := F ◦ F, and Fm := F ◦ Fm−1 for m ≥ 3. (2.1)

The map Fm is called the m-th iterate of F .

De�nition 2.1.1. Let F be a map. A point z0 is said to be a k-periodic point for
or of F , if F k(z0) = z0. A 1-periodic point of F , is called a �xed point of F .

We will denote the set of k-periodic points of F by Fix(F k). When k = 1, we
simply write Fix(F ).

De�nition 2.1.2. Let F be a map and let k > 1. Let z0 ∈ Fix(F k). Then z0 is said
to be a genuine k-periodic point for or of F , if there are no m < k for which
Fm(z0) = z0. That is, if z0 6∈ Fix(Fm) for all m < k.

We are interested in studying periodic points of transcendental Hénon maps.
Hénon maps are holomorphic maps from C2 to C2 of the form:

F (z, w) = (f(z)− δw, z), (2.2)

where δ is a non-zero complex number, and f an entire function. Extensive re-
search has been done on polynomial Hénon maps, the case when f is a poly-
nomial. On the other hand, very little is known about transcendental Hénon
maps, the case when f is a transcendental entire function. To our understand-
ing, the only reference seems to be [8]. It is not hard to show that a Hénon map
F (z, w) = (f(z)−δw, z) is an automorphism with det(F ′) = δ, where F ′ denotes
the complex Jacobian of F . An explicit expression for the inverse of F is given by:

F−1(ζ, η) =

(
η,
f(η)− ζ

δ

)
, (2.3)
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as can easily be veri�ed by the reader. We will soon see that �xed points of Hénon
maps lie on the diagonal in C2. We will reserve the symbol ∆ to denote the diag-
onal in C2. That is:

∆ :=
{

(z, w) ∈ C2 : z = w
}
. (2.4)

2.2 Elementary observations for �xed points
We give some results on Fix(F ), where F is any Hénon map, not necessarily tran-
scendental. Our �rst observation for �xed points of F , is that they lie on the
diagonal.

Proposition 2.2.1. Let F (z, w) = (f(z)− δw, z) be a Hénon map. Then:

Fix(F ) ⊆ ∆. (2.5)

Proof. Let (z, w) ∈ Fix(F ). Then F (z, w) = (z, w). That is:

(f(z)− δw, z) = (z, w). (2.6)

The second component of equation (2.6) gives z = w. Hence (z, w) ∈ ∆.

Proposition 2.2.1 gives a necessary condition for �xed points of F . We now
give a su�cient and necessary condition. Recall that we denote by Z(f), the zero
set of f . That is:

Z(f) = {z ∈ Df : f(z) = 0} , (1.32)

where Df denotes the domain of de�nition of f .

Proposition 2.2.2. Let F (z, w) = (f(z) − δw, z) be a Hénon map and de�ne
gδ(z) = f(z)− (1 + δ)z. Then:

Fix(F ) = (Z(gδ)× Z(gδ)) ∩∆. (2.7)

Proof. We have (z, w) ∈ Fix(F ) if and only if F (z, w) = (f(z)− δw, z) = (z, w).
Because Fix(F ) ⊆ ∆, we can set w = z. Then the equation F (z, w) = (z, w),
becomes: (f(z)−δz) = (z, z). That is: f(z) = (1+δ)z. That is: f(z)−(1+δ)z = 0.
That is: z ∈ Z(gδ). This completes the proof.

We will feel free to use expressions such as "Hénon maps with δ = −1, or more
generally, "Hénon maps with δ = δ̃0", for any �xed δ̃0 6= 0. Then it shall always be
understood, unless otherwise speci�ed, that the δ we refer to, is the one in given
in equation (2.2). For Hénon maps with δ = −1, Z(gδ) immediately reduces to
Z(f):
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Corollary 2.2.3. Let F (z, w) = (f(z) + w, z) be a Hénon map with δ = −1.
Then:

Fix(F ) = (Z(f)× Z(f)) ∩∆. (2.8)

Proof. Follows from Proposition 2.2.2 and g−1 = f .

Corollary 2.2.3 makes it easy to construct examples of Hénon maps with non-
empty set of �xed points. In fact, it is not hard to even provide examples where
Fix(F ) has in�nite cardinality.

Example 2.2.4. Let F−1(z, w) = (sin(z) + w, z). It follows from Corollary 2.2.3
that:

Fix(F−1) =
{

(z, z) ∈ C2 : sin(z) = 0
}
. (2.9)

Because sin(z) = 0 has in�nitely many solutions: z = πZ, it follows that Fix(F )
has in�nite cardinality. We note that F is a transcendental Hénon map, the kind
of Hénon map we are interested in studying.

We can also provide examples where Fix(F ) = ∅.

Example 2.2.5. Let F (z, w) = (eg(z) +w, z) where g is any entire function. Then
Z(eg(z)) = ∅ and thus Fix(F ) = ∅.

We know by now that when determining whether (z, z) ∈ Fix(F ), the decisive
equation is f(z) = (1 + δ)z. From this, it is easy to see that Fix(F ) 6= ∅ whenever
f(0) = 0. Thus, there are in�nitely many Hénon maps F for which the set of �xed
points of F is non-empty.

Proposition 2.2.6. Let F (z, w) = (f(z) − δw, z) be a Hénon map. Then there
exists a Hénon map G(z, w) = (g(z)− δw, z) such that g(z) and f(z) di�er by a
constant and Fix(G) 6= ∅.

Proof. If Fix(F ) 6= ∅, we can take g(z) = f(z) and so the constant they di�er by
is 0. Otherwise, we can take g(z) = f(z) − f(0). Then g(0) = 0 and it follows
that (0, 0) ∈ Fix(G).

Corollary 2.2.7. Let F (z, w) = (f(z) − δw, z) be a Hénon map where f is odd.
Then Fix(F ) 6= ∅.

Proof. Because f is odd, we have by de�nition that f(−z) = −f(z) for all z and
hence −f(0) = f(0). Thus f(0) = 0.

The class of transcendental Hénon maps F1(z, w) = (f(z)− w, z) where f is
odd, will be important when we later investigate the existence of k-periodic points
of so-called symplectic transcendental Hénon maps (see the third paragraph in the
introduction in chapter 5).
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2.3 Fixed points when f has �nite order
We can use Theorem 1.3.7 and Theorem 1.3.8 to provide interesting results for �xed
points of transcendental Hénon maps F (z, w) = (f(z)− δw, z) when ρ(f) <∞.
We recall that ρ(f) denotes the order of f .

Theorem 2.3.1. Let F (z, w) = (f(z) − δw, z) be a transcendental Hénon map,
and suppose that∞ > ρ(f) 6∈ N. That is, suppose that f has �nite non-integer-
valued order. Then Fix(F ) has in�nite cardinality.

Proof. We have (z, z) ∈ Fix(F ) if and only if f(z) − (1 + δ)z = 0. That is, if
and only if f(z) = (1 + δ)z. Under the given assumptions, by Theorem 1.3.7, this
equation has in�nitely many solutions. Indeed, using the notation in Theorem
1.3.7, we can let P (z) = z and λ = λδ = 1 + δ.

This deals with the case when ρ(f) is a �nite non-integer number. The com-
mon transcendental entire functions like ez, sin(z), and cos(z) however, have �nite
integer-valued order. Naturally, we would like a result for these as well. We can
use Theorem 1.3.8 for this:

Theorem 2.3.2. Let {Fδ}δ∈C\{0} be a family of transcendental Hénon maps where
a general member is given by Fδ(z, w) = (f(z)− δw, z), and suppose that ρ(f) ∈
N. That is, suppose that f has �nite and integer-valued order. Then all members
of this family, with the exception of at most one, has the property that their set of
�xed points has in�nite cardinality.

Proof. The proof is completely analogous to the proof of Theorem 2.3.1, except
that we use Theorem 1.3.8 instead of Theorem 1.3.7. With the notation used there,
we let λ = λδ = 1 + δ and P (z) = z.

Example 2.3.3. Let Fδ(z, w) = (ez − δw, z). Then we know that Fix(F−1) = ∅.
Because ρ(ez) = 1, it follows then from Theorem 2.3.2, that δ = −1 is the only
exceptional value of δ for which Fix(Fδ) has �nite cardinality. Thus we conclude
that for all δ 6= −1, we have that Fix(Fδ) has in�nite cardinality.

The next example shows how Theorem 2.3.1 may be useful also in cases where
f has �nite and integer-valued order.

Example 2.3.4. Let Fδ(z, w) = (sin(z)−δw, z). Because ρ(sin(z)) = 1, Theorem
2.3.2 tells us that there is at most one exceptional value of δ for which Fix(Fδ) is
�nite. We show how Theorem 2.3.1 can be used here to show that in fact there are
no exceptional values of δ. That is, Fix(Fδ) has in�nite cardinality for all possible
values of δ. We want to consider the cardinality of the solution set of the equation:

sin(z) = (1 + δ)z. (2.10)

Using the Taylor series for sin(z), this is the equation:
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z − z3

3!
+
z5

5!
− z7

7!
+ · · · = (1 + δ)z. (2.11)

If we ignore the trivial solution z = 0, we can divide by z 6= 0 and get:

1− z2

3!
+
z4

5!
− z6

7!
+ · · · = (1 + δ). (2.12)

This is then the equation sin(z)
z

= (1 + δ), and we notice that sin(z)
z

is an entire
function. We now introduce the variable ζ by z =

√
ζ . This gives the equation

sin(
√
ζ)√
ζ

= (1 + δ), and equation (2.11) becomes:

1− ζ

3!
+
ζ2

5!
− ζ3

7!
+ · · · = (1 + δ). (2.13)

The left-hand side of equation (2.13) shows that sin(
√
ζ)√
ζ

is an entire function in the

variable ζ . Now, ρ
(
ζ 7→ sin(

√
ζ)√
ζ

)
= 1

2
and so Theorem 2.3.1 applies to show that

there are in�nitely many solutions of ζ to the equation sin(
√
ζ)√
ζ

= (1 + δ) with no
exceptional value of δ. Because z =

√
ζ , this provides in�nitely many solutions of

sin(z)
z

= (1 + δ) with no exceptional value for δ. Hence it follows that Fix(Fδ) has
in�nite cardinality with no exceptional value for δ.

2.4 A complete characterization
We now give a complete characterization for the existence of �xed points of arbi-
trary Hénon maps. The results we give, provide a way of constructing a Hénon
map whose �xed points are exactly any predetermined �nite set of points on the
diagonal ∆ in C2.

We �rst recall that for any entire function f , Z(f) = ∅ if and only if there
exists some entire function g(z) such that f(z) = eg(z). This gives:

Theorem 2.4.1. Let F (z, w) = (f(z)− δw, z) be a Hénon map. Then Fix(F ) = ∅
if and only if there exists some entire function g(z) such that:

f(z) = (1 + δ)z + eg(z). (2.14)

Proof. The decisive equation for determining whether (z, w) ∈ Fix(F ), is given
by: f(z) − (1 + δ)z = 0. Suppose �rst that Fix(F ) = ∅. Then f(z) − (1 + δ)z is
never-vanishing. Thus there exists some entire function g(z) such that we have
f(z)− (1 + δ) = eg(z). That is: f(z) = (1 + δ)z + eg(z).

Conversely, if we have that f(z) = (1 + δ)z + eg(z) for some entire function
g(z), then f(z) − (1 + δ)z = eg(z) whose zero set is empty. This proves the
assertion.
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More generally, we have that Z(f) is �nite if and only if f(z) = P (z)eg(z) for
some non-zero polynomial P (z) and entire function g(z).

Theorem 2.4.2. Let F (z, w) = (f(z) − δw, z) be a Hénon map. Then Fix(F )
has �nite cardinality if and only if there exist some non-zero polynomial P (z) and
some entire function g(z) such that f(z) = (1 + δ)z + P (z)eg(z).

Proof. Suppose �rst that f(z) = (1 + δ)z + P (z)eg(z). Then:

Z(f(z)− (1 + δ)z) = Z(P (z)eg(z)) = Z(P (z)). (2.15)

By the fundamental theorem of algebra |Z(P (z))| ≤ deg(P (z)) which is �nite.
Because Fix(F ) = {(z, z) ∈ C2 : z ∈ Z(f(z)− (1 + δ)z)}, it follows that Fix(F )
has �nite cardinality.

Conversely, suppose that Fix(F ) has �nite cardinality. ThenZ(f(z)−(1+δ)z)
has �nite cardinality. Thus, there exist a polynomial P (z) and an entire function
g(z) such that f(z) − (1 + δ)z = P (z)eg(z). That is, after rearranging, such that
f(z) = (1 + δ)z + P (z)eg(z). This completes the proof.

The proof of Theorem 2.4.2 makes it very easy to construct Hénon maps whose
set of �xed points is exactly any predetermined �nite set of points on ∆. Indeed,
we notice simply that:

Fix(F ) = (Z(P (z))× Z(P (z))) ∩∆. (2.16)

Theorem 2.4.3. Let S = {(z1, z1), (z2, z2), . . . , (zm, zm)} ⊆ C2 be any arbitrary
�nite set of points on ∆. Then there exist in�nitely many Hénon maps F such
that Fix(F ) is precisely S. In fact, one such is given by F (z, w) = (f(z)− δw, z),
where:

f(z) = (1 + δ)z + eg(z)
m∏
j=1

λj(z − zj)mj , (2.17)

where λj ∈ C\{0},mj ∈ N, and where g(z) is any arbitrary entire function.

Proof. LetPm(z) =
∏m

j=1 λj(z−zj)mj . ThenZ(Pm) = S and the assertion follows
immediately from equation (2.16).

Notice that the given results provide a complete description of the existence of
in�nitely many �xed points for Hénon maps. Indeed, let F (z, w) = (f(z)−δw, z)
be a Hénon map. Then it follows from what we have shown, that Fix(F ) has
in�nite cardinality if and only if there exist no non-zero polynomial P (z) and no
entire function g(z) such that f(z) = (1 + δ)z + P (z)eg(z). In particular, F must
be a transcendental Hénon map or a linear monomial, in which case its set of �xed
points is all of C:
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Proposition 2.4.4. Let F (z, w) = (f(z) − δw, z) be a Hénon map and suppose
that Fix(F ) has in�nite cardinality. Then F is a transcendental Hénon map or f
is a linear polynomial in which case Fix(F ) = C.

Proof. Fix(F ) has in�nite cardinality if and only if there are no non-zero polyno-
mial P and entire function g such that f(z) = (1 + δ)z + P (z)eg(z). If F is not
transcendental, f is a polynomial. Say, Q. Then f is of this form with g(z) ≡ 0
and P (z) = Q(z) − (1 + δ)z in the case P (z) 6≡ 0. Hence, in the case P (z) 6≡ 0,
Fix(F ) cannot have in�nite cardinality. It remains the case that P (z) ≡ 0 in which
case Q(z) ≡ (1 + δ)z. Then f(z) = Q(z) = (1 + δ)z is a linear polynomial and
Fix(F ) = Z(P (z)) = Z(0) = C as required.

The non-existence of P and g however, is di�cult to use in practice. Therefore
we now provide, using the theorem of Rosenbloom (Theorem 1.4.1), a class of
transcendental Hénon maps whose set of �xed points is in�nite.

Theorem 2.4.5. There exist in�nitely many transcendental Hénon maps which
admit in�nitely many �xed points. In fact, let g(z) and h(z) be any two transcen-
dental entire functions. Then, if we let:

Fδ(z, w) = (f(z)− δw, z), (2.18)

where f(z) = h(g(z)) and δ 6= −1, we have that Fix(Fδ) has in�nite cardinality.

Proof. The decisive equation for determining whether (z, z) ∈ Fix(F ), is given
by: f(z) = (1 + δ)z. Because δ 6= −1, we can divide by (1 + δ) and get: f(z)

1+δ
= z.

As f(z) = h(g(z)), this gives:

h(g(z))

1 + δ
= z. (2.19)

Let k(z) = h(z)
1+δ

. Then k is a transcendental entire function and (z, z) ∈ Fix(F ) if
and only if:

z ∈ Fix(k(g(z))). (2.20)

By Rosenbloom’s theorem 1.4.1, Fix(k(g(z))) has in�nite cardinality. This com-
pletes the proof.

Finally, we have the following result which says that Fix(F ) cannot be bounded
for most Hénon maps:

Proposition 2.4.6. Let F (z, w) = (f(z)− δw, z) be a Hénon map where f(z) is
not equal to the monomial (1 + δ)z, and suppose that Fix(F ) has in�nite cardinal-
ity. Then there must exist a sequence {(zn, zn)}n ⊆ Fix(F ) such that |zn| → ∞
as n→∞.
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Proof. Suppose not. Then every sequence of �xed points {(zn, zn)}n ⊆ Fix(F ) is
such that |zn| are bounded for all n. Hence there exists some radius R such that
all zn are contained in the open disc DR := {z ∈ C : |z| < R}. Now, let us de�ne
g(z) = f(z) − (1 + δ)z. Then g is not identically equal to 0 by the assumption
on the form of f . Now, each zn satis�es g(zn) = 0. Hence, it follows that g has
in�nitely many zeros inside a �nite disc. This however, is impossible for then
g would have a zero which is a point of accumulation, contradicting that g has
isolated zeros. This contradiction proves the assertion.
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2-Periodic Points

3.1 Genuine 2-periodic points
Let F be a map and let (z, w) ∈ Fix(F k). The �rst value of k for which it becomes
interesting to ask whether (z, w) is a genuine k-periodic point, is k = 2. It is also
one of the simplest case. Indeed, we note that if (z, w) ∈ Fix(F 2) fails to be a
genuine, then the only possibility is that (z, w) ∈ Fix(F ). This simple observation
combined with our study of �xed points in the previous chapter, provides us with
the following result for Hénon maps:

Proposition 3.1.1. Let F (z, w) = (f(z) − δw, z) be a Hénon map. Then any
2-periodic point of F o� the diagonal ∆, is genuine.

Proof. This follows because all �xed points of F lie on the diagonal ∆ by Propo-
sition 2.2.1.

Actually more is true. A priori it is possible that there exist genuine 2-periodic
points which do lie on ∆. We show now that this is in fact impossible. All genuine
2-periodic points of Hénon maps must lie o� the diagonal.

Proposition 3.1.2. Let F (z, w) = (f(z) − δw, z) be a Hénon map and suppose
that (z, w) ∈ Fix(F 2). Then if (z, w) ∈ ∆ as well, we have that (z, w) ∈ Fix(F ).
That is:

Fix(F 2) ∩∆ = Fix(F ). (3.1)

Proof. Because (z, w) ∈ Fix(F 2), we have that F 2(z, w) = (z, w). Let us de-
�ne (zk, wk) = F k(z, w). Thus, the condition that (z, w) ∈ Fix(F 2) is given by
(z2, w2) = (z, w). We �nd:

(z1, w1) = (f(z)− δw, z) (3.2)
(z2, w2) = (f(z1)− δw1, z1)

= (f [f(z)− δw]− δz, f(z)− δw). (3.3)

For (z, w) ∈ ∆, we have z = w and equation (3.3) together with the condition
(z2, w2) = (z, w), becomes:

(z, z) = (f [f(z)− δz]− δz, f(z)− δz). (3.4)
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The second component of equation (3.4) gives:

z = f(z)− δz. (3.5)

That is:

f(z) = (1 + δ)z. (3.6)

Thus by Proposition 2.2.2, (z, z) ∈ Fix(F ). Notice that the �rst component of
equation (3.4) follows from f(z) = (1 + δ)z. This proves the assertion.

Up till now, we have assumed from the outset that (z, w) ∈ Fix(F 2). However,
it is easy to give a necessary and su�cient condition for when any (z, w) ∈ C2

actually is a 2-periodic point for F :

Theorem 3.1.3. Let F (z, w) = (f(z) − δw, z) be a Hénon map. Then we have
that (z, w) ∈ Fix(F 2) if and only if:

f(z) = (1 + δ)w (3.7)
f(w) = (1 + δ)z. (3.8)

Proof. We look at the proof of Proposition 3.1.2. Then equation (3.3) and the fact
that (z, w) ∈ Fix(F 2) if and only if (z, w) = (z2, w2), give:

(z, w) ∈ Fix(F 2) ⇐⇒ (z, w) = (f [f(z)− δw]− δz, f(z)− δw). (3.9)

The �rst and second component of equation (3.9) gives respectively the equations
(3.10) and (3.11):

f [f(z)− δw]− δz = z (3.10)
f(z)− δw = w, (3.11)

which can be rewritten as the desired set of equations, noticing that f(z)− δw in
equation (3.10), can be replaced by w due to equation (3.11). This completes the
proof.

In the case δ = −1, the equations (3.7) and (3.8) become particularly simple.

Corollary 3.1.4. Let F (z, w) = (f(z) + w, z) be a Hénon map with δ = −1.
Then:

Fix(F 2) = Z(f)× Z(f). (3.12)

In particular, if |Z(f)| > 1, then F admits genuine 2-periodic points.

Proof. The equations (3.7) and (3.8) reduce to:

f(z) = f(w) = 0, (3.13)

from which the assertion follows.
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We can also use Theorem 2.4.2 to relate the cardinality of Fix(F 2) to the form
of f in the case that δ = −1:

Corollary 3.1.5. Let F (z, w) = (f(z)+w, z) be a Hénon map with δ = −1. Then
Fix(F 2) has �nite cardinality if and only if there exist some non-zero polynomial
P (z) and some entire function g(z) such that:

f(z) = P (z)eg(z) (3.14)

for all z. Furthermore:

(i) Fix(F 2) = ∅ if and only if P (z) is a constant.

(ii) Fix(F 2) contains genuine 2-periodic points if and only if |Z(P )| > 1.

Proof. Follows immediately from Theorem 2.4.2 and Corollary 3.1.4.

Example 3.1.6. Let F−1(z, w) = (sin(z) + w, z). Because |Z(sin(z))| = ∞,
it follows from Corollary 3.1.4 that Fix(F 2) contains in�nitely many genuine 2-
periodic points. In fact, combining Corollary 3.1.4 and Proposition 3.1.2, we see
that for all Hénon maps H(z, w) = (h(z) + w, z) with δ = −1, we have that
the set of genuine 2-periodic points for H is precisely the set (Z(h) × Z(h))\∆,
and thus all the genuine 2-periodic points of F−1 are given by π(n,m), where
(n,m) ∈ Z× Z and n 6= m.

3.2 Characterizing dynamics of 2-periodic points
We start with a simple example. We have previously seen that for δ = −1, the
equations (3.7) and (3.8) become particularly simple.

Example 3.2.1. Consider any Hénon map F (z, w) = (f(z) +w, z) with δ = −1.
Let (z, w) ∈ Fix(F 2). Then we know that (z, w) ∈ Z(f)×Z(f). We can consider
iterates of (z, w) under F . We set (zk, wk) = F k(z, w). As f(z) = f(w) = 0, we
get:

(z1, w1) = F (z, w) = (f(z) + w, z) = (w, z) (3.15)
(z2, w2) = F (w, z) = (f(w) + z, w) = (z, w), (3.16)

and because (z, w) is 2-periodic, this pattern repeats. Hence, the dynamics of any
2-periodic point of F is given simply by swapping the �rst and second component
of the point per iteration, and the dynamics takes the form:

(z, w) 7→ (w, z) 7→ (z, w) 7→ (w, z) 7→ (z, w) 7→ · · · (3.17)

This simple behaviour for the dynamics of 2-periodic points for F , is easy to
imagine when δ = −1 because all terms f(z), f(w) vanish. Motivated by this
seemingly simple behaviour in the case δ = −1, it is natural to ask when such
behaviour may occur for general values of δ. As it turns out, the behaviour is
completely independent of values of δ and only depends on whether we consider
2-periodic points. In fact, as we will show, this behaviour completely characterizes
any 2-periodic point for F :
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Theorem 3.2.2. Let F (z, w) = (f(z) − δw, z) be a Hénon map. Then we have
that (z, w) ∈ Fix(F 2) if and only if the dynamics of (z, w) under F is given by:

(z, w) 7→ (w, z) 7→ (z, w) 7→ (z, w) 7→ · · · (3.18)

That is, if and only if the dynamics of (z, w) under iterates of F , is given by swap-
ping the �rst and second components of (z, w) per iteration.

Proof. Suppose �rst that we have (z, w) ∈ Fix(F 2). It then su�ces to show that
F (z, w) = (w, z). That is, that the �rst iterate swaps the components. The rest
of the required behaviour of the dynamics follows then from the periodicity of
(z, w). It follows from Theorem 3.1.3 that f(z) = (1 + δ)w and f(w) = (1 + δ)z.
That is, it follows that f(z)− δw = w and f(w)− δz = z. Thus:

F (z, w) = (f(z)− δw, z) = (w, z), (3.19)

as required.

Conversely, suppose that F (z, w) = (w, z) and F (w, z) = (z, w). We show
that then (z, w) ∈ Fix(F 2). By assumption:

(w, z) = (f(z)− δw, z). (3.20)

Only the �rst component of equation (3.20) matters. This gives: w = f(z) − δw,
or equivalently: f(z) = (1 + δ)w. This is equation (3.7). Similarly, from the
assumption that F (w, z) = (z, w), we get: f(w) = (1 + δ)z, which is equation
(3.8). Hence (z, w) ∈ Fix(F 2) by Theorem 3.1.2. Alternatively, we may simply
note that F (z, w) = (w, z) and F (w, z) = (z, w), imply F 2(z, w) = (z, w) from
which it immediately follows that (z, w) ∈ Fix(F 2).

3.3 Existence results
We now turn to the question of existence of 2-periodic points. Because any �xed
point is trivially a 2-periodic point, and because we already have dealt with the
existence question in great detail for �xed points, we better restrict to genuine
2-periodic points. Combining Proposition 3.1.2 and Theorem 3.1.3, we see that
the existence of genuine 2-periodic points reduces to solutions of equation (3.7)
and (3.8) with (z, w) 6∈ ∆. In order to simplify the equations, we try and look for
solutions where w is some function of z. A simple example would be w = z, but
then (z, w) ∈ ∆ which we wanted to avoid. Not very far from this approach, is to
look for solutions of the form w = −z. Then (3.7) and (3.8) become:

f(z) = −(1 + δ)z (3.21)
f(−z) = (1 + δ)z. (3.22)

If we add the two equations (3.21) and (3.22), we get the necessary condition:
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f(z) + f(−z) = 0, (3.23)

or: f(z) = −f(−z). A certain class of functions for which this is true for all z
comes to mind. Because we want genuine 2-periodic points, we need only make
sure that not all solutions of the equations (3.21) and (3.22), satisfy z = −z. That
is: z = 0.

Proposition 3.3.1. Let F (z, w) = (f(z) − δw, z) be a Hénon map, and suppose
that f is odd. Let g(z) = f(z) + (1 + δ)z, and suppose that |Z(g)| > 1. Then F
admits genuine 2-periodic points. In fact:

Z(g)× (−Z(g)) ⊆ Fix(F 2). (3.24)

Proof. From the discussion above, we have that (z,−z) ∈ Fix(F 2) if and only if
z is a solution to both the equations (3.21) and (3.22). Because f is odd, the two
equations are the same and we really only have one equation:

f(z) = −(1 + δ)z, (3.25)

or equivalently: f(z) + (1 + δ)z = g(z) = 0. This proves (3.24). Now, because
|Z(g)| > 1 by assumption, it follows that there exists some z 6= 0 such that
g(z) = 0. Then z 6= −z and therefore (z,−z) 6∈ ∆. Thus, (z,−z) is a genuine
2-periodic point for F . This completes the proof.

Example 3.3.2. Let P (z) be an odd polynomial and let g(z) be a non-constant
even entire function. Fix δ 6= 0 and set f(z) = P (z)eg(z) − (1 + δ)z. Then f is an
odd transcendental entire function. Because P is odd, P (0) = 0. From Proposition
3.3.1, it follows that the transcendental Hénon map F (z, w) = (f(z) − δw, z),
admits at least |Z(P )| − 1 genuine 2-periodic points.

We can do even better. Because of the simple form of equations (3.7) and (3.8),
we can, in the case δ 6= −1, solve forw in equation (3.7), and substitute in equation
(3.8) to get an equation for z. We can then use the theorem of Rosenbloom (The-
orem 1.4.1) and Theorem 2.4.2, to construct examples of transcendental Hénon
maps with in�nitely many genuine 2-periodic points. This approach frees us from
the condition that f be odd. If we allow for f to be odd, we can apply the theo-
rem of Rosenbloom (Theorem 1.4.1) directly combined with Proposition 3.3.1, to
immediately provide a class of transcendental Hénon maps with in�nitely many
genuine 2-periodic points:

Proposition 3.3.3. Let g and h be any two odd transcendental entire functions
and let 0 6= δ 6= −1. Let f(z) = h(g(z)) and let F (z, w) = (f(z) − δw, z). Then
F is a transcendental Hénon map with in�nitely many genuine 2-periodic points.
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Proof. Because g and h are transcendental entire functions, so is f = h◦ g. There-
fore F is a transcendental Hénon map. Now, as g and h are odd, we �nd that:

f(−z) = h(g(−z)) = h(−g(z)) = −h(g(z)). (3.26)

So f is an odd transcendental entire function, and Proposition 3.3.1 applies. That
is, if z is any solution to:

f(z) = −(1 + δ)z, (3.25)

then (z,−z) ∈ Fix(F 2). Now, let f̃(z) = −h(z)
1+δ

. Then f̃ is a transcendental entire
function. Equation (3.25) becomes:

f̃(g(z)) = z. (3.27)

Then z is a solution to equation (3.27) if and only if z ∈ Fix(f̃(g(z)), which has
in�nite cardinality by the theorem of Rosenbloom (Theorem 1.4.1). In particular,
equation (3.25) has in�nitely many solutions z 6= 0. Then all of these are genuine
2-periodic points for F . This completes the proof.

We now proceed to solve for w in equation (3.7) and substitute this in (3.8).
Using the theorem of Rosenbloom (Theorem 1.4.1), we can then easily show that
Fix(F 2) has in�nite cardinality for any transcendental Hénon map F (z, w) =
(f(z)− δw, z) with δ 6= −1. The following result is given in [8]:

Theorem 3.3.4 (Proposition 3.3, [8]). Let F (z, w) = (f(z)−δw, z) be a transcen-
dental Hénon map where δ 6= −1. Then Fix(F 2) has in�nite cardinality.

Proof. As δ 6= −1, from equation (3.7), we get:

w =
f(z)

1 + δ
. (3.28)

Substituted into equation (3.8), yields:

f
(
f(z)
1+δ

)
1 + δ

= z. (3.29)

Let us de�ne g(z) = f(z)
1+δ

. Then equation (3.29) becomes:

g2(z) = z. (3.30)

Thus z ∈ Fix(g2(z)). Because g is a transcendental entire function, it follows
from the theorem of Rosenbloom (Theorem 1.4.1), that there are in�nitely many
solutions for z of equation (3.29). Then equation (3.28) provides w given z. It
follows from Theorem 3.1.3 that Fix(F 2) has in�nite cardinality.
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Although Theorem 3.3.4 gives that Fix(F 2) has in�nite cardinality forF a tran-
scendental Hénon map with δ = −1, it does not answer the interesting question
whether in�nitely many of these are genuine 2-periodic points. This subject is not
directly treated in [8] either. Below, we provide a result. A simple, but e�cient
way of dealing with the problem, is to make sure that Fix(F ) only has �nite car-
dinality. Then it follows from Theorem 3.3.4 that F has in�nitely many genuine
2-periodic points. Theorem 2.4.2 is applicable.

Corollary 3.3.5. Let F (z, w) = (f(z) − δw, z) be a transcendental Hénon map
with δ 6= −1. Let P (z) be any non-zero polynomial and let g(z) be any non-
constant entire function. Then, if f(z) = (1 + δ)z + P (z)eg(z), we have that
Fix(F 2) consists of in�nitely many genuine 2-periodic points.

Proof. Under the assumption on f , by Theorem 2.4.2, we have |Fix(F )| <∞. Thus
there are at most �nitely many non-genuine 2-periodic points. But by Theorem
3.3.4, it follows that F admits in�nitely many 2-periodic points. It follows that
in�nitely many of these must be genuine. This completes the proof.

Corollary 3.3.5 provides us with a class of in�nitely many transcendental Hénon
maps with in�nitely many genuine 2-periodic points.
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Chapter 4

Some Maps with Discrete set of
k-Periodic Points, k ≤ 4

We investigate the discreteness of the set of k-periodic points for k = 1, 2, 3, 4, of
transcendental Hénon maps. The cases k = 1 and k = 2 for general transcendental
Hénon maps are both immediate consequences of the discreteness of the zero set
Z(g) for non-constant holomorphic functions g of a single variable, and already
given in [8]. In [8], the authors also show that for transcendental Hénon maps
F (z, w) = (f(z) − δw, z) where ρ(f) < 1/2, the set Fix(F k) is discrete for all
k ≥ 1. This raises the question about the discreteness of the set of k-periodic
points for more general transcendental Hénon maps H(z, w) = (h(z) − δw, z)
with ρ(h) ≥ 1/2 and k ≥ 3. In particular, it is an open question whether the set
of k-periodic points of the transcendental Hénon map H(z, w) = (ez − δw, z),
is discrete for any k ≥ 3. We note that ρ(ez) = 1 > 1/2, so the result in [8]
does not apply to this map. Below, we use the implicit mapping theorem to show
the following result: for any δ ∈ C\{0}, there exists a transcendental Hénon
map Hδ(z, w) = (hδ(z) − δw, z) with the property that Fix(H3

δ ) is discrete and
ρ(hδ) = 1. We also use elementary properties of analytic sets in C2, to show that
Fix(G4) is discrete where G(z, w) = (ez − δw, z) and δ2 = 1.

4.1 The cases k = 1 and k = 2

For completeness, we �rst show the discreteness of the set of �xed points and the
set of 2-periodic points for transcendental Hénon maps. Both of the results we
give below, Theorem 4.1.1 and Theorem 4.1.3, origin from [8].

Theorem 4.1.1. Let F (z, w) = (f(z) − δw, z) be a transcendental Hénon map.
Then Fix(F ) is discrete.

Proof. We know that (z, w) ∈ Fix(F ) if and only if z = w and:

f(z) = (1 + δ)z. (4.1)

Thus it su�ces to show that Z(z 7→ f(z)− (1 + δ)z) is discrete. But this follows
because f is transcendental.
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Remark 4.1.2. Note that the proof of Theorem 4.1.1, shows that more general
Hénon maps have discrete set of �xed points. Indeed, the given proof works for
all Hénon maps F (z, w) = (f(z) − δw, z) where f is not equal to the monomial
z 7→ (1 + δ)z.

Analogously, we can show that Fix(F 2) is discrete:

Theorem 4.1.3. Let F (z, w) = (f(z) − δw, z) be a transcendental Hénon map.
Then Fix(F 2) is discrete.

Proof. We know that (z, w) ∈ Fix(F 2) if and only if:

f(z) = (1 + δ)w (3.7)
f(w) = (1 + δ)z. (3.8)

Suppose �rst that δ 6= −1. Then, we can solve for w in equation (3.7). We get:
w = f(z)

1+δ
. Substituted into equation (3.8), gives then:

f

(
f(z)

1 + δ

)
− (1 + δ)z = 0. (4.2)

Let g(z) = f
(
f(z)
1+δ

)
−(1+δ)z. Then z solves equation (4.2) if and only if z ∈ Z(g).

Because f is transcendental, Z(g) is discrete. Thus, there can only be discrete
z. But then from w = f(z)

1+δ
, there can only be discrete w as well. We conclude

that Fix(F 2) is discrete in the case δ 6= −1. In the case δ = −1, we have that
(z, w) ∈ Fix(F 2) if and only if (z, w) ∈ Z(f)×Z(f), and the discreteness follows
immediately. This completes the proof.

Remark 4.1.4. As with the set of �xed points, the discreteness in Theorem 4.1.3
is true also for more general Hénon maps. Indeed, the given proof works for all
Hénon maps F (z, w) = (f(z) − δw, z) for which f

(
f(z)
1+δ

)
− (1 + δ)z 6≡ 0 when

δ 6= −1, and for all f 6≡ 0 in the case δ = −1.

4.2 Hénon maps (f (z)− δw, z) with ρ(f ) < 1/2

The following discreteness result is given in [8]:

Theorem 4.2.1 ([8], Proposition 3.2). Let F (z, w) = (f(z) − δw, z) be a Hénon
map with ρ(f) < 1/2. Then for all k ≥ 1, Fix(F k) is discrete.

Before stating and proving Theorem 4.2.1, the authors of [8], comment: "With-
out making further assumptions it is not clear to the authors that Fix(F k) is dis-
crete when k ≥ 3. However, we can show discreteness when we assume that the
function f has small order of growth." This comment became the underlying rea-
son for the investigation of the case k = 3.
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We will use the following preliminary result due to Wiman for the proof of
Theorem 4.2.1. We follow the same argument given in [8]. Given an entire function
f and r > 0, we denote bym(f, r), theminimummodulus of f for |z| = r, given
by:

m(f, r) = inf
|z|=r
|f(z)|. (4.3)

Theorem 4.2.2 ([2], Theorem 7.9.1). Suppose f is an entire function with order
ρ(f) < 1/2. Then there exists a sequence of values of r tending to in�nity through
which m(r)→∞.

For the proof, see for instance [2], page 134. Before we prove Theorem 4.2.1,
it is convenient to understand the general structure of the set of equations deter-
mining whether a point (z, w) is an element of the set Fix(F k) for general values
of k. We de�ne the following iterative points: (zk, wk) := F k(z, w). For instance,
for k = 1, we get:

(z1, w1) = (f(z)− δw, z) = (z, w), (4.4)

and for k = 2, we get:

(z1, w1) = (f(z)− δw, z) (4.5)
(z2, w2) = (f(z1)− δw1, z1) = (z, w). (4.6)

For general k, we get:

(z1, w1) = (f(z)− δw, z) (4.7)
(z2, w2) = (f(z1)− δw1, z1) (4.8)
(z3, w3) = (f(z2)− δw2, z2) (4.9)

...
(zk−1, wk−1) = (f(zk−2)− δwk−2, zk−2) (4.10)

(zk, wk) = (f(zk−1)− δwk−1, zk−1) = (z, w). (4.11)

It is convenient to think of (z, w) as (z0, w0) and further w as z−1. Then, looking
at the second component of the equations (4.7) - (4.11), we see that wm = zm−1
for general 0 ≤ m ≤ k. Thus, we can replace all occurrences of wm, excluding
w0 = w, with zm−1. If we do this, we need only consider the �rst components of
the equations, which then become the following; note that wk = zk−1 = w:
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z1 = f(z)− δw (4.12)
z2 = f(z1)− δz (4.13)
z3 = f(z2)− δz1 (4.14)

...
zk−2 = f(zk−3)− δzk−4 (4.15)
w = f(zk−2)− δzk−3 (4.16)
z = f(w)− δzk−2. (4.17)

We will refer to the set /system of equations (4.12) - (4.17) as the set/system of
determining equations for k-periodic points or the set/system of equations
determining k-periodic points for or of F . Let us refer to the line which takes
the form z1 = f(z) − δw as the �rst line. By examination, we then see that the
m-th line generally takes the form:

zm = f(zm−1)− δzm−2. (4.18)

This, together with zk = z0 = z and zk−1 = w0 = w = z−1, let us immediately
write the system of determining equations for k-periodic points of F .

Example 4.2.3. We can immediately write down the equations determining 3-
periodic points of F . We start with the �rst line, which is: z1 = f(z) − δw, and
have further that z2 = w, and z3 = z. Thus we get the equations:

z1 = f(z)− δw (4.19)
w = f(z1)− δz (4.20)
z = f(w)− δz1 (4.21)

We now come to the proof of Theorem 4.2.1:

Proof of Theorem 4.2.1. Assume for contradiction that the theorem assertion is false.
Let (z, w) ∈ Fix(F k). Then we know that the system of determining equations for
k-periodic points of F , is given by:

z1 = f(z)− δw (4.12)
z2 = f(z1)− δz (4.13)
z3 = f(z2)− δz1 (4.14)

...
w = f(zk−2)− δzk−3 (4.16)
z = f(w)− δzk−2. (4.17)
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The equations (4.12) - (4.17) can be viewed as a system of k equations with k un-
knowns: z, w, z1, . . . , zk−2. Let G : Ck → Ck be de�ned by:

G(z, w, z1, . . . , zk−2) =



z1 + δw − f(z)
z2 + δz − f(z1)
z3 + δz1 − f(z2)

...
w + δzk−3 − f(zk−2)
z + δzk−2 − f(w)


. (4.22)

Then (z, w, z1, . . . , zk−2) solves the system of equations (4.12) - (4.17) if and only
if it lies in Z(G). This is a closed analytic set. By assumption, this analytic set
is non-discrete. Because there are no compact such sets (e.g. Proposition 6.1 in
[7]), there must then exist an unbounded connected component V of the solution
set {(z, w, z1, . . . , zk−2) : G(z, w, . . . , zk−2) = 0}. Thus, for all su�ciently large
r > 0, V intersects the boundary of the ball centred at the origin in Ck with
radius r. Say in some point (z, w, z1, . . . , zk−2). Then there is some index j ∈
{1, 2, . . . , k − 1, k} depending on r and V , where zk−1 = w, and zk = z, for
which we have that r ≥ |zj| > rj with rj large. In particular, given any r0 > 0,
by choosing r > 0 su�ciently large, we can �nd an index j such that rj > r0.
Now, let g(z) = f(z)−f(0)

z
. Then g is entire with ρ(g) < 1/2, and we can apply

Theorem 4.2.2 to g. We can choose r su�ciently large and part of the sequence in
Theorem 4.2.2 such that by Theorem 4.2.2, |f(zj)| > |zj| · |(1 + δ)|. Indeed, we
have f(z)

z
= g(z) + f(0)

z
, and so choosing r su�ciently large such that we have

|g(zj)| ≥ m(g, r) > |1+δ|, we see that |f(zj)||zj | ≥ |g(zj)|− |f(0)||zj | ≥ |g(zj)| > |1+δ|.
This almost gives the contradiction we need. To complete the proof, we simply
note that we may choose j such that zj has the greatest modulus among all zm’s.
Then we get:

|zj + δzj−2| ≤ |zj| · |(1 + δ)| (4.23)

Now, looking at the jth component of the equation G(z, w, . . . , zk−2) = 0, we
have:

zj + δzj−2 = f(zj). (4.24)

Comparing (4.23) and (4.24), we then get:

|f(zj)| ≤ |zj| · |1 + δ|. (4.25)

But this is impossible for |f(zj)| > |zj| · |(1 + δ)|. This contradiction proves the
assertion.
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Theorem 4.2.2 provides us with a way of obtaining a large lower bound of the
growth of an entire function f , when f has low order. In general, we do not have
this when f has order greater than or equal to 1/2. For instance, if we consider
the transcendental Hénon map F (z, w) = (f(z) − δw, z) where f(z) = ez , then
we have ρ(f) = 1, but m(f, r) = e−r. Thus, m(f, r) becomes arbitrarily small for
large r. This example raises the question whether Fix(F k) is discrete for k ≥ 3.
Below, we show that we can prove discreteness of the set of 3-periodic points if
we instead replace f(z) = ez with fδ(z) = ez − δ2z.

4.3 3-periodic points
Our starting point is the following result in the case that the set of 3-periodic points
of a transcendental Hénon map is non-discrete:

Theorem 4.3.1. Let F (z, w) = (f(z) − δw, z) be a transcendental Hénon map
and denote for points in Fix(F 3), (z, w). Then, if Fix(F 3) is not discrete, w = w(z)
is some holomorphic function of z on some open set D. That is, Fix(F 3) contains
the graph of a holomorphic function w = w(z) over some open set D:

ΓDw :=
{

(z, w(z)) ∈ C2 : z ∈ D
}
⊆ Fix(F 3). (4.26)

Our proof uses the implicit mapping theorem.

Proof. The set of determining equations for 3-periodic points of F , is given by:

z1 + δw = f(z) (4.19)
w + δz = f(z1) (4.20)
z + δz1 = f(w). (4.21)

We can regard this as a system of 3 equations with 3 unknowns: z, w and z1.
Suppose one of the unknowns are allowed to be discrete in the solution set of this
system. By symmetry, we may assume z1 to be discrete. By eliminating w, using
equations (4.19) and (4.20), we get:

f(z)− z1 = δf(z1)− δ2z. (4.27)

That is, rearranged:

f(z) + δ2z = δf(z1) + z1. (4.28)

Because the set of possible z1 is discrete, equation (4.28) and the fact that f is
transcendental, show that the set of possible z must be discrete as well: let Z1

denote the set of possible values of z1 and consider the following family of maps:
{gz1}z1∈Z1 where each gz1(z) = f(z)− δ2z − δf(z1)− z1. Let Z̃ denote the set of
possible values of z. Then: Z̃ =

⋃
z1∈Z1

Z(gz1). Because f is transcendental, for
each possible z1, the set Z(gz1) is discrete. Then, because Z1 is discrete, it follows
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that Z̃ is discrete. By a similar argument, the set of possible w is discrete as well.
Thus, if the set of possible values of at least one of the unknowns: z, w, or z1, is al-
lowed to be discrete, it follows that all must be discrete and consequently, Fix(F 3)
must be discrete. Thus we may assume none of these sets to be discrete.

Let us de�ne the holomorphic map G : C3 → C2 by:

G(z, w, z1) =

[
z1 + δw − f(z)
w + δz − f(z1)

]
. (4.29)

We di�erentiate G with respect to the last two variables. Denote the result by
G′(w,z1)(z, w, z1). We get:

G′(w,z1)(z, w, z1) =

[
δ 1
1 −f ′(z1)

]
. (4.30)

Calculating the determinant of G′(w,z1)(z, w, z1), gives:

det(G′(w,z1)(z, w, z1)) = −δf ′(z1)− 1. (4.31)

Suppose that det(G′(w,z1)(z, w, z1)) is zero. This happens if and only if we have
z1 ∈ Z(δf ′+1). Because f is transcendental, the function δf ′+1 is not identically
0. Hence Z(δf ′ + 1) is discrete and it follows that the set Z1 must be discrete. By
our previous discussion, we conclude that Fix(F 3) is discrete. It follows that we
may assume from the outset that det(G′(w,z1)(z, w, z1)) 6= 0. Thus, by the implicit
mapping theorem, there exists some holomorphic function from C to C2, say g,
de�ned near z, say on some open set D 3 z, such that for all z ∈ D:

G(z, w, z1) = 0 ⇐⇒ (w, z1) = g(z). (4.32)

If we look at the de�nition of G, we see that the two equations (4.19) and (4.20)
are equivalent to (z, w, z1) ∈ Z(G). We have that (z, w) ∈ Fix(F 3) implies
(z, w, z1) ∈ Z(G) which then happens if and only if (z, w) = g(z) for all z ∈ D.
In particular, it follows that w = w(z) is some holomorphic function of z de�ned
on D, and therefore ΓDw ⊆ Fix(F 3) as required. This completes the proof.

Remark 4.3.2. We note that the proof of Theorem 4.3.1 actually works for more
general Hénon maps F (z, w) = (f(z)−δw, z) where f is not a linear polynomial.
Indeed, the only places the speci�c form of f was used in the proof, is when we
determined that Z1 being discrete, implies that Z̃ is discrete, and when we rea-
soned that δf + 1 cannot be identically zero. If f is not a linear polynomial, the
latter follows. The �rst follows from f(z)−δ2z−δf(z1)−z1 not being identically
zero for �xed z1. This is true if f is not a linear polynomial.

Let Hδ(z, w) := (hδ(z) − δw, z), where hδ(z) = ez − δ2z. We want to show
that Fix(H3

δ ) is discrete. We �rst consider the case δ3 = 1, which is signi�cantly
less tedious than the general case.

Lemma 4.3.3. For δ3 = 1, Fix(H3
δ ) is discrete.
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Proof. The system of determining equations for 3-periodic points for H , is given
by:

z1 + δw = hδ(z) (4.33)
w + δz = hδ(z1) (4.34)
z + δz1 = hδ(w). (4.35)

Suppose for contradiction that the lemma assertion is false. Then, by Theorem
4.3.1, we may assume z1 and w to be functions of z on some open set D. We write
w = w(z) and z1 = z1(z). We can eliminate z1(z) by using equations (4.33) and
(4.35). This gives:

hδ(w(z))− z = δhδ(z)− δ2w(z). (4.36)

That is:

hδ(w(z)) + δ2w(z) = δhδ(z) + z. (4.37)

Recall that hδ = exp−δ2 · 1 where 1 denotes the identity function on C. Hence
we get:

ew(z) = δhδ(z) + z = δez + z(1− δ3). (4.38)

Because δ3 = 1 by assumption, we get:

ew(z) = δez. (4.39)

Consequently:

w′(z) =
δez

δez
= 1, (4.40)

and we conclude that w(z) = z + A for some constant A. Similarly, we can use
equations (4.34) and (4.35) to eliminate z in terms of z1(z) and w(z). This gives:

hδ(z1(z))− w(z) = δhδ(w(z))− δ2z1(z). (4.41)

That is, rearranged:

hδ(z1(z)) + δ2z1(z) = ez1(z) = δhδ(w(z)) + w(z) = δew(z) + w(z)(1− δ3).
(4.42)

Again, because δ3 = 1, the last term on the right-hand side vanishes, and we are
left with:

ez1(z) = δew(z). (4.43)

Consequently:

z′1(z) =
δew(z)

δew(z)
· w′(z) = 1. (4.44)
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Thus we have z1(z) = z+B for some constant B. Substituting w(z) = z+A and
z1(z) = z +B in equation (4.33), yields:

z(1 + δ) +B + δA = hδ(z) = ez − δ2z. (4.45)

This can be rearranged to give:

z(1 + δ + δ2) +B + δA = ez. (4.46)

This now holds everywhere because the left-hand side function is entire, and the
right-hand side function is entire. However, this is impossible because the left-
hand side function is a polynomial, while the right-hand side function is transcen-
dental. This contradiction completes the proof.

Lemma 4.3.3 takes care of the discreteness of Fix(H3
δ ) in the case δ3 = 1. Next,

we would like to consider the discreteness of Fix(H3
δ ) for δ3 6= 1. The proof for

this case involves much more tedious computations, but the idea is analogous to
that in the proof of Lemma 4.3.3: we use the special form of hδ(z) to obtain an
explicit expression for w′(z) or z′1(z), and then use the determining equations to
get a contradiction. Di�erentiation is available, courtesy of Theorem 4.3.1.

Theorem 4.3.4. Let Fδ(z, w) = (ez − δ2z − δw, z). Then Fix(F 3
δ ) is discrete.

Proof. Let us de�ne fδ(z) = ez − δ2z, so that Fδ(z, w) = (fδ(z) − δw, z). By
Lemma 4.3.3, we may assume δ3 6= 1. If the theorem statement is false, we may, by
Theorem 4.3.1, assume z1 = z1(z) and w = w(z) to be holomorphic functions of
z on some open set, where z1 and w are given by the set of determining equations
for 3-periodic points of Fδ:

z1 + δw = fδ(z) (4.47)
w + δz = fδ(z1) (4.48)
z + δz1 = fδ(w). (4.49)

As in the proof of Lemma 4.3.3, we can eliminate z1 = z1(z) and get:

fδ(w(z)) + δ2w(z) = ew(z) = δfδ(z) + z = δez + z(1− δ3). (4.50)

Consequently:

w′(z) =
δez + 1− δ3

δez + z(1− δ3)
. (4.51)

Using equation (4.47), we can solve for z1(z) and get:

z1(z) = fδ(z)− δw(z). (4.52)

We di�erentiate equation (4.48) and get:

w′(z) + δ = f ′δ(z1(z)) · z′1(z)

=
d

dz1

{
ez1(z) − δ2z1(z)

}
· z′1(z)

= (ez1(z) − δ2)z′1(z). (4.53)
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We have ez1(z) = fδ(z1(z)) + δ2z1(z). With equation (4.48), we thus have that
ez1(z) = w(z) + δz + δ2z1(z). Combining this with equation (4.52), yields then:

ez1(z) = w(z) + δz + δ2(fδ(z)− δw(z))

= w(z)(1− δ3) + δz + δ2fδ(z). (4.54)

Substituting this and z′1(z) = f ′δ(z)− δw′(z), which follows from equation (4.52),
into equation (4.53), gives:

w′(z) + δ =
(
w(z)(1− δ3) + δz + δ2fδ(z)− δ2

)
(f ′δ(z)− δw′(z)). (4.55)

We have that f ′δ(z) = ez − δ2 6≡ δw′(z), where w′(z) is given by equation (4.51),
so we can divide by it in equation (4.55) to get:

w′(z) + δ

f ′δ(z)− δw′(z)
= w(z)(1− δ3) + δz + δ2fδ(z)− δ2. (4.56)

Thus:

w(z) =
1

1− δ3

(
w′(z) + δ

f ′δ(z)− δw′(z)
− δz − δ2fδ(z) + δ2

)
. (4.57)

Di�erentiating equation (4.57) and working tediously to simplify the result, gives
Expression 4.1a. We note that the denominator in Expression 4.1a, is zero when
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Expression 4.1a : w′(z) obtained by di�erentiating equation (4.57).

δ = 1 or δ2 + δ + 1 = 0. However, by assumption δ3 6= 1, so this never happens.

Subtracting fromw′(z) in Expression 4.1a,w′(z) in equation (4.51), should give
identically zero. Otherwise, we have a contradiction. The result of the subtraction
is given in Expression 4.1b. As can be veri�ed by examination, this is not identi-
cally zero. In fact, looking at the denominator in Expression 4.1b, it is clear that
this di�erence is de�ned for z = r for all su�ciently large r > 0. Suppose for
contradiction that Expression 4.1b is identically zero where de�ned. Then, the
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Expression 4.1b : the di�erence between w′(z) in Expression 4.1a and w′(z) in equation
(4.51). In particular, this di�erence is not identically 0.

numerator must vanish. By examination, we �nd that the highest power of the
exponential function, is 6. Thus the most dominating term for z = r > 0 large, is
e6z . Its coe�cient is−δ5. We divide the whole numerator by e6z , evaluate at z = r
and let r →∞. It follows that we then get −δ5 = 0, which is impossible because
δ 6= 0 for Hénon maps. This contradiction proves the theorem assertion.

4.4 4-periodic points
For 3-periodic points we were able to use the implicit mapping theorem to prove
discreteness for the Hénon maps (ez− δ2z− δw, z). For 4-periodic points, we will
use an elementary property of analytic sets in C2. The implicit mapping theorem
and the study of analytic sets, are of course not unrelated. For instance, the Weier-
strass’s preparation theorem, a central result in the study of analytic sets, can be
seen as a generalization of the implicit mapping theorem.

We will use the following: letA be an analytic set in C2. ThenA is a countable
union of curves which are locally graphs of holomorphic functions in C and single
points which are either isolated or singular points to these curves. In particular,
A does not contain a sequence of points with an accumulation point which does
mnot belong to some such curve. The curves and points of which A is a union of,
are called the irreducible components of A. If A has a single irreducible com-
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ponent, it is called irreducible. Otherwise, A is called reducible. In the proof
of Theorem 4.2.1, we used that any irreducible compact analytic set reduces to a
single point. For these properties of analytic sets, see any introductory book on
several complex variables which include the topic of analytic sets in the contents,
for instance [7] chapter 3, or [4] chapter 2, section 8.

First, we show that Fix(F 4) cannot contain a non-discrete set of points (z, w)
where z is constant and F is a transcendental Hénon map. In particular, Fix(F 4)
cannot contain a vertical line in C2.

Lemma 4.4.1. Let F (z, w) = (f(z) − δw, z) be any transcendental Hénon map.
Then Fix(F 4) cannot contain any non-discrete set of points (z, w) where z is con-
stant.

Proof. The set of determining equations for 4-periodic points of F , is given by:

z1 + δw = f(z) (4.58)
z2 + δz = f(z1) (4.59)
w + δz1 = f(z1) (4.60)
z + δz2 = f(w). (4.61)

Suppose for contradiction that the lemma assertion is false. Because z is constant,
equation (4.58), shows that z1 = z1(w) = A − δw, where A = f(z) is constant.
Substituted into equation (4.60), it follows that:

w + δ(A− δw) = f(A− δw) (4.62)

That is:

w(1− δ2) + δA = f(A− δw). (4.63)

We de�ne a new variable η := A− δw. Note that by the uniqueness principle and
the assumption of non-discreteness, equation (4.63) holds for all w in the plane.
We have w = A−η

δ
. Substituted into equation (4.63), we then get:

A− η
δ

(1− δ2) + δA = f(η). (4.64)

This now holds for all η in the plane. In particular, this means that f(η) a linear
polynomial in η. But this contradicts that f is transcendental and completes the
proof.

Thus, it follows from what we said in the introduction of this section, that in
the case F is a transcendental Hénon map and Fix(F 4) fails to be discrete, the set
Fix(F 4) must contain the graph of some holomorphic function w = w(z). This
provides the analogue of Theorem 4.3.1 for 4-periodic points:
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Theorem 4.4.2. Let F (z, w) = (f(z) − δw, z) be a transcendental Hénon map
and denote by points in Fix(F 4), (z, w). Then, if Fix(F 4) is not discrete, w = w(z)
is some holomorphic function of z on some open set Dw. Thus, Fix(F 4) contains
the graph of w = w(z) over Dw:

ΓDww = {(z, w(z)) ∈ C2 : z ∈ Dw} ⊆ Fix(F 4). (4.65)

We use Theorem 4.4.2 to show that Fix(F 4) is discrete, where F is the tran-
scendental Hénon map given by F (z, w) = (ez − δw, z) with δ2 = 1:

Theorem 4.4.3. Let F (z, w) = (ez−δw, z) with δ2 = 1. Then Fix(F 4) is discrete.

Proof. Suppose for contradiction that the theorem assertion is false. By Theorem
4.4.2, we may then assume w = w(z), z1 = z1(z), and z2 = z2(z) to be holomor-
phic functions of z on some open set, and where w, z1, and z2 are given from the
set of determining equations for 4-periodic points of F :

z1 + δw = f(z) (4.58)
z2 + δz = f(z1) (4.59)
w + δz1 = f(z2) (4.60)
z + δz2 = f(w). (4.61)

We eliminate z2 using equations (4.59) and (4.61), and get:

f(w(z))− z = δf(z1(z))− δ2z. (4.66)

That is:

ew(z) = δez1(z) + z(1− δ2). (4.67)

Because δ2 = 1, we get:

ew(z) = δez1(z). (4.68)

Consequently:

w′(z) = z′1(z). (4.69)

We di�erentiate equation (4.58). This gives, substituting z′1(z) = w′(z):

w′(z)(1 + δ) = f ′(z) = f(z). (4.70)

If δ = −1, this gives f(z) = 0 which is false. This contradiction proves the
assertion in the case δ = −1. Thus, we may assume δ = 1. Then:

w′(z) =
f ′(z)

2
. (4.71)
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That is:

w(z) =
f(z)

2
+ A, (4.72)

where A is some constant. Then, solving for z2 in equation (4.61), we get:

z2(z) = f(w(z))− z = f

(
f(z)

2
+ A

)
− z. (4.73)

We recall that z′1(z) = w′(z). Therefore, z1(z) = w(z) + B for some constant B.
We substitute this and the expression for z2(z) in equation (4.73), into equation
(4.60). This gives:

2w(z) +B = f

(
f

(
f(z)

2
+ A

)
− z
)
. (4.74)

Because w(z) = f(z)
2

+ A, we get:

f(z) + 2A+B = f

(
f

(
f(z)

2
+ A

)
− z
)
, (4.75)

and because f(z) = ez , we �nally have:

ez + 2A+B = ee
ez

2 +A−z. (4.76)

This now holds for all z in the plane. But this is impossible because the left-hand
side is an entire function with order 1, while the right-hand side is an entire func-
tion with in�nite order. This contradiction proves the assertion in the case δ = 1.
Together with the case δ = −1 from before, this completes the proof.
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Chapter 5

Classes of Maps with In�nitely
Many Periodic Points, Part 1

This chapter is the �rst part of an investigation on transcendental Hénon maps
with in�nitely many k-periodic points for certain values of k.

The cases k = 1 and k = 2 have already been dealt with in great detail in previ-
ous chapters, and we therefore start o� with the case k = 3. We discuss the topic of
genuine 3-periodic points and give a complete characterization. We also construct
examples of transcendental Hénon maps with in�nitely many 3-periodic points. In
particular, we show that any transcendental Hénon map F1(z, w) = (f(z)−w, z)
with δ = 1, admits in�nitely many 3-periodic points. Finally, we impose certain
conditions to get classes of transcendental Hénon maps with in�nitely many gen-
uine 3-periodic points.

We proceed to consider the case k = 4. We give two main results. The �rst,
is the existence of in�nitely many genuine 4-periodic points of the class of Hénon
maps F−1(z, w) = (eg(z) + w, z) with δ = −1, where g is a non-constant entire
function. For this, we use an estimate method which leads to almost explicit for-
mulae. We start with the case where g is a monomial of degree at least 2, and then
generalize to the case where g is a transcendental entire function by use of the
Wiman-Valiron method (Theorem 1.4.4). The second main result, is the existence
of in�nitely many genuine 4-periodic points for the class of transcendental Hénon
maps F1(z, w) = (f(z) − w, z) with δ = 1, and f having a non-zero period p:
f(z +Zp) = f(z) for all z. For this, we use that the equation f(z) = L(z), where
L(z) is a linear polynomial, admits in�nitely many solutions.

We will use the following terminology. Let F be a holomorphic map. We will
say that F is symplectic, if det(F ′) = 1. We know that for a general Hénon map
F (z, w) = (f(z)− δw, z), we have det(F ′) = δ, and therefore symplectic Hénon
maps take the form:

F : (z, w) 7→ (f(z)− w, z). (5.1)
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With the notation above, we thus have that F1 is a symplectic transcendental
Hénon map.

The symplectic maps are volume-preserving and form an important class of
maps. Historically, symplectic maps date back to Poincaré and the study of peri-
odic orbits in Celestial Mechanics, a branch of physics dealing with the motions of
celestial objects. A central result here is the Poincaré-Birkho� theorem concerned
with the existence of �xed points of so-called area-preserving twist homeomor-
phism on an annulus. See for instance [3] and [10]. Other applications in physics
where symplectic maps arise naturally, include for instance, accelerator, chemical,
condensed-matter, and �uid physics. The symplectic maps also play an important
part in symplectic topology and Kolmogorov-Arnold-Moser (KAM) theory. See for
instance [9].

As the reader will come to realize, the set of determining equations for periodic
points of symplectic Hénon maps, possess a certain symmetry which makes them
easier to work with than general Hénon maps. Many of the results we give, are
concerned with namely symplectic Hénon maps.

5.1 3-periodic points
We wish to investigate the existence of 3-periodic points of Hénon maps, and we
are especially interested in genuine 3-periodic points. It follows that any non-
genuine 3-periodic point must lie on the diagonal ∆. Indeed, because all �xed
points of Hénon maps lie on the diagonal ∆, and because any non-genuine prime-
periodic point must be a �xed point, this is true also for any k-periodic point where
k is prime.

Let F (z, w) = (f(z)− δw, z) be a Hénon map. We recall that the set of deter-
mining equations for 3-periodic points of F , is given by:

z1 + δw = f(z) (4.19)
w + δz = f(z1) (4.20)
z + δz1 = f(w). (4.21)

From equation (4.19), we get: z1 = f(z)− δw. Substituted into the two remaining
equations, equation (4.20) and equation (4.21), gives then:

w + δz = f(f(z)− δw) (5.2)
z + δf(z)− δ2w = f(w). (5.3)

To get further, a possibility at this point, is to look for solutions where w is some
function of z. It would then be natural to look for solutions where w is a not
too complicated function of z, for example w = z or w = −z. Perhaps a more
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interesting choice for a function for w, would be something involving the func-
tion f . After some considerations, we see that if we choose f(z) − δw = w, or
equivalently in the case δ 6= −1: w = f(z)

1+δ
, the right-hand sides in equations (5.2)

and (5.3), coincide. If the right-hand sides coincide, so must the left-hand sides.
Consequently, we end up with the necessary condition:

w + δz = z + δf(z)− δ2w. (5.4)

With our choice forw, we have f(z) = (1+δ)w. Substituting this in the condition
(5.4), gives:

w + δz = z + δ(1 + δ)w − δ2w (5.5)

That is, after simplifying:

z(δ − 1) = (δ − 1)w. (5.6)

If δ 6= −1, then we can substitute f(z)
1+δ

for w. This gives:

z(δ − 1) =
δ − 1

1 + δ
f(z). (5.7)

If additionally δ 6= 1, that is, if δ2 6= 1, then recalling also that f(z) = (1 + δ)w,
this gives:

z(1 + δ) = f(z) = (1 + δ)w. (5.8)

Consequently, (z, w) ∈ ∆ and f(z) = (1+δ)z. That is, (z, w) ∈ Fix(F ) by Propo-
sition 2.2.2.

By considering the case δ = −1 separately, we get the following proposition:

Proposition 5.1.1. Let F (z, w) = (f(z) − δw, z) be a Hénon map with δ 6= 1.
Then, the point (z, w) withw(1+δ) = f(z), is a 3-periodic point for F if and only
if it is a �xed point for F .

Proof. The assertion follows from our discussion in the case δ2 6= 1. Thus it re-
mains to consider the single case δ = −1. Then, equation (5.7) is no longer valid.
However, equation (5.6) is. Because δ = −1, we get −2z = −2w. That is: z = w.
Hence (z, w) ∈ ∆. Either of the two equations (5.2) and (5.3), now gives then that
(z, w) ∈ Fix(F 3) if and only if f(z) = 0. That is, if and only if z ∈ Z(f). Because
w = z, we then get that (z, w) ∈ Fix(F 3) if and only if (z, w) ∈ (Z(f)×Z(f))∩∆.
From Corollary 2.2.3, it follows that Fix(F ) = (Z(f)×Z(f))∩∆. This completes
the proof.
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Because we are interested in genuine 3-periodic points of Hénon maps, Propo-
sition 5.1.1 tells us that, in looking for 3-periodic points of F of the form (z, w)
with f(z) = (1+δ)w, we should focus on the case δ = 1. That is, the case when F
is symplectic. By using Rosenbloom’s theorem (Theorem 1.4.1), we can show the
existence of in�nitely many 3-periodic points in the case F is also transcendental:

Theorem 5.1.2. Let F1(z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon map. Then Fix(F 3

1 ) contains in�nitely many points of the form
(
z, f(z)

2

)
.

In particular, Fix(F 3
1 ) has in�nite cardinality.

Proof. Because δ = 1, equation (5.6) is automatically satis�ed. Therefore, whether(
z, f(z)

2

)
∈ Fix(F 3

1 ), is determined by either of the two equations (5.2) and (5.3),
which then gives:

f(z)

2
+ z = f

(
f(z)

2

)
. (5.9)

That is, by:

z = f

(
f(z)

2

)
− f(z)

2
. (5.10)

Let us de�ne g(z) = f(z)
2

and h(z) = f(z) − z. Then both g and h are transcen-
dental entire functions, and we have that z solves equation (5.10) if and only if
z ∈ Z(h ◦ g). By Rosenbloom’s theorem (Theorem 1.4.1), Z(h ◦ g) has in�nite
cardinality. This proves the assertion.

Although Theorem 5.1.2 guarantees that F1 admits in�nitely many 3-periodic
points, it does not say anything whether Fix(F 3

1 ) contains, if any at all, genuine
3-periodic points. However, we know that the only non-genuine 3-periodic points,
must be the �xed points. Thus, we at least have the following result:

Corollary 5.1.3. Let F1(z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon map and suppose that |Fix(F1)| < ∞. Then F1 admits in�nitely many
genuine 3-periodic points. Furthermore, in�nitely many of these can be chosen of
the form (z, w) where z = f

(
f(z)
2

)
− f(z)

2
and w = f(z)

2
.

The results we have given up to this point, are based on the choice of w such
that f(z) = (1 + δ)w. We mentioned that two other natural choices are: w = z
and w = −z. Because we are interested in genuine 3-periodic points, and because
all non-genuine such points lie on the diagonal ∆, it is natural to proceed with the
choice w = −z. We will later see that this choice provides interesting results also
for other periodic points than 3-periodic points. These, as well as the next result
we give, are based on the following simple observation:

Proposition 5.1.4. Let F be a Hénon map and let k > 1 be prime. Suppose that
(z,−z) ∈ Fix(F k). Then either this is a genuine k-periodic point of F , or it is the
origin.
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Proof. Because k > 1 is prime, (z,−z) ∈ Fix(F k) is a non-genuine k-periodic
point for F if and only if it is a �xed point. Then, because F is a Hénon map,
(z,−z) must lie on the diagonal. Thus, z = −z = 0.

Consequently, if we are able to show that a Hénon map F , has in�nitely many
k-periodic points of the form (z,−z), where k > 1 is prime, then it has in�nitely
many genuine ones. We can make this happen by imposing appropriate conditions
on F .

Lemma 5.1.5. Let F (z, w) = (f(z)− w, z) be a symplectic Hénon map where f
is odd. Then (z,−z) ∈ Fix(F 3) if and only if f(z) = −z.

Proof. For δ = 1 and w = −z, the set of determining equations for 3-periodic
points of F , (4.19) - (4.21), becomes:

z1 − z = f(z) (5.11)
−z + z = f(z1) (5.12)
z + z1 = f(−z). (5.13)

Adding equations (5.11) and (5.13), and using that f(−z) = −f(z) for all z because
f is odd, we get:

2z1 = f(z) + f(−z) = f(z)− f(z) = 0. (5.14)

That is: z1 = 0. Because f is odd, we always have f(0) = 0, and so equation
(5.12) becomes the trivial equation 0 = 0. Furthermore, substituting z1 = 0 and
using that f is odd, we see that equation (5.11) is the same as equation (5.13). Thus,
we are only left with a single equation determining whether (z,−z) ∈ Fix(F 3).
Namely, either one of (5.11) and (5.13), which then gives:

f(z) = −z. (5.15)

This completes the proof.

We can now use Rosenbloom’s theorem (Theorem 1.4.1) together with Lemma
5.1.5, to give in�nitely many examples of symplectic transcendental Hénon maps
with in�nitely many genuine 3-periodic points:

Corollary 5.1.6. Let g and h be two transcendental entire and odd functions. Let
f = h ◦ g. Then F1(z, w) = (f(z) − w, z) is a symplectic transcendental Hénon
map which admits in�nitely many genuine 3-periodic points of the form (z,−z).

Proof. Because g and h are transcendental entire functions, so is f . Therefore F1

is a symplectic transcendental Hénon map. Furthermore, because g and h are odd,
so is f :

f(−z) = h(g(−z)) = h(−g(z)) = −h(g(z)) = −f(z). (5.16)

Thus, by Lemma 5.1.5, (z,−z) ∈ Fix(F 3
1 ) if and only if f(z) = −z. That is, if and

only if z ∈ Z(−h ◦ g). By Rosenbloom’s theorem (Theorem 1.4.1), the latter has
in�nite cardinality. Hence, by Proposition 5.1.4, F 3

1 admits in�nitely many genuine
3-periodic points of the form (z,−z).
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Example 5.1.7. Let g(z) = sin(z), h(z) = zez
2 , and let f(z) = h(g(z)). Then

F1(z, w) = (f(z)−w, z) is a symplectic transcendental Hénon map which admits
in�nitely many genuine 3-periodic points of the form (z,−z).

Example 5.1.8. Let f(z) = sin(z), and consider the symplectic transcenden-
tal Hénon map F1(z, w) = (f(z) − w, z). Then, Corollary 5.1.6 does not ap-
ply. However, Lemma 5.1.5 does. From Example 2.3.4, we know that the equation
sin(z) = λP (z) for all non-zero polynomial P , admits in�nitely many solutions
for all complex values λ without exception. If we take λ = −1 and P (z) = z, it
therefore follows that Fix(F1) contains in�nitely many genuine 3-periodic points
of the form (z,−z).

We will later see that the result in Example 5.1.8, can also be obtained by utiliz-
ing the periodicity of sin(z) and the fact that it is a transcendental entire function.
Using this approach, the fact that sin(z) = −z admits in�nitely many solutions,
follows then as a particular case of a much more general result which we give in
chapter 6. See Theorem 6.2.3.

Finally, we consider the question of genuine 3-periodic points of Hénon maps
on the diagonal, corresponding to the choice w = z mentioned earlier. A priori, it
is possible that there exist genuine 3-periodic points of Hénon maps on the diag-
onal. We now show that this cannot be the case unless δ = 1. That is, unless the
Hénon map is symplectic:

Proposition 5.1.9. Let F (z, w) = (f(z) − δw, z) be a Hénon map. Then if F is
not symplectic, that is, if δ 6= 1, all 3-periodic points on the diagonal ∆, are in fact
�xed points. That is:

for all δ 6= 1 : Fix(F 3) ∩∆ = Fix(F ). (5.17)

Proof. Suppose δ 6= 1. It su�ces to show that Fix(F 3) ∩∆ ⊆ Fix(F ), because we
always have Fix(F ) ⊆ Fix(F k)∩∆ for all k ≥ 1. The set of determining equations
for 3-periodic points of F , when w = z, is given by:

z1 + δz = f(z) (5.18)
z + δz = f(z1) (5.19)
z + δz1 = f(z). (5.20)

Comparing equation (5.18) and equation (5.20), we get from f(z) = f(z):

z1(1− δ) = z(1− δ). (5.21)

Because δ 6= 1, this means z = z1. Hence all three equations (5.18) - (5.20) collapse
to the single equation given by: f(z) = (1+δ)z, which is the determining equation
for �xed points of F by Proposition 2.2.2. This completes the proof.

It follows that if we want to look for genuine 3-periodic points of Hénon maps
on the diagonal ∆, we must restrict to the symplectic Hénon maps. We start with
a lemma:
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Lemma 5.1.10. Let F (z, w) = (f(z)− w, z) be a symplectic Hénon map. Then:

Fix(F 3) ∩∆ =
{

(z, z) ∈ C2 : 2z = f(f(z)− z)
}
. (5.22)

Proof. For δ = 1, it is easily seen that equation (5.18) and equation (5.20), coincide.
Solving for z1 in either of them, and substituting in equation (5.19), then yields:
2z = f(f(z)− z). This proves the assertion.

Using Rosenbloom’s theorem (Theorem 1.4.1), we then get the following result
for symplectic transcendental Hénon maps:
Corollary 5.1.11. Let F1(z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon map. Then F1 admits in�nitely many 3-periodic points on the diagonal. In
particular, if |Fix(F1)| <∞, in�nitely many of these are genuine. More generally,
(z, z) ∈ Fix(F 3

1 ) ∩∆ is a genuine 3-periodic point of F1 if and only if:

2z = f(f(z)− z) and f(z) 6= 2z. (5.23)

Proof. That (z, z) ∈ Fix(F 3
1 ) ∩ ∆ if and only if 2z = f(f(z) − z), follows from

Lemma 5.1.10. Let g(z) = f(z) − z and let h(z) = f(z)
2

. Then both g and h are
transcendental entire functions because f is a transcendental entire function, and
z solves the equation 2z = f(f(z) − z), if and only if z ∈ Z(h ◦ g). The latter
has in�nite cardinality by Rosenbloom’s theorem (Theorem 1.4.1). We conclude
that Fix(F 3

1 ) ∩∆ has in�nite cardinality. Then (z, z) ∈ Fix(F 3
1 ) ∩∆ is a genuine

3-periodic point for F1 if and only if it is not a �xed point. This happens if and
only if f(z) = 2z.

5.2 4-periodic points
We investigate the existence of in�nitely many 4-periodic points for certain classes
of transcendental Hénon maps. The �rst section treats transcendental Hénon maps
of the form F−1(z, w) = (eg(z) + w, z) where g is some non-constant entire func-
tion. Let f(z) = eg(z). Because F−1 is a transcendental Hénon map with δ = −1,
we know from Corollary 2.2.3 and Corollary 3.1.4 respectively, that the set of �xed
points and 2-periodic points for F−1, is given by respectively Z(f) × Z(f) ∩ ∆
and Z(f)×Z(f). We have Z(f) = ∅, and so F has no �xed points nor 2-periodic
points. We show that Fix(F 4

−1) however, has in�nite cardinality. Because 4 is not
prime, the problem whether a 4-periodic point of a general Hénon map, is a gen-
uine 4-periodic point, becomes more complicated than our previous two cases of
2-periodic and 3-periodic points. Indeed, now non-genuine 4-periodic points may
also be genuine 2-periodic points in addition to being �xed points. However, in
our case, because Fix(F−1) = Fix(F 2

−1) = ∅, we can immediately say that all our
4-periodic points are genuine.

In the second section, we give a result on the existence of in�nitely many
genuine 4-periodic points for symplectic transcendental Hénon maps of the form
F1(z, w) = (f(z)− w, z) where f has a non-zero period p: f(z + Zp) = f(z) for
all z. In particular, our result works for f(z) = eg(z) where g is periodic, or where
g(z) = z, as ez is periodic.
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5.2.1 The class of maps of the form F−1(z, w) = (eg(z) + w, z)

An approximate equation on the diagonal

Let F−1(z, w) = (eg(z) + w, z) where g is some non-constant entire function. We
consider the system of determining equations for 4-periodic points for F−1. We
get:

z1 − w = eg(z) (5.24)
z2 − z = eg(z1) (5.25)
w − z1 = eg(z2) (5.26)
z − z2 = eg(w). (5.27)

We see that equation (5.24) gives z1 in terms of z and w. Indeed, by solving for z1,
we �nd that: z1 = eg(z) +w. Similarly, equation (5.27) gives z2 expressed in terms
of z and w: z2 = z − eg(w). We can now substitute both these expressions for z1
and z2 in the two remaining equations (5.25) and (5.26). This yields:

−eg(w) = eg(e
g(z)+w) (5.28)

−eg(z) = eg(z−e
g(w)). (5.29)

These can be rewritten as:

eg(e
g(z)+w)−g(w) = −1 (5.30)

eg(z−e
g(w))−g(z) = −1. (5.31)

It is then easily seen that if (z, w) solves the two equations (5.32) and (5.33) below,
then it solves the two equations (5.30) and (5.31):

g
(
eg(z) + w

)
− g(w) = πi (5.32)

g
(
z − eg(w)

)
− g(z) = −πi. (5.33)

The reason that we chose −πi for the right-hand side of equation (5.33), instead
of πi, will be apparent when we soon use the Taylor expansion to approximate
each of the equations. The idea is that the choice−πi, will allow us to use a single
approximative equation in g′ for both equations (5.32) and (5.33). Restricting to
solutions on the diagonal ∆ is a natural simpli�cation, especially now that we
know that we can have no �xed points for F−1.

Lemma 5.2.1. Suppose that z satis�es the equation:

g′(z)eg(z) = πi, (5.34)
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with |eg(z)| < 1 small. Then the error Eg(z), in using the point (z, z) ∈ ∆ as
a solution for equations (5.32) and (5.33), instead of the correct solution, which
generically may lie o� the diagonal ∆, satis�es the inequality:

Eg(z) ≤
∞∑
m=2

πm

m!

∣∣∣∣ g(m)(z)

(g′(z))m

∣∣∣∣ . (5.35)

Proof. Suppose |eg(ζ)| is small. Then, using the Taylor expansion for g near the
point z, for equations (5.32) and (5.33), yields respectively:

g(z + eg(ζ))− g(z) = g′(z)eg(ζ) +
∞∑
m=2

g(m)(z)

m!
emg(ζ) (5.36)

g
(
z − eg(ζ)

)
− g(z) = −g′(z)eg(ζ) +

∞∑
m=2

g(m)(z)(−1)m

m!
emg(ζ). (5.37)

Now, by assumption, g′(z)eg(z) = πi, and so setting ζ = z, and noting that
emg(z) = (πi)m

(g′(z))m
, we get respectively:

g(z + eg(z))− g(z) = πi+
∞∑
m=2

πmim

m!

g(m)(z)

(g′(z))m
(5.38)

g(z − eg(z))− g(z) = −πi+
∞∑
m=2

(−1)m
πmim

m!

g(m)(z)

(g′(z))m
. (5.39)

Comparing with equations (5.32) and (5.33), we see that the error in using the
approximate solution (z, z) in each of the two equations (5.32) and (5.33), is given
by:

E±g (z) = |g(z ± eg(z))− g(z)∓ πi| =

∣∣∣∣∣
∞∑
m=2

(±1)m
πmim

m!

g(m)(z)

(g′(z))m

∣∣∣∣∣ . (5.40)

Finally, using the triangle inequality, we get:

E±g (z) ≤
∞∑
m=2

πm

m!

∣∣∣∣ g(m)(z)

(g′(z))m

∣∣∣∣ . (5.41)

We may now replaceE±g (z) withEg(z) because bothE+
g (z) andE−g (z) satisfy the

same inequality (5.41). This completes the proof.

The case g(z) is a linear polynomial

The case where g(z) is a linear polynomial is particularly simple for we can easily
solve the equations (5.32) and (5.33) directly. Indeed, if we write g(z) = az + b
with a 6= 0, we get:
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aeaz+b = πi (5.42)
−aeaw+b = −πi. (5.43)

That is:

eaz =
πi

aeb
= eaw. (5.44)

Let Log(x) denote the principal logarithm of x. Then the solutions of (5.44), are
given by:

(z, w) =
1

a

(
Log

(
πi

aeb

)
(1, 1) + 2πi(m,n)

)
, (5.45)

where (m,n) ∈ Z×Z. In particular, it follows that we have in�nitely many solu-
tions. Because we know that F1 cannot have �xed points, nor 2-periodic points, it
follows that all these, even those that lie on the diagonal ∆, are genuine 4-periodic
points of F1. We have shown:

Theorem 5.2.2. Let F1(z, w) = (eaz+b + w, z) be a transcendental Hénon map
where a 6= 0. Then, F1 admits in�nitely many genuine 4-periodic points of the
form given by equation (5.45).

The case g(z) = zd, d ≥ 2

We consider now the case g(z) = zd, d ≥ 2. That is, where g is a monomial of
degree d ≥ 2. This case will be illustrative for the generalization we do later when
considering more general entire functions g(z). The idea is to look for solutions
of equation (5.34) in a sector-like region given by:

D :=
{
z ∈ C : r < |z| < r + 1, | arg(z)| < π

d

}
, (5.46)

where r > 0 is large. We then use the form of g to directly give estimates for |z|
and | arg(z)|. Finally, we show how these estimates give almost explicit formulae.

First, let us show that the error in using the approximate equation (5.34) in
place of the equations (5.32) and (5.33), is small. We use Lemma 5.2.1. We will use
the following asymptotic notation:

Let f and g be two functions. We will write:

f(z) = O(g(z)) as z → z0, (5.47)
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if and only if there exist some constant M and some δ > 0 such that for all z with
|z − z0| < δ, we have |f(z)| ≤M |g(z)|. If F and G are vector-valued maps, then
by F (z) = O(G(z)) as z → z0, we will mean that fj(z) = O(gj(z)) as z → z0,
where fj is the jth component of F , and gj is the jth component of G.

In particular, if f(x) is some smooth function and |∆x| < 1 is small, the Taylor
expansion of f near some point x0, can be written to second order, using this
asymptotic notation, as:

f(x0 + ∆x)− f(x0) = f ′(x0)∆x+ O(f ′′(x0)∆x
2) (5.48)

as ∆x→ 0.

Corollary 5.2.3. Let g(z) = zd with d ≥ 2, and suppose that z solves the approx-
imate equation (5.34) with |z| = r and r > 0 large. Then the error in using the
approximate solution of (5.34), is O

(
1
rd

)
as r → ∞. In particular, the error tends

to 0 as r →∞.

Proof. By assumption we have: eg(z) = πi
g′(z)

. Because g(z) = zd, it follows that:
g′(z) = dzd−1. Thus: emg(z) = πmim

(g′(z))m
= πmim

dmzm(d−1) . By further di�erentiation, we
also have that: g(m)(z) = d(d−1) · · · (d−m+1)zd−m. Of course, we here assume
m ≤ d. By Lemma 5.2.1, the error then satis�es:

Eg(z)≤
d∑

m=2

πm

m!

∣∣∣∣d(d− 1) · · · (d−m+ 1)zd−m

dmzm(d−1)

∣∣∣∣
=

d∑
m=2

πm

m!

(d− 1) · · · (d−m+ 1)

dm−1
rd(1−m). (5.49)

Because m ≥ 2, it follows that 1−m ≤ −1, and therefore that:

Eg(z) = O
(
rd(1−2)

)
= O

(
1

rd

)
(5.50)

as r →∞. This completes the proof.

Lemma 5.2.4. Let g(z) = zd with d ≥ 2 and consider the approximate equation:

g′(z)eg(z) = πi. (5.37)

Then there exists r0 > 0 large such that for all r ≥ r0, there exists k ∈ N such
that:

rd

2π
− 1

4d
+ 1 < k <

(r + 1)d

2π
− 1

4d
− 1, (5.51)

60



CHAPTER 5. CLASSES OF MAPS WITH INFINITELY MANY PERIODIC
POINTS, PART 1

and with such a k chosen and withR := R(k) = 2πk+ π
2d

, there exists some small
ε > 0 such that equation (5.37) has solutions z of the form:

|z|d =
R + ε(1/d− 1)

cos(ε)
(5.52)

d arg(z) =
π

2
+ ε. (5.53)

In fact, ε = O
(

log(R)
R

)
as R→∞.

Proof. The idea is to look for solutions z ∈ D, whereD is given in equation (5.46).
Because g(z) = zd, the equation we want to solve, (5.37), becomes:

dzd−1ez
d

= πi. (5.54)

That is:

ez
d

=
πi

dzd−1
. (5.55)

Let g(z) = u(z) + iv(z), so that u = <(g) and v = =(v). We take the modulus of
equation (5.55) and get:

eu =
π

d|z|d−1
. (5.56)

We note that equation (5.55) can be written:

eu(z)+iv(z) =
π

d|z|d−1
ei arg(

πi

dzd−1 ). (5.57)

Using equation (5.56), this gives:

v(z) = arg

(
πi

dzd−1

)
= arg

(
i

zd−1

)
. (5.58)

The idea is to �nd estimates for equation (5.56) and equation (5.58). Let us start
with equation (5.56). From the de�nition ofD, we have an estimate on |z|, namely:
r < |z| < r + 1. This therefore gives an estimate for d|z|d−1. Namely:

drd−1 < d|z|d−1 < d(r + 1)d−1. (5.59)

Hence:

π

d(r + 1)d−1
<

π

d|z|d−1
<

π

drd−1
. (5.60)

As we are considering equation (5.56), this provides an estimate for eu. Namely:
π

d(r + 1)d−1
< eu <

π

drd−1
. (5.61)
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Taking logarithms we get:

log
π

d
− (d− 1) log(r + 1) < u < log

π

d
− (d− 1) log r. (5.62)

Now, recall that u(z) = <(g(z)) = <(zd). Let us write z = |z|ei arg(z). Then we
get: g(z) = zd = |z|deid arg(z). Thus, u(z) = |z|d cos(d arg(z)). We substitute this
into equation (5.62) and �nd:

log
π

d
− (d− 1) log(r + 1) < |z|d cos(d arg(z)) < log

π

d
− (d− 1) log r. (5.63)

We have |z|d ∈ (rd, (r + 1)d). Therefore, for su�ciently large r, we have that
|z|d is signi�cantly greater than log r. It follows that in order for the estimate
in equation (5.63) to hold, we must have cos(d arg(z)) very close to 0, but with
negative sign. The negative sign comes from −(d − 1) log r < 0, which again
follows from (d− 1) log r > 0. Hence d arg(z) should be very close to π

2
, but just

slightly above. Say, d arg(z) = π
2

+ ε where ε > 0 is very small and to be speci�ed
later. With d arg(z) = π

2
+ ε, we �nd then:

v(z) = |z|d sin(d arg(z)) = |z|d sin
(π

2
+ ε
)

= |z|d cos(ε). (5.64)

Substituting this into equation (5.58) and solving for |z|d, yields:

|z|d =
arg
(

i
zd−1

)
cos(ε)

=
arg(i)− (d− 1) arg(z)

cos(ε)
. (5.65)

We have that (d − 1) arg(z) = d−1
d
d arg(z) = d−1

d

(
π
2

+ ε
)
, and we may set

arg(i) = π
2

+ 2πk, where k ∈ Z. Substituting these expressions in equation (5.65),
gives:

|z|d =
π
2

+ 2πk − d−1
d

(
π
2

+ ε
)

cos(ε)
=

π
2

+ 2πk + 1−d
d

(
π
2

+ ε
)

cos(ε)

=
π
2

(
1 + 1

d
− 1
)

+ 2πk + 1−d
d
ε

cos(ε)

=
π
2d

+ 2πk + ε
(
1
d
− 1
)

cos(ε)
. (5.66)

This makes sense as long as k is chosen su�ciently large and positive. In fact,
we may even provide an estimate for k. Recall that |z|d ∈ (rd, (r + 1)d). Using
equation (5.66), we then �nd the following estimate for 2πk:

rd cos(ε)− π

2d
+ ε

(
1− 1

d

)
< 2πk < (r + 1)d cos(ε)− π

2d
+ ε

(
1− 1

d

)
.

(5.67)

62



CHAPTER 5. CLASSES OF MAPS WITH INFINITELY MANY PERIODIC
POINTS, PART 1

That is, the following estimate for k:

rd

2π
cos(ε)− 1

4d
+

ε

2π

(
1− 1

d

)
< k <

(r + 1)d

2π
cos(ε)− 1

4d
+

ε

2π

(
1− 1

d

)
.

(5.68)

It is clear that for su�ciently large r, k becomes large as well. Indeed, the length
of the interval in which k lies according to (5.68), is given by:

(r + 1)d − rd

2π
cos(ε) ≥ drd−1

2π
cos(ε), (5.69)

which is large for large r. We would like to �nd an estimate for k which is inde-
pendent of ε.

For su�ciently small ε, cos(ε) is very close to 1, and so it is clear that for
su�ciently small ε > 0, we have:

rd

2π
cos(ε) +

ε

2π

(
1− 1

d

)
<
rd

2π
+ 1 (5.70)

(r + 1)d

2π
cos(ε) +

ε

2π

(
1− 1

d

)
>

(r + 1)d

2π
− 1. (5.71)

Using (5.70) and (5.71), we propose the following estimate for k:

rd

2π
− 1

4d
+ 1 < k <

(r + 1)d

2π
− 1

4d
− 1. (5.72)

We need to check that k stays inside the interval determined by (5.68). That is,
that adding the 1 on the left-hand side of (5.72), does not make k jump past the
right-hand side in (5.68), and similarly that subtracting 1 on the right-hand side of
(5.72), does not make k fall below the left-hand side of (5.68). It su�ces to show
that the length of interval determined by (5.72), is greater than 2, say 4 for good
measure. The length of the interval determined by (5.72), is given by:

(r + 1)d − rd

2π
− 2 >

drd−1

2π
− 2. (5.73)

This is clearly larger than 4 for su�ciently large r. We have found an estimate
for k coinciding with (5.51) in the statement of the lemma. We also note that our
choice for |z|d and d arg(z) up to now, coincide with (5.52) and (5.53) in the lemma
statement.

We need to to prove that our z solves g′(z)eg(z) = πi for some small ε with
ε = O(log(R)/R) as R→∞, and where R is as de�ned in the lemma statement.
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The equation we want to solve, is equation (5.57). By construction of |z|d and
d arg(z), the part eiv(z) = ei arg(

πi

dzd−1 ), is ful�lled. Hence we are left with:

eu =
π

d|z|d−1
. (5.56)

Taking logarithms, and invoking u = u(z) = zd cos(d arg(z)), equation (5.66),
d arg(z) = π

2
+ ε, and R(k) = 2πk + π

2d
, we �nd:

u = |z|d cos(d arg(z))

=
R(k)− ε(1− 1/d)

cos(ε)
cos
(π

2
+ ε
)

=
R(k)− ε (1− 1/d)

cos(ε)
(−1) sin(ε)

= log
π

d
− (d− 1) log |z|

= log
π

d
− d− 1

d
log |z|d

= log
π

d
− d− 1

d
log

(
R(k)− ε(1− 1/d)

cos(ε)

)
. (5.74)

We note that − sin(ε)
cos(ε)

can be changed to − tan(ε). We get:

−(R(k)− ε(1− 1/d)) tan(ε) = log
π

d
− d− 1

d
log

(
R(k)− ε(1− 1/d)

cos(ε)

)
(5.75)

We assume r very large. Then k is also very large and hence so is R. We want to
show that there exists some ε > 0 which solves equation (5.75). By construction,
we know that ε should be small. Let us de�ne the two functions:

f(x) := −(R(k) + x(1− 1/d)) tan(x) (5.76)

h(x) := log
π

d
− d− 1

d
log

(
R(k) + x(1− 1/d)

cos(x)

)
. (5.77)

We want to consider roots of f(ε)−h(ε) for ε ≥ 0. It is easy to see that f and h are
well-de�ned for ε = 0. Also, f(0) = 0 and−h(0) > 0. On the other hand, asR(k)
is much greater than log(R(k)) for su�ciently largeR, and as tan(ε) ≈ ε for small
ε, it follows that for not too small 0 < ε < π/2, we have that f(ε) − h(ε) < 0.
Clearly, f and h are continuous functions with respect to ε on ε ∈ [0, π/2). Hence,
by the intermediate-value theorem, there is some ε ∈ (0, π/2) small, such that
f(ε) − h(ε) = 0. That is, f(ε) = h(ε). But this is precisely equation (5.75). This
proves the existence of a solution.
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It remains to show ε = O(log(R)/R) asR→∞. We may assume, by choosing
r, and hence R, large, that ε is so small that tan(ε) can be replaced by ε, cos(ε) by
1, and ε2 by 0. Then (5.75) becomes:

−εR = log
π

d
− d− 1

d
log(R). (5.78)

For large R, we can neglect the term log π
d
. This gives ε = O

(
log(R)
R

)
as R→∞,

as required. This �nally proves the lemma.

As a corollary to Lemma 5.2.4, we have that the approximate equation (5.34),
has in�nitely many solutions in the case that g(z) = zd with d ≥ 2. The idea is
that we can choose solutions with arbitrarily large modulus:

Corollary 5.2.5. Let g(z) = zd, d ≥ 2. Then the approximate equation (5.34), has
in�nitely many solutions with arbitrarily large modulus.

Proof. Let r > 0. For r su�ciently large, we know by Lemma 5.2.4 that there exists
a solution z with r < |z| < r + 1. This is true for also larger r. Hence, we can
choose a sequence rn ↑ ∞, say with n ≥ 1 and r1 ≥ r. For each rn, Lemma 5.2.4
provides a solution zn. Thus we get an in�nite sequence {zn}n≥1 of solutions. This
proves the assertion.

However, the approximate equation g′(z)eg(z) = πi, is not the solution we
really want to solve. What we really want to solve, is the system of equations
given by the two equations (5.32) and (5.33). Furthermore, our solutions up to
now all lie on the diagonal ∆. We must expect that the general solutions of the
equations (5.32) and (5.33), may lie o� the diagonal ∆. Let us de�ne:

G(z, w) :=

[
G1(z, w)
G2(z, w)

]
=

[
g
(
w + eg(z)

)
− g(w)

g
(
z − eg(w)

)
− g(z)

]
. (5.79)

Then we want to search for solutions (z, w) not necessarily on ∆, such that:

G(z, w) = (πi,−πi)T . (5.80)

Here, xT denotes the transpose of x. The idea is the following:

let z0 be such that g′(z0)eg(z0) = πi. Then, although G(z0, z0) is not equal to
(πi,−πi)T , it comes quite close. Indeed, by Corollary 5.2.3, we have:

|G(z0, z0)− (πi,−πi)T | = O

(
1

|z0|d

)
(5.81)

as |z0| → ∞. The expression 1
|z0|d is small for |z0| := r > 0 large. Let δ > 0 be

small and let (z, w) ∈ Bδ(z0, z0), where Bρ(x) denotes the open ball centred at x
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with radius ρ. For small δ, (z, w) is close to (z0, z0). If now the image under G of
the small ball Bδ(z0, z0), is not too small, say, so large that G(Bδ(z0, z0)) contains
a ball centred at G(z0, z0) with radius R greater than O

(
1
rd

)
as r → ∞, then the

image G(Bδ(z0, z0)) "swallows" the point (πi,−πi)T . Thus there must exist some
point (z, w) ∈ Bδ(z0, z0) such that G(z, w) = (πi,−πi)T . This provides the ex-
istence of a solution to equation (5.80). In fact, in�nitely many with courtesy of
Corollary 5.2.5.

Instead of the image ofBδ(z0, z0) underG, we consider the image ofBδ(z0, z0)

under the linear part of G at (z0, z0), which we denote by G(z0,z0)
L , and which is

de�ned by:

G
(z0,z0)
L (z, w) = G(z0, z0) +G′(z0, z0)

[
z − z0
w − z0

]
. (5.82)

We check that the images G(z0,z0)
L (Bδ(z0, z0)) and G(Bδ(z0, z0)), are not far from

each other when δ is small. To do this, we use a Taylor expansion for each of the
components of G about (z0, z0). Let j ∈ {1, 2}. Then we get:

Gj(z, w) = Gj(z0, z0) +
∂Gj(z0, z0)

∂z
(z − z0) +

∂Gj(z0, z0)

∂w
(w − z0)

+
1

2
O

(
∂2Gj(z0, z0)

∂z2
(z − z0)2 +

∂2Gj(z0, z0)

∂w2
(w − z0)2

)
+ O

(
∂2Gj(z0, z0)

∂z∂w
(z − z0)(w − z0)

)
(5.83)

as δ → 0. Thus:
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G(z, w) = G(z0, z0) +

[
∂G1(z0,z0)

∂z
(z − z0) + ∂G1(z0,z0)

∂w
(w − z0)

∂G2(z0,z0)
∂z

(z − z0) + ∂G2(z0,z0)
∂w

(w − z0)

]

+
1

2
O

([
∂2G1(z0,z0)

∂z2
(z − z0)2 + ∂2G1(z0,z0)

∂w2 (w − z0)2
∂2G2(z0,z0)

∂z2
(z − z0)2 + ∂2G2(z0,z0)

∂w2 (w − z0)2

])

+ O

([
∂2G1(z0,z0)

∂z∂w
(z − z0)(w − z0)

∂2G2(z0,z0)
∂z∂w

(z − z0)(w − z0)

])
, as δ → 0

= G(z0, z0) +G′(z0, z0)

[
z − z0
w − z0

]
+

1

2
O

([
∂2G1(z0,z0)

∂z2
(z − z0)2 + ∂2G1(z0,z0)

∂w2 (w − z0)2
∂2G2(z0,z0)

∂z2
(z − z0)2 + ∂2G2(z0,z0)

∂w2 (w − z0)2

])

+ O

([
∂2G1(z0,z0)

∂z∂w
(z − z0)(w − z0)

∂2G2(z0,z0)
∂z∂w

(z − z0)(w − z0)

])
, as δ → 0

= G
(z0,z0)
L (z, w) +

1

2
O

([
∂2G1(z0,z0)

∂z2
(z − z0)2 + ∂2G1(z0,z0)

∂w2 (w − z0)2
∂2G2(z0,z0)

∂z2
(z − z0)2 + ∂2G2(z0,z0)

∂w2 (w − z0)2

])

+O

([
∂2G1(z0,z0)

∂z∂w
(z − z0)(w − z0)

∂2G2(z0,z0)
∂z∂w

(z − z0)(w − z0)

])
, as δ → 0. (5.84)

Because Bδ(z0, z0) is compact, by continuity, the derivatives ∂Gj
∂z
,
∂Gj
∂w
,
∂2Gj
∂z2

,
∂2Gj
∂w2 ,

and ∂2Gj
∂z∂w

, j = 1, 2, are all bounded at (z0, z0). Hence we get:

|G(z, w)−G(z0,z0)
L (z, w)| = O

(
max

{∣∣∣∣[(z − z0)2(z − z0)2
]∣∣∣∣ , ∣∣∣∣[(w − w0)

2

(w − w0)
2

]∣∣∣∣ , ∣∣∣∣[(z − z0)(w − z0)(z − z0)(w − z0)

]∣∣∣∣})
(5.85)

as δ → 0. Now, we have:

∣∣∣∣[(z − z0)2(z − z0)2
]∣∣∣∣ =

√
2|z − z0|4 =

√
2|z − z0|2 (5.86)∣∣∣∣[(w − z0)2(w − z0)2

]∣∣∣∣ =
√

2|w − z0|2 =
√

2|w − z0|2 (5.87)∣∣∣∣[(z − z0)(w − z0)(z − z0)(w − z0)

]∣∣∣∣ =
√

2|z − z0|2 · |w − z0|2 =
√

2|z − z0| · |w − z0|. (5.88)

Because (z, w) ∈ Bδ(z0, z0), we �nd:

√
|z − z0|2 + |w − z0|2 < δ. (5.89)
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That is, after squaring:

|z − z0|2 + |w − z0|2 < δ2. (5.90)

In particular, we have |z − z0|2 < δ2 and |w − z0|2 < δ2. Consequently, all the
right-hand sides in the equations (5.86) - (5.88), are less than

√
2δ2. Then equation

(5.85) gives:

|G(z, w)−G(z0,z0)
L (z, w)| = O

(√
2δ2
)

(5.91)

as δ → 0. This shows that the distance between points with common pre-images,
in the images G(Bδ(z0, z0)) and G(z0,z0)

L (Bδ(z0, z0)), are O(
√

2δ2) as δ → 0. In
other words, we can consider the image G(z0,z0)

L (Bδ(z0, z0)) instead of the image
G(Bδ(z0, z0)), and the error in doing so, is O(

√
2δ2) as δ → 0. As the distance

from G(z0, z0) to the point (πi,−πi)T , is O(1/rd) as r → ∞, it su�ces to show
that G(z0,z0)

L (Bδ(z0, z0)) contains a ball centred at G(z0, z0) with radius greater
than O

(
1
rd

+
√

2δ2
)

as (r, δ)→ (∞, 0). Now, we can choose δ so small that:

√
2δ2 <

1

rd
. (5.92)

That is:

δ <

√
1√
2rd

. (5.93)

Then it su�ces to show thatG(z0,z0)
L (Bδ(z0, z0)) contains a ball centred atG(z0, z0)

with radius greater than O
(

2
rd

)
as r →∞. We calculate:

|G(z0,z0)
L (z, w)−G(z0, z0)| =

∣∣∣∣G′(z0, z0) [z − z0w − z0

]∣∣∣∣
=

∣∣∣∣∣
[
∂G1(z0,z0)

∂z
(z − z0) + ∂G1(z0,z0)

∂w
(w − z0)

∂G2(z0,z0)
∂z

(z − z0) + ∂G2(z0,z0)
∂w

(w − z0)

]∣∣∣∣∣ . (5.94)

Let us write G(z0,z0)
L,j for the jth component of G(z0,z0)

L , and de�ne:

Wj := G
(z0,z0)
L,j −Gj(z0, z0). (5.95)

We also de�ne:
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a :=
∂G1(z0, z0)

∂z
(5.96)

b :=
∂G1(z0, z0)

∂w
(5.97)

c :=
∂G2(z0, z0)

∂z
(5.98)

d :=
∂G2(z0, z0)

∂w
. (5.99)

Then equation (5.94) gives:

|W1(z, w)| = |a(z − z0) + b(w − z0)| (5.100)
|W2(z, w)| = |c(z − z0) + d(w − z0)| . (5.101)

We use the reverse triangle inequality on the two equations (5.100) and (5.101).
This yields:

|W1(z, w)| ≥ ||a| · |z − z0| − |b| · |w − z0||
= max {|a| · |z − z0| − |b| · |w − z0|, |b| · |w − z0| − |a| · |z − z0|}

(5.102)
|W2(z, w)| ≥ ||c| · |z − z0| − |d| · |w − z0||

= max {|c| · |z − z0| − |d| · |w − z0|, |d| · |w − z0| − |c| · |z − z0|} .
(5.103)

Let (z, w) ∈ ∂Bδ(z0, z0), and write |z − z0| = kδ and |w − z0| = lδ. Let D
denote the unit disc in C. Then (k, l) ∈ ∂D. Here we of course, think of D as a
subset in the plane R2: R2 ⊇ ∂D 3 (k, l). We also note that (k, l) ∈ R2

+ where
R+ := {x ∈ R : x ≥ 0}. That is, k, l ≥ 0. Then the two inequalities (5.102) and
(5.103), become:

|W1(z, w)| ≥ ||a|k − |b|l| δ (5.104)
|W2(z, w)| ≥ ||c|k − |d|l| δ. (5.105)

Suppose now that one of the members of {|a|, |b|} and one of the members of
{|c|, |d|}, is so large that we are able to show: |W1(z, w)|2+ |W2(z, w)|2 > O

(
2
rd

)2
as r → ∞, where we recall that (z, w) ∈ ∂Bδ(z0, z0). Then, because the images
of compact sets under continuous functions, are compact sets, and because holo-
morphic maps are open maps, it follows that:

G
(z0,z0)
L (∂Bδ(z0, z0)) = ∂G

(z0,z0)
L (Bδ(z0, z0)). (5.106)
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Thus, the boundary of the image set G(z0,z0)
L (Bδ(z0, z0)), lies at a distance greater

thanO
(

2
rd

)
as r →∞, from the pointG(z0, z0). We must make sure that thewhole

image set G(z0,z0)
L (Bδ(z0, z0)), contains a ball centred at G(z0, z0) of a su�ciently

large radius greater than O
(

2
rd

)
as r → ∞. A priori this may not be the case.

There are two things which may go wrong. The �rst potential problem is that the
image set G(z0,z0)

L (Bδ(z0, z0)), is an annulus-like region centred at G(z0, z0). See
Figure 5.1.

Figure 5.1: The �gure illustrates the case when the image set G(z0,z0)
L (Bδ(z0, z0)), is an

annulus-like region. The annulus-like region is given by (A) in blue. The (B) in light red
depicts a ball of some su�ciently large radius greater than O(2/rd) as r →∞ centred at
the center point G(z0, z0). We see that (A) does not contain (B), but the distance from
the center point G(z0, z0) to the boundary of (A) is greater than the radius if (B).

Then the boundary of the image setG(z0,z0)
L (Bδ(z0, z0)) can still be su�ciently

far away from G(z0, z0), while the image set itself fails to contain a whole ball
centred at G(z0, z0) of radius greater than O

(
2
rd

)
as r → ∞. However, this is

impossible, for G(z0,z0)
L is continuous and Bδ(z0, z0) is connected, and therefore so

must G(z0,z0)
L (Bδ(z0, z0)) be. An annulus-like region would disconnect the center

pointG(z0, z0) from the rest of the image set. Hence, at worst, G(z0,z0)
L (Bδ(z0, z0))

is almost an annulus-like region centred at G(z0, z0), with a small sector-like re-
gion which "swoops" in to include the center point G(z0, z0). See Figure 5.2.

This is the second potential problem. But also this is impossible, for the bound-
ary of such a sector-like region would belong to the boundary ∂G(z0,z0)

L (Bδ(z0, z0)),
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Figure 5.2: The �gure illustrates the case that the image set G
(z0,z0)
L (Bδ(z0, z0)), is

an annulus-like region with a small sector that swoops in to include the center point
G(z0, z0). This region is depicted as (S) in blue. The (B) in light red is as in Figure
5.1, and depicts a ball centred at G(z0, z0). We see that either the small sector fails to
envelope (B), in which case parts of its boundary will be at a distance closer to the center
points G(z0, z0) that the radius of (B), or it follows that (S) does contain (B).

which by the assumption that:

|W1(z, w)|2 + |W2(z, w)|2 > O

(
2

rd

)2

(5.107)

as r → ∞ and (z, w) ∈ ∂Bε(z0, z0), cannot come too close to the center point
G(z0, z0). We conclude that the image set G(z0,z0)

L (Bδ(z0, z0)), must be, close to the
center point G(z0, z0), a ball-like region centred at G(z0, z0). Consequently, if the
inequalities (5.104) and (5.105) hold on the boundary ∂Bδ(z0, z0) in a such a way
that also (5.107) holds, then the whole image setG(z0,z0)

L (Bδ(z0, z0)), does contain a
ball centred at G(z0, z0) with su�cient radius larger than O

(
2
rd

)
as r →∞. Thus

it remains to verify the inequality (5.107). We will need estimates on |a|, |b|, |c|, |d|:

Lemma 5.2.6. Let a, b, c, d be de�ned according to equations (5.96) - (5.99), where
G is de�ned in equation (5.79). Then:

|a| = O
(
|z0|d−1

)
= |d|, as |z0| → ∞ (5.108)

|b| = O

(
1

|z0|

)
= |c|, as |z0| → ∞. (5.109)
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Proof. We simply compute |a|, |b|, |c|, and |d| using the de�nition for a, b, c, d, and
the fact that g′(z0)eg(z0) = πi, where g(z) = zd. That is:

dzd−10 ez
d
0 = πi. (5.110)

Recall the de�nition for Gj given by (5.79), j = 1, 2. We get:

a =
∂G1(z0, z0)

∂z
=

∂

∂z

∣∣
(z0,z0)

{
g
(
w + eg(z)

)
− g(w)

}
=
[
g′(w + eg(z))eg(z)g′(z)

] ∣∣
(z0,z0)

= g′
(
z0 + eg(z0)

)
eg(z0)g′(z0) (5.111)

b =
∂G1(z0, z0)

∂w
=

∂

∂w

∣∣
(z0,z0)

{
g
(
w + eg(z)

)
− g(w)

}
=
[
g′(w + eg(z))− g′(w)

] ∣∣
(z0,z0)

= g′
(
z0 + eg(z0)

)
− g′(z0) (5.112)

c =
∂G2(z0, z0)

∂z
=

∂

∂z

∣∣
(z0,z0)

{
g
(
z − eg(w)

)
− g(z)

}
=
[
g′
(
z − eg(w)

)
− g′(z)

] ∣∣
(z0,z0)

= g′
(
z0 − eg(z0)

)
− g′(z0) (5.113)

d =
∂G2(z0, z0)

∂w
=

∂

∂w

∣∣
(z0,z0)

{
g
(
z − eg(w)

)
− g(z)

}
=
[
g′
(
z − eg(w)

)
(−eg(w))g′(w)

] ∣∣
(z0,z0)

= −g′
(
z0 − eg(z0)

)
eg(z0)g′(z0). (5.114)

Because we have g(z) = zd, g′(z) = dzd−1, and eg(z0) = πi
g′(z0)

, we �nd:

a = d

(
z0 +

πi

dzd−10

)d−1
· πi

dzd−10

· dzd−10

= πid

(
z0 +

πi

dzd−10

)d−1
(5.115)

b = d

(
z0 +

πi

dzd−10

)d−1
− dzd−10 (5.116)

c = d

(
z0 −

πi

dzd−10

)d−1
− dzd−10 (5.117)

d = d

(
z0 −

πi

dzd−10

)d−1
· (−1) · πi

dzd−10

· dzd−10

= −πid
(
z0 −

πi

dzd−10

)d−1
(5.118)

Recall that |z0| = r > 0 is large. Hence from equations (5.115) - (5.118), we get:
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|a| = O
(
|z0|d−1

)
= |d|, as |z0| → ∞, (5.108)

|b| = O

(∣∣∣∣zd−20

zd−10

∣∣∣∣) = O

(
1

|z0|

)
= |c|, as |z0| → ∞. (5.119)

These are the required estimates. Alternatively, we could have used Taylor expan-
sion. We illustrate this for b:

b = g′(z0 + eg(z0))− g′(z0) = g′′(z0)e
g(z0) + O

(
g′′′(z0)e

2g(z0)
)
, as |z0| → ∞.

(5.120)

We have eg(z0) = πi
g′(z0)

, so equation (5.120) becomes:

b = g′′(z0)
πi

g′(z0)
+ O

(
g′′′(z0)

(−1)π2

[g′(z0)]2

)
, as |z0| → ∞

=
πid(d− 1)zd−20

dzd−10

+ O

(
−π

2d(d− 1)(d− 2)zd−30

d2z2d−20

)
, as |z0| → ∞

=
πi(d− 1)

z0
+ O

(
−π

2(d− 1)(d− 2)

dzd+1
0

)
, as |z0| → ∞, (5.121)

from which it is easy to see that |b| = O
(

1
|z0|

)
as |z0| → ∞. In any event, the

equations (5.108) and (5.119) already proves the assertion and we are done.

Thus, for |z0| large, |a| and |d| are large, while |b| and |c| are small. Looking at
(5.104) and (5.105), we therefore get:

|W1(z, w)| ≥ (|a|k − |b|l)δ (5.122)
|W2(z, w)| ≥ (|d|l − |c|k)δ. (5.123)

Because |z0| = r can be chosen as large as we want, we expect that we can make
it so that |W1(z, w)|2 + |W2(z, w)|2 > O

(
2
rd

)2 as r → ∞. We �nally have our
existence result:

Theorem 5.2.7. Let g(z) = zd, d ≥ 2, �x λ ∈ (0, 1), and let z0 be such that
g′(z0)e

g(z0) = πi and |z0| = r, with r > 0 su�ciently so that we have r3d−2 > 4
√
2

λ
.

Then equation (5.80): G(z, w) = (πi, πi)T , where G is de�ned by equation (5.79),
has a solution in Bδ(z0, z0) with

√
2δ2 = λ

rd
.

Proof. Using Lemma 5.2.6, we calculate:
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|W1(z, w)|2 + |W2(z, w)|2≥(|a|k − |b|l)2δ2 + (|d|l − |c|k)2δ2

=
(
|a|2k2 − 2|a| · |b|kl + |b|2l2

)
δ2

+
(
|c|2k2 − 2|c| · |d|kl + |d|2l2

)
δ2

= O

((
|z0|2d−2k2 − 2|z0|d−2kl +

1

|z0|2
l2
)
δ2
)

+O

((
|z0|2d−2l2 − 2|z0|d−2kl +

1

|z0|2
k2
)
δ2
)

(5.124)

as |z0| → ∞. Because 2d− 2 = 2(d− 1) > d− 1 > d− 2 for d ≥ 2, and because
(k, l) ∈ ∂D, it follows that we have:

|W1(z, w)|2 + |W2(z, w)|2 ≥ O
(
|z0|2d−2

)
(k2 + l2)δ2 = O(|z0|2d−2)δ2 (5.125)

as |z0| → ∞. Thus, it is clear that we can choose |z0| = r su�ciently large such
that:

|W1(z, w)|2 + |W2(z, w)|2 > O

(
2

rd

)2

(5.126)

as r → ∞. Indeed, we have δ2 < 1√
2rd

by assumption. Let us write δ2 = λ√
2rd

where λ ∈ (0, 1) is �xed. Then, using equation (5.125), it su�ces to choose r such
that:

r2d−2 · λ√
2rd

>
4

r2d
. (5.127)

That is:

r2d−2−d+2d = r3d−2 >
4
√

2

λ
. (5.128)

This is precisely the assumption in the theorem statement, and the proof is done.

Corollary 5.2.8. Let g(z) = zd, g ≥ 2, and let F−1(z, w) = (eg(z) + w, z). Then,
F1 has in�nitely many genuine 4-periodic points. Moreover, in�nitely many of
these can be chosen close to the points of the form (z0, z0) ∈ ∆, where z0 is the
solution given by Lemma 5.2.4.

Proof. Let r > 0 be large. For su�ciently large r, Lemma 5.2.4 provides a z0
such that g′(z0)eg(z0) = πi. If necessary, we can choose to make r even larger
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such that Theorem 5.2.7 provides a solution (z, w) = (zr, wr) ∈ Bδ(z0, z0), where√
2δ ∈ (0, 1/rd), and where |z0| = r with z0 provided by Lemma 5.2.4 for this

larger r. We assume we have chosen any �xed λ ∈ (0, 1) as given in Theorem 5.2.7.
But then we can repeat this argument with any larger r. Thus, let {rn}n≥1 ↑ ∞
be an in�nite sequence with r1 > r. Then for each rn, Lemma 5.2.4 and Theorem
5.2.7 provides a solution (zn, wn) ∈ Fix(F 4

−1). Thus we get an in�nite sequence of
4-periodic points for F−1, {(zn, wn)}n≥1. To complete the proof, we notice that all
these must be genuine 4-periodic points because Fix(F−1) = Fix(F 2

−1) = ∅, and
the only way any point (z, w) ∈ Fix(F 4

−1) fails to be a genuine 4-periodic point, is
that (z, w) ∈ Fix(F−1) ∪ Fix(F 2

−1).

The case g(z) is a general non-constant entire function

We just showed that for g(z) = zd with d ≥ 2, the transcendental Hénon map
F−1(z, w) = (eg(z) + w, z), admits in�nitely many genuine 4-periodic points. We
now use a similar approach and similar estimate methods used in proving this, to
show that the same is true when g is allowed to be any general non-constant entire
function. The polynomial case where g has degree d ≥ 2, is completely analogous
to the case where g is a monomial with degree d. In fact, we need only recall from
chapter 1, Theorem 1.2.1, that if g(z) =

∑d
j=0 bjz

j , with bd 6= 0, then:

g(z) ∼ bdz
d, as |z| → ∞. (5.129)

In chapter 1, the result was stated as: |g(z)| ∼ |bd| · |z|d as |z| → ∞, but
it is easy to see that the same is true without moduli. In other words, if we let
|z| ∈ (r, r+ 1), then by choosing r su�ciently large, we can make g(z) as close as
we want to bdzd. Finally, de�ning then a new variable ζ by ζ = z

λ
, where λd = bd,

we can almost reduce to the case monomial case g(ζ) = ζd. We say almost because
g(ζ) is not quite equal to ζd. Instead, g(ζ) = ζd(1+δ), where δ → 0 uniformly with
respect to ζ as r̃ →∞, and where |ζ| ∈ (r̃, r̃+1). The previous estimate methods,
however, carry through in a completely analogous manner as with the monomial
case. Additionally, most of the proof for when g is transcendental (Lemma 5.2.9
below), can also be used in the case g is polynomial. See Remark 5.2.10.

We therefore focus on the case where g is a transcendental entire function.
The idea is to look for solutions of the approximate equation (5.34) on the diag-
onal where g looks like a polynomial of high degree. We use the Wiman-Valiron
method (Theorem 1.4.4) for this.

Thus, let r > 0 be large and let N = N(r) denote the central index for g with
respect to r. Let M = M(r) = M(g, r) = sup|z|=r |g(z)| and let ζ with |ζ| = r be
such that |g(ζ)| = M . Let α > 1/2. Then we know that for all z such that:

|z − ζ| < r

Nα
, (5.130)
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we can write:

g(z) =

(
z

ζ

)N
g(ζ)(1 + δ0), (5.131)

where δ0 → 0 with respect to z as r → ∞. We choose r outside the exceptional
set in Wiman-Valiron’s theorem (Theorem 1.4.4), with �nite logarithmic measure.
We also have:

g′(z) = N
zN−1

ζN
g(ζ)(1 + δ1), (5.132)

where again δ1 → 0 uniformly with respect to z as r →∞. The idea is to look for
solutions for z of equation (5.34) where (5.130) holds.

Lemma 5.2.9. Let g(z) be a transcendental entire function and let α ∈ (1, 2/1].
Then, for a su�ciently large r > 0 outside some exceptional set with �nite loga-
rithmic measure, there exists a solution z to the equation g′(z)eg(z) = πi, with |z|
close to r. In fact, z can be chosen of the form:

|z|N ∼ rN
2πk + π

2N
+
(

1
N
− 1
)

(ε− arg(g(ζ))) + arg(ζ)− arg(g(ζ))

M cos(ε)
(5.133)

arg(z) ∼
π
2

+ ε− arg(g(ζ))

N
+ arg(ζ), (5.134)

both as r → ∞, where N = N(r) is the central index for g, M = M(g, r), ζ is
such that |g(ζ)| = M , k ∈ N is chosen from the interval (ã, b̃), where the following
asymptotic relations are satis�ed:

ã ∼
M

2π

(
1− 1

Nα

)N
− 1

4N
+

(
1
N
− 1
)

arg(g(ζ))

2π
+

arg(g(ζ))− arg(ζ)

2π
+ 1

(5.135)

b̃ ∼
M

2π

(
1− 1

Nα

)N
− 1

4N
+

(
1
N
− 1
)

arg(g(ζ))

2π
+

arg(g(ζ))− arg(ζ)

2π
− 1

(5.136)

as r →∞, and �nally where we have ε ∼ O
(

log(R)
R

)
asR→∞, withR satisfying

R = R(k) ∼ 2πk + π
2N
−
(

1
N
− 1
)

arg(g(ζ)) + arg(ζ)− arg(g(ζ)) as r →∞.

Proof. Let |ζ| = r and let |z| = ρ. We look for z in a region determined by (5.130).
This provides an estimate on ρ = |z|. The triangle inequality gives:

ρ = |z| = |(z − ζ) + ζ| ≤ |z − ζ|+ |ζ| < r

Nα
+ r = r

(
1 +

1

Nα

)
, (5.137)
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and the reverse triangle inequality gives:

ρ = |z − ζ + ζ| ≥ ||z − ζ| − |ζ|| = |ζ| − |z − ζ| > r − r

Nα
= r

(
1− 1

Nα

)
.

(5.138)

Combining (5.137) and (5.138), we get the following estimate for ρ:

r

(
1− 1

Nα

)
< ρ < r

(
1 +

1

Nα

)
. (5.139)

We recall that N increases as r increases. Thus, for su�ciently large r, ρ becomes
very close to r. Let θ = arg(z) and let φ = arg(ζ). Then, if θ is su�ciently close
to φ, we may assume (5.130) holds. Then equations (5.131) and (5.132) are available.

The equation we want to solve, is: g′(z)eg(z) = πi. We follow the same ap-
proach as for the case g(z) = zd, d ≥ 2, and write g(z) = u(z) + iv(z). Then this
single equation splits into two equations:

eu(z) = e|g(z)| cos(arg(g(z)) =
π

|g′(z)|
(5.140)

v(z) = |g(z)| sin(arg(g(z)) = arg

(
i

g′(z)

)
. (5.141)

As in the case g(z) = zd, d ≥ 2, we consider �rst equation (5.140). Using equations
(5.131) and (5.132), we get:

|g(z)| =
(ρ
r

)N
M |1 + δ0| (5.142)

|g′(z)| = N
ρN−1

rN
M |1 + δ1|. (5.143)

As δ0, δ1 → 0 uniformly with respect to z as r → ∞, by choosing r su�ciently
large, we may assume δ0 and δ1 to be constants with very small magnitude. Thus,
we regard |1 + δ0| and |1 + δ1| as positive constants which are very close to 1. We
now let σ0 := arg(g(ζ)) + arg(1 + δ0), and σ1 := arg(g(ζ)) + arg(1 + δ1). Then,
using equation (5.131) and (5.132), we get:

arg(g(z)) = N(θ − φ) + σ0 (5.144)
arg(g′(z)) = N(θ − φ)− θ + σ1. (5.145)

Dividing by r in the estimate (5.139), and raising everything to the power N − 1,
we get an estimate on

(
ρ
r

)N−1, given by:

(
1− 1

Nα

)N−1
<
(ρ
r

)N−1
<

(
1 +

1

Nα

)N−1
. (5.146)

Thus:
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MN |1 + δ1|
r

(
1− 1

Nα

)N−1
<
MN |1 + δ1|ρN−1

rN
<
MN |1 + δ1|

r

(
1 +

1

Nα

)N−1
.

(5.147)

Thus, using equation (5.143):

πr

MN |1 + δ1|
(
1 + 1

Nα

)N−1 < π

|g′(z)|
<

r

MN |1 + δ1|
(
1− 1

Nα

)N−1 . (5.148)

Using equation (5.140), equation (5.148) then provides us with an estimate on
eu(z) = e|g(z)| cos(arg(g(z)):

πr

MN |1 + δ1|
(
1 + 1

Nα

)N−1 < eu(z) <
πr

MN |1 + δ1|
(
1− 1

Nα

)N−1 . (5.149)

We take logarithms, and invoke u(z) = |g(z)| cos(arg(g(z))), where |g(z)| is given
by equation (5.142). This gives:

log πr − log(M)− log(N)− log |1 + δ1| − (N − 1) log

(
1 +

1

Nα

)
< M |1 + δ0|

(ρ
r

)N
cos(arg(g(z)))

< log πr − log(M)− log(N)− log |1 + δ1| − (N − 1) log

(
1− 1

Nα

)
. (5.150)

From the theory of entire functions (see Theorem 1.2.3), we now that M � rk as
r →∞, for any k. Hence, in the expression M

rN
,M dominates, so said expression is

O(M) as r →∞. The upper-hand side of (5.150) is for the same reason, dominated
by − log(M) − log(N). The same is true for the lower-hand side. We also note
that M � log(M) as r → ∞. In particular, it follows that cos(arg(g(z)) must
be of negative sign and very small in magnitude. This is similar to the case when
g(z) = zd, d ≥ 2. We therefore conclude that arg(g(z)) must be very close to π

2
,

but slightly above. Thus, we set:

arg(g(z)) = N(θ − φ) + σ0 =
π

2
+ ε, (5.151)

for some very small ε > 0 to be speci�ed. Recall that θ = arg(z) and φ = arg(ζ).
Equation (5.151) can be rearranged to give:

arg(z) =
π
2

+ ε− σ0
N

+ arg(ζ). (5.152)

From this we see that we are justi�ed in using the Wiman-Valiron method (Theo-
rem 1.4.4). Indeed, because N increases with r, by choosing a su�ciently large r,
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we can make arg(z) su�ciently close to arg(ζ), where arg(z) is given by equation
(5.152), such that when also (5.139) holds, (5.130) holds. We proceed to consider
equation (5.141), which with equation (5.145), becomes:

M |1 + δ0|
(ρ
r

)N
cos(ε) =

π

2
+ 2πk + θ −N(θ − φ)− σ1. (5.153)

Here k ∈ Z, and as before, θ = arg(z) is given by equation (5.152). Solving for ρN
in equation (5.153), yields then:

ρN =
π
2

+ 2πk +
π
2
+ε−σ0
N

+ φ−
(
π
2

+ ε− σ0
)
− σ1

M |1 + δ0| cos(ε)
rN

=
2πk + π

2N
+ φ− σ1 + (ε− σ0)

(
1
N
− 1
)

M |1 + δ0| cos(ε)
rN . (5.154)

We need ρN close to rN as given by (5.146). Notice that M is very large. Thus by
choosing k su�ciently large, we can make this happen. In fact, we can give an
estimate on k. We use (5.146) or equivalently, (5.139), for this. We then �nd:

(
1− 1

Nα

)N
<

2πk + π
2N

+ φ− σ1 + (ε− σ0)
(

1
N
− 1
)

M |1 + δ0| cos(ε)
<

(
1 +

1

Nα

)N
.

(5.155)

Let us de�ne a and b by:

2πa =

(
1− 1

Nα

)N
M |1 + δ0| cos(ε)− π

2N
+ σ1 − φ− (ε− σ0)

(
1

N
− 1

)
(5.156)

2πb =

(
1 +

1

Nα

)N
M |1 + δ0| cos(ε)− π

2N
+ σ1 − φ− (ε− σ0)

(
1

N
− 1

)
.

(5.157)

Then (5.155) can be written:

a < k < b. (5.158)

The estimate (5.158) is dependent on ε. We would like to �nd an estimate for k
independent of ε, similar to what we did in the case g(z) = zd, d ≥ 2. We may
assume N very large. Then 1

N
− 1 is very close to −1 and so −ε

(
1
N
− 1
)

is very
close to ε. We may assume ε so small that:

M |1 + δ0|
2π

cos(ε)− ε

2π

(
1

N
− 1

)
<
M |1 + δ0|

2π
+ 1 (5.159)

M |1 + δ0|
2π

cos(ε)− ε

2π

(
1

N
− 1

)
>
M |1 + δ0|

2π
− 1. (5.160)
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Thus we propose the following ε-independent estimate for k:

ã < k < b̃, (5.161)

where:

ã =

(
1− 1

Nα

)N
M |1 + δ0|

2π
+ 1− 1

4N
+
σ1 − φ

2π
+
σ0
2π

(
1

N
− 1

)
(5.162)

b̃ =

(
1 +

1

Nα

)N
M |1 + δ0|

2π
− 1− 1

4N
+
σ1 − φ

2π
+
σ0
2π

(
1

N
− 1

)
. (5.163)

It su�ces to show that [ã, b̃] has length greater than 2, say 4 for good measure.
Denote its length by l([ã, b̃]). We �nd:

l([ã, b̃]) =
M |1 + δ0|

2π

[(
1 +

1

Nα

)N
−
(

1− 1

Nα

)N]
− 2. (5.164)

Recall that limN→∞
(
1 + x

N

)N
= ex. Thus, in the case α = 1, we get:

lim
N→∞

(
1± 1

Nα

)N
= e±1. (5.165)

Hence, the expression:

(
1 +

1

Nα

)N
−
(

1− 1

Nα

)N
, (5.166)

is close to e− 1
e
> 2 for largeN . In the case α ∈ (1/2, 1), because 1+ 1

Nα becomes
larger and 1 − 1

Nα becomes smaller, compared to the case α = 1, it follows that
the expression in (5.166), becomes even larger. Indeed, it is easy to check that
for α close to 1/2, the expression becomes very large for large N . For α > 1,
the expression may in general, be very small for large N . However, because we
assume α ∈ (1/2, 1], we may conclude that the expression in (5.166), is at least
larger than 2 for large N . Then, because M is very large, we conclude that we can
make it so that l([ã, b̃]) > 4. In particular, by choosing r, and henceM , su�ciently
large, we can make it so that the expression in (5.166), is much larger than 20π

M |1+δ0| .
Then we �nd from equation (5.164):

l([ã, b̃]) >
M |1 + δ0|

2π
· 20π

M |1 + δ0|
− 2 = 8 > 4. (5.167)

Thus, k can be chosen independently of ε. With k chosen independently of ε such
that k ∈ (ã, b̃), let ρ be given according to equation (5.154), where we may now
view ρ as a function of ε to be speci�ed. We will show that there exists a su�ciently
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small ε > 0 such that with ρ chosen as described, equation (5.140) holds. Equation
(5.140) becomes, after taking logarithms on both sides:

−
[
2πk +

π

2N
+ φ− σ1 + (ε− σ0)

(
1

N
− 1

)]
tan(ε)

= log
π

N ρN−1

rN
M |1 + δ1|

= log
πrN

MN |1 + δ1|
− (N − 1)

N
log(ρN)

= log π +N log r − log(M)− log(N)− log |1 + δ1|

− N − 1

N
log

(
2πk + π

2N
+ φ− σ1 + (ε− σ0)

(
1
N
− 1
)

M |1 + δ0| cos(ε)
rN

)
= log π + log r − 1

N
log(M)− log(N)− log |1 + δ1|

+
N − 1

N
log |1 + δ0|+

N − 1

N
log(cos(ε))

−N − 1

N
log

(
2πk +

π

2N
+ φ− σ1 + (ε− σ0)

(
1

N
− 1

))
. (5.168)

Now, let us de�ne the functions:

f(x) := −
[
2πk +

π

2N
+ φ− σ1 + (x− σ0)

(
1

N
− 1

)]
tan(x) (5.169)

h(x) := log π + log r − 1

N
log(M)− log(N)− log |1 + δ1|

+
N − 1

N
log |1 + δ0|+

N − 1

N
log(cos(x))

− N − 1

N
log

(
2πk +

π

2N
+ φ− σ1 + (x− σ0)

(
1

N
− 1

))
. (5.170)

Notice that f(0) = 0. Comparing with the proof for the case when g is a monomial
g(z) = zd, d ≥ 2, we see that we would like to have h(ε) negative for all ε ≥ 0. We
need to analyse a bit. Notice that if N grows faster than r, then logN dominates
log r and so log r − logN is negative. However, if N grows slower, then this
is positive as log r will dominate. Similarly, it is not at all obvious what to say
about log r and 1

N
logM . Even though we know that M is much greater than r,

because this also involvesN , whose relationship with r as suggested, is unclear, it
is not apparent which of the two terms log(r) and 1

N
log(M), that will dominate.

Fortunately, there is something we can do to help the situation. Namely, we recall
how k was chosen. Looking at (5.161) and the two equations (5.162) and (5.163),
we see that 2πk ∼ cM as r →∞, for some constant c > 0. Hence we have that:

2πk +
π

N
+ φ− σ1 + (ε− σ0)

(
1

N
− 1

)
∼ cM (5.171)
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as r → ∞. So the last logarithm term in the expression for h(ε), really involves
M :

N − 1

N
log(2πk + · · · ) ∼

(
1− 1

N

)
log(cM). (5.172)

as r →∞. Thus, in the expression for h(ε), we have:

log(r)− 1

N
log(M)− log(N)− N − 1

N
log(2πk · · · )

∼ log(r)− log(N)− 1

N
log(M)−

(
1− 1

N

)
log(cM) (5.173)

as r → ∞, and this is certainly negative. So h(ε) < 0 for all ε ≥ 0. Thus
f(0)− h(0) > 0.

For simplicity, let us assume c = 1; what we now discuss is not a�ected by the
exact value of c, only by its sign. Then, for not too small ε ∈ (0, π/2), we see that
f(ε) ∼ −M tan(ε) as r →∞, while h(ε) ∼ log(π)+log(r)− log(M)− log(N) as
r →∞. Now, we will need to discuss the relation between M and N , for we want
to consider f(ε) − h(ε). In order to do so, we will exploit the relation between
M(P, r) and M for P any polynomial. From the theory of entire functions (see
Theorem 1.2.3), we know that limr→∞

M(P,r)
M

= 0. Let g(z) =
∑∞

n=0 anz
n. We

choose P (z) = aNz
N . Hence M(P, r) = |aN |rN is equal to the maximal modulus

term of the series of g. But then it follows that rN � M as r → ∞. In partic-
ular, it follows that N � log(M)

log(r)
� M as r → ∞. So we can certainly assert

that log(M) dominates log(N) for large r. We remark that �guring this out, was
not completely trivial to the author. Hence |f(ε)| dominates |h(ε)|. But then, it
follows that for not too small ε ∈ (0, π/2), we have f(ε)− h(ε) < 0, for we have
that f(ε) < 0 for ε ∈ (0, π/2). As with the case g(z) = zd, d ≥ 2, continuity and
the intermediate-value theorem, certi�es the existence of some small ε > 0 such
that f(ε)− h(ε) = 0. That is, such that equation (5.140) holds as required.

We are almost done, it remains to give the estimate for ε. This is similar to as
before: the case when g(z) = zd, d ≥ 2. Let us de�ne:

R(k) = 2πk +
π

2N
+ φ− σ1 − σ0

(
1

N
− 1

)
. (5.174)

Then for small ε > 0, we replace ε2 by 0, tan(ε) by ε, and �nally cos(ε) by 1. Thus,
we get f(ε) = −O(Rε) as r →∞, while h(ε) = O (− log(R)) as r →∞. Because
we have f(ε) = h(ε) and because R → ∞ as r → ∞, this gives ε = O

(
log(R)
R

)
as R→∞, as required. This �nally completes the proof of the lemma.

Remark 5.2.10. In the case that g is polynomial, most of the proof of Lemma
5.2.9 can be used. The exceptions lie in interval for |z|; this now instead takes the
form (r, r + 1) as with the case when g is a monomial, and in the growth of M
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relativeN and r. If g is a polynomial, it is no longer true thatM(g, r) grows faster
than any power of r. A special case is when g is a �rst order polynomial, which
we already have dealt with. If g is any other non-constant polynomial of degree
deg(g) ≥ 2, then M(g, r) grows faster than r, although not faster than any power
of r. Moreover, N = deg(g), so M grows faster than N as well, but presumably
a lot slower than what it did when g was transcendental. In any event, we can
use the same reasoning as was done when g is transcendental and the proof goes
through without signi�cant change.

As in the case g(z) = zd, d ≥ 2, Lemma 5.2.9 actually provides us with in-
�nitely many solutions of the approximate equation g′(z)eg(z) = πi:

Corollary 5.2.11. Let g(z) be a non-constant entire function. Then the equation
g′(z)eg(z) = πi admits in�nitely many solutions with increasing modulus.

Proof. We assume g is transcendental, and note that the case g is a polynomial,
is analogous. The proof is now completely analogous to the proof of Corollary
5.2.5, only that we use Lemma 5.2.9 instead of Lemma 5.2.4. Also, we make sure to
form a sequence with members outside the exceptional set with �nite logarithmic
measure given in the Wiman-Valiron theorem (Theorem 1.4.4).

This takes care of the approximate equation g′(z)eg(z) = πi. However, this is
not the original system of equations we really want to solve, which is the one given
by equations (5.32) and (5.33). The existence of solutions of this system is proven
in a completely analogous manner as we did for the case when g(z) = zd, d ≥ 2.
The only di�erence, is that we allow g to be any transcendental entire function.
As before, it su�ces to say that the polynomial case is completely analogous.

LetG be de�ned as in equation (5.79). We want to solve equation (5.80). As be-
fore, we will consider the image of the linear part ofG, denoted byG(z0,z0)

L , and de-
�ned by equation (5.82), where z0 solves the approximate equation g′(z)eg(z) = πi.
We let Wj be de�ned by equation (5.95), j = 1, 2, and a, b, c, d de�ned by equa-
tions (5.96) - (5.99). Our �rst step is to determine the error in using the solution
(z0, z0) ∈ ∆, which solves the approximate equation g′(z)eg(z) = πi instead of the
original equation (5.80). This will determine the distance between G(z0, z0) and
(πi,−πi)T .

The following lemma is the transcendental analogue to Corollary 5.2.3:

Lemma 5.2.12. Let g be a transcendental entire function and let z0 be the solution
of g′(z)eg(z) = πi given by Lemma 5.2.9. Let G be de�ned by g according to
equation (5.79). Then:

|G(z0, z0)− (πi,−πi)T | = O

(
1

M

)
(5.175)

as |z0| → ∞, where M is the same as in Lemma 5.2.9.
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Proof. If we use (z0, z0) ∈ ∆ where z0 is the solution obtained from Lemma 5.2.9,
then for z close to z0, the following expressions for g′(z) and g′′(z) are valid due
to the Wiman-Valiron method (Theorem 1.4.4):

g′(z) = N
zN−1

ζN
g(ζ)(1 + δ1) (5.133)

g′′(z) = N(N − 1)
zN−2

ζN
g(ζ)(1 + δ2) (5.134)

where δi → 0 uniformly with respect to z as |z0| → ∞, for both j = 1, 2, where
|ζ| = r, where |g(ζ)| = M = max|z|=r |g(z)|, and where N = N(r) is the central
index for g. We use equation (5.40) and get:

|g
(
z0 ± eg(z0)

)
− g(z0)∓ πi| = O

(
|g′′(z0)e2g(z0)|

2

)
, as |z0| → ∞. (5.176)

Because g′(z0)eg(z0) = πi by assumption, we �nd: e2g(z0) = −π2

[g′(z0)]2
. Using equa-

tion (5.133), we calculate:

[g′(z0)]
2 =

N2z2N−20

ζ2N
[g(ζ)]2(1 + δ1)

2. (5.177)

Using also (5.134), we then get:

g′′(z0)e
2g(z0) = −

π2N(N − 1)
zN−2
0

ζN
g(ζ)(1 + δ2)

N2z2N−2
0

ζ2N
[g(ζ)]2(1 + δ1)2

= −π
2(N − 1)[1 + δ2]

N(g(ζ))[1 + δ1]2

(
ζ

z0

)N
, as |z0| → ∞. (5.178)

We now take the modulus and get:

|g′′(z0)e2g(z0)| =
π2(N − 1)|1 + δ2|
MN |1 + δ1|2

·
∣∣∣∣ ζz0
∣∣∣∣N = O

(
1

M

)
. (5.179)

We have used that M is the largest factor in the denominator for |z0| large, and
that

∣∣∣ ζz0 ∣∣∣ is close to 1. Hence we get:

|G(z0, z0)− (πi,−πi)T | = O

(∣∣∣∣[ 1
M
1
M

]∣∣∣∣) =
√

2O

(
1

M

)
= O

(
1

M

)
(5.180)

as |z0| → ∞. This completes the proof.

Remark 5.2.13. Notice that if g(z) = zd, d ≥ 2. Then M = M(g, r) = rd, and so
Lemma 5.2.12 gives the same order relation for the error as Corollary 5.2.3.
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It follows that equation (5.91) is still valid. Indeed, in deriving this, we did not
use any speci�c form for g. We use the same notation as before: Bδ(z0, z0) for the
open ball centred at (z0, z0) with radius δ. In equation (5.91), we assume that we
have (z, w) ∈ Bδ(z0, z0). Instead of equation (5.92), we propose to make δ so small
that:

√
2δ2 <

1

M
. (5.181)

That is:

δ <

√
1√
2M

. (5.182)

This is the general analogue to equation (5.93). Thus, we want to show that:

|W1(z, w)|2 + |W2(z, w)|2 > O

(
2

M

)2

, as |z0| → ∞, (5.183)

and with (z, w) ∈ ∂Bδ(z0, z0). This is the general analogue of (5.107). We need a
result analogous to Lemma 5.2.6:

Lemma 5.2.14. Let z0 be the solution of g′(z)eg(z) = πi given by Lemma 5.2.9
where g is a non-constant entire function, and let a, b, c, d be de�ned as in equa-
tions (5.96) - (5.99). Also, let M and N be as in Lemma 5.2.9. Then we have:

|a| = O(MN |z0|−1) = |d|, as |z0| → ∞ (5.184)

|b| = O

(
1

|z0|

)
= |c|, as |z0| → ∞. (5.185)

Proof. We calculate a, b, c, d using their de�nitions in equations (5.96) - (5.99), and
where Gj is de�ned by equation (5.79). Doing so, gives equations (5.111) - (5.114):

a = g′(z0 + eg(z0))eg(z0)g′(z0) (5.186)
b = g′(z0 + eg(z0))− g′(z0) (5.187)
c = g′(z0 − eg(z0))− g′(z0) (5.188)
d = −g′(z0 − eg(z0))eg(z0)g′(z0). (5.189)

Of course, because g no longer necessarily is zd, d ≥ 2, the equations (5.115) -
(5.118) are not necessarily available. Instead we use Wiman-Valiron’s theorem
(Theorem 1.4.4) and Taylor expansion. We let N and ζ mean the same as before.
Then, for z su�ciently close to z0, it follows from Wiman-Valiron’s theorem (The-
orem 1.4.4), that we can write:

g(m) =
N(N − 1) · · · (N −m+ 1)

ζN
zN−mg(ζ)(1 + δm), (5.190)
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where δm → 0 uniformly with respect to z as |z0| → ∞. We prove the asser-
tion for |a| and |b|, and remark that the respective cases |d| and |c|, are completely
analogous to the respective cases |a| and |b|. This is also easy to see directly from
the equations (5.186) - (5.189).

By assumption, we have g′(z0)eg(z0) = πi. That is, using equation (5.190) with
m = 1: eg(z0) = πi

NzN−1
0
ζN

g(ζ)(1+δ1)

. Because |g(ζ)| = M , we have |eg(z0)| = O
(

1
M |z0|

)
as |z0| → ∞. In particular, |eg(z0)| is small for large |z0|. Thus we can use a Taylor
expansion for g′(z0 + eg(z0)). We get:

g′(z0 + eg(z0)) = g′(z0) +
∞∑
m=2

g(m)(z0)

m!
e(m−1)g(z0). (5.191)

It is convenient to take a closer look at the sum in equation (5.191). Using equation
(5.190) and the expression for eg(z0) from earlier, we �nd:

∞∑
m=2

g(m)(z0)

m!
e(m−1)g(z0) =

∞∑
m=2

{
πm−1im−1

m!

N(N − 1) · · · (N −m+ 1)

ζN
zN−m0

·g(ζ)(1 + δm) ·

 1
NzN−1

0

ζN
g(ζ)(1 + δ1)

m−1
=

∞∑
m=2

{
πm−1im−1

m!

N(N − 1) · · · (N −m+ 1)

ζN
zN−m0

· g(ζ)(1 + δm)

·

(
ζN(m−1)

Nm−1z
(N−1)(m−1)
0 [g(ζ)]m−1(1 + δ1)m−1

)}
.

=
∞∑
m=2

{
πm−1im−1

m!

(N − 1) · · · (N −m+ 1)

(1 + δ1)m−1Nm−2
1 + δm

[g(ζ)]m−2

·zN−m−(N−1)(m−1)0 ζN(m−1)−N
}

=
∞∑
m=2

(N − 1) · · · (N −m+ 1)(1 + δm)

m!
(

(1+δ1)
πi

)m−1
(Ng(ζ))m−2z0

(
ζ

z0

)N(m−2)

.

(5.192)

Then, because |a| = πig′(z0 +eg(z0)) = πi
(
g′(z0) +

∑∞
m=2

g(m)(z0)e(m−1)g(z0)

m!

)
, and

because g′(z0) =
NzN−1

0

ζ
g(ζ)(1 + δ1), with M = |g(ζ)| and |z0/ζ| close to 1, it fol-

lows that |a| = O(MN |z0|−1) as |z0| → ∞. This takes care of the order relation
for |a|.
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We proceed to the order relation for |b|. Using equation (5.187) and equation
(5.190), we see that |b| =

∑∞
m=2

g(m)(z0)
m!

e(m−1)g(z0). Looking at equation (5.192), we
see that the dominating term is given by m = 2. That is, the �rst term in the large
sum in (5.192). Taking the modulus of this term and using again that |z0/ζ| is close
to 1, we see that |b| = O

(
1
|z0|

)
as |z0| → ∞. This concludes the proof.

Note that due to the estimates in Lemma 5.2.14, the two inequalities (5.122)
and (5.123) hold; recall also that (k, l) ∈ ∂D. We �nally have the following general
analogue of Theorem 5.2.7:

Theorem 5.2.15. Let g be a non-constant entire function and let G be de�ned by
equation (5.79). Then the equation G(z, w) = (π,−πi)T , admits some solution
(z, w). Furthermore, if r > 0 su�ciently large and z0 are given by Lemma 5.2.9,
then for �xed λ ∈ (0, 1), with

√
2δ2 = λ

M
∈
(
0, 1

M

)
, where M = max|z|=r |g(z)|

as given in Lemma 5.2.9, (z, w) can be chosen close to (z0, z0) ∈ ∆ in the sense
that (z, w) ∈ Bδ(z0, z0) provided r is also chosen so large that M3N2

|z0|2 > 4
√
2

λ
, where

N = N(r) is the central index for g as given in Lemma 5.2.9.

Proof. We need only show that (5.183) holds. We know that the inequalities (5.122)
and (5.123) hold. We use the estimates for a, b, c, d in Lemma 5.2.14. Thus we get:

|W1(z, w)|2 + |W2(z, w)|2≥(|a|k − |b|l)2δ2 + (|d|l − |c|k)2δ2

=
(
|a|2k2 − 2|a| · |b|kl + |b|2l2

)
δ2

+
(
|d|2l2 − 2|d| · |c|kl + |c|2k2

)
δ2

= O

(
M2N2

|z0|2
k2 − 2MN

|z0|2
kl +

1

|z0|2
l2
)
δ2

+ O

(
M2N2

|z0|2
l2 − 2MN

|z0|2
kl +

1

|z0|2
k2
)
δ2,

as |z0| → ∞

= O

(
M2N2

|z0|2
− 4

MN

|z0|2
kl +

1

|z0|2

)
δ2, as |z0| → ∞

= O

(
M2N2

|z0|2

)
δ2, as |z0| → ∞. (5.193)

Now,M2N2 � r2 as r →∞. Also, we have that r2 is close to |z0|2. Thus, M2N2

|z0|2 is
very large. We know that δ2 < 1√

2M
, so let us write δ2 = λ√

2M
for some λ ∈ (0, 1).

We can imagine �xing λ �rst which then provides δ. Then, in order for (5.183) to
hold, it su�ces to require that:

MN2λ√
2|z0|2

>
4

M2
. (5.194)

That is:
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M3N2

|z0|2
>

4
√

2

λ
. (5.195)

This is precisely the assumption in the theorem statement, so we are done. This
proves the assertion.

Remark 5.2.16. Notice that in the case g(z) = zd, d ≥ 2, we have N = d and
M = rd. Hence (5.195) becomes:

d2r3d−2 >
4
√

2

λ
, (5.196)

which agrees with Theorem 5.2.7 except for the constant factor d2 on the left-
hand side of (5.196). Note that although there is an extra factor d2, (5.126) is still
satis�ed because the right-hand side of (5.126) is independent of such constants
by de�nition of the asymptotic notation in (5.47). Indeed, the constant d2 becomes
insigni�cant for su�ciently large r.

Finally, we have the general analogue to Corollary 5.2.8. This provides us with
in�nitely many genuine 4-periodic points for transcendental Hénon maps of the
form F (z, w) = (eg(z) + w, z), where g is a non-constant entire function:

Corollary 5.2.17. Let g be a non-constant entire function and de�ne the transcen-
dental Hénon map F by F (z, w) = (eg(z) + w, z). Then F admits in�nitely many
genuine 4-periodic points. Furthermore, in�nitely many of these can be chosen
close to points of the form (z0, z0) ∈ ∆ where |z0| has large modulus and solves
the equation g′(z)eg(z) = πi.

Proof. The proof is identical to the proof of Corollary 5.2.8, except that we use
Theorem 5.2.15 instead of Theorem 5.2.7, and except that we have

√
2δ ∈

(
0, 1

M

)
instead of

√
2δ ∈

(
0, 1

rd

)
.

5.2.2 Maps F (z, w) = (f(z)− w, z) where f is periodic
This section will be considerably shorter than the previous one. The result we
give here can be applied to maps which in their form, look like those in the pre-
vious section, under the additional assumption that g now be periodic. More pre-
cisely, the result we give here can, in particular, be applied to symplectic tran-
scendental Hénon maps of the form F (z, w) = (eg(z) −w, z), where g is periodic.
More generally, our result will work for symplectic transcendental Hénon maps
F1(z, w) = (f(z)− w, z) where f is periodic.

Theorem 5.2.18. Let F (z, w) = (f(z)−w, z) be a symplectic Hénon map where
f has non-zero period p. That is: f(z) = f(z + pk) for all z and for all k ∈ Z.
Then:

{(z, z + pk) : f(z) = 2z, k ∈ Z} ⊆ Fix(F 4). (5.197)
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Proof. The system of determining equations for 4-periodic points for F , is given
by:

z1 + w = f(z) (5.198)
z2 + z = f(z1) (5.199)
w + z1 = f(z2) (5.200)
z + z2 = f(w). (5.201)

From equation (5.198), we get z1 = f(z) − w, and from equation (5.201), we get
z2 = f(w) − z. Substituting these in the remaining two equations (5.199) and
(5.200), we are left with the following two equations:

f(w) = f(f(z)− w) (5.202)
f(z) = f(f(w)− z). (5.203)

Now, we propose to look for solutions of the form w = z + pk. The reason being
that then f(z) = f(w) for all k. Indeed, substituting this for w, and using the
periodicity of f , we get:

f(z) = f(f(z)− z) (5.204)

for both equations. So we only have one equation which needs to be solved for z.
Namely, equation (5.204). It is now easy to see that the set {z ∈ C : f(z) = 2z} is
a subset of the solution set of (5.204). The assertion follows.

Remark 5.2.19. Notice that the solutions (z, z + pk) in Theorem 5.2.18 does not
lie on the diagonal ∆ for k 6= 0. Thus, these solutions are not �xed points of F .

An immediate consequence of Theorem 5.2.18 which is su�cient for Fix(F 4)
to have in�nite cardinality, is the following result.

Corollary 5.2.20. Let f be a periodic entire function. Say, with period p 6= 0. That
is: f(z) = f(z + pZ) for all z. Let g(z) = f(z) − 2z and suppose that Z(g) 6= ∅.
Then, Fix(F 4) has in�nite cardinality and contains in�nitely many non-�x points
for F , where F is the symplectic Hénon map given by F (z, w) = (f(z)− w, z).

Proof. Because Z(g) 6= ∅, there exists some z ∈ Z(g). That is, some z such that
f(z) = 2z. Then, by Theorem 5.2.18 we have:

{(z, z + pZ)} ⊆ Fix(F 4). (5.205)

Because the cardinality of Z is in�nite, so is the cardinality of the set {(z, z+pZ)}.
Therefore, so is the cardinality of Fix(F 4). Finally, the assertion regarding �xed
points follows from the previous remark.
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Thus, we can assure that the set Fix(F 4), has in�nite cardinality if we can �nd
a single point z such that f(z) = 2z. Now, we have a good grasp on when this
does not happen. Indeed, the only times we fail to �nd a single such solution, is
when f is of the form:

f(z) = 2z + eg(z), (5.206)

where g is some entire function.

Corollary 5.2.21. Let g be any periodic entire function, and let F be the sym-
plectic Hénon map given by F (z, w) = (eg(z) − w, z). Then Fix(F 4) has in�nite
cardinality.

Proof. Let f(z) = eg(z). Then f is not of the form in equation (5.206). The assertion
follows.

Example 5.2.22. Let g be a transcendental entire function with the period p and
let h be any transcendental entire function. Let f(z) = h(g(z)). Then Fix(F 4

1 ) has
in�nite cardinality, where F1 is the symplectic transcendental Hénon map given
by F1(z, w) = (f(z)− w, z). Indeed, f has period p:

f(z + pZ) = h(g(z + pZ)) = h(g(z)), (5.207)

and the equation f(z) = 2z means z ∈ Fix
(
f
2

)
. This has in�nite cardinality

by Rosenbloom’s theorem (Theorem 1.4.1).

Example 5.2.23. Consider the symplectic transcendental Hénon map given by
F1(z, w) = (ez − w, z). Then Fix(F 4

1 ) has in�nite cardinality. Indeed, we know
that the only exceptional value for λ to the equation ez = λP (z), where P (z) is
any non-zero polynomial, is λ = 0. So the equation ez = 2z has in�nitely many
solutions.

Example 5.2.24. Suppose that f(0) = 0 and let f be a periodic transcendental
entire function. Then, the equation f(z) = 2z has the trivial solution z = 0. Thus
Fix(F 4) has in�nite cardinality, where F is the symplectic Hénon map given by
F (z, w) = (f(z) − w, z). Concrete examples are any odd and periodic f . For
instance f(z) = sin(z). Of course, for the particular case f(z) = sin(z), we
already know from Example 2.3.4, that the equation sin(z) = P (z), has in fact,
in�nitely many solutions for any odd polynomial P (z).

Example 5.2.25. Let g be any periodic entire function, say with period p. Let
f(z) = g(z)− g(0) + pl where l ∈ Z. Of course, l must be �xed. Then f has the
same period p as g and moreover, f(0) = pl. That is, by periodicity:

f(pZ) = pl. (5.208)

We consider the equation f(z) = 2z. We propose a solution z = pk where k ∈ Z.
Using equation (5.208), we get f(z) = f(pk) = f(0) = pl. On the other hand,
2z = 2pk. Hence in order for z = pk to be a solution of f(z) = 2z, we get:

pl = 2pk. (5.209)
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That is: l = 2k. Thus, �x any k ∈ Z. This then provides l = 2k. So we de�ne
f(z) = g(z)− g(0) + 2pk. Then the equation f(z) = 2z has the solution z = pk.
So Fix(F 4) has in�nite cardinality where F is the symplectic Hénon map given by
F (z, w) = (f(z)− w, z).

Actually, in the next chapter, we will prove that the equation:

L(z) = f(z), (5.210)

where f is a periodic transcendental entire function, admits in�nitely many so-
lutions for any �rst order polynomial L. With L(z) = 2z, this means that the
equation f(z) = 2z admits in�nitely many solutions. As a consequence, we then
actually get the following result:

Theorem 5.2.26. Let f be a periodic transcendental entire function. Then the
symplectic transcendental Hénon map F1(z, w) = (f(z) − w, z), has in�nitely
many 4-periodic points.

Finally, we have already remarked that in�nitely many of the 4-periodic points
given in Theorem 5.2.18 are not �xed points. Thus, the only way these may fail to
be genuine 4-periodic points, is if they are 2-periodic points. Recall that (z, w) ∈
Fix(F 2), where F (z, w) = (f(z)− w, z)is a Hénon map, if and only if:

f(z) = 2w (5.211)
f(w) = 2z. (5.212)

Our 4-periodic points take the form (z, z + pZ) where z solves f(z) = 2z. By
periodicity of f , (5.212) is satis�ed for such points. However, (5.211) becomes:

f(z) = 2(z + pZ) = 2z + 2pZ (5.213)

But f(z) = 2z and so this means 2pZ = 0. So p = 0 and w = z. By assumption
p 6= 0. We conclude that all solutions of the form (z, z + pk) where k 6= 0 and
f(z) = 2z, are not 2-periodic points for F . Hence, in all the above, we can actually
replace "in�nitely many 4-periodic points" by "in�nitely many genuine 4-periodic
points." Our most general result of this section thus becomes:

Theorem 5.2.27. Let F1(z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon map where f has non-zero period p. Then, F1 admits in�nitely many gen-
uine 4-periodic points of the form (z, z + pk), where k ∈ Z and f(z) = 2z.
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Chapter 6

Classes of Maps with In�nitely
Many Periodic Points, Part 2

In this chapter we continue the investigation on transcendental Hénon maps with
in�nitely many k-periodic points for certain values of k. We will restrict our con-
siderations to transcendental Hénon maps Fδ = (f(z) − δw, z) where δ2 = 1.
Then, by imposing appropriate conditions on f , we give a systematic way of re-
ducing the system of determining equations by half. Our technique is based on
exploiting the symmetry of the system of equations which appear for δ2 = 1, to
show that many of the equations are the same. We then use this to get existence
results. For general values of δ, exploiting the symmetry is more challenging, and
the author has yet to �nd any existence results for k-periodic points with k ≥ 3
for general values of δ. To easily deal with the problem whether a k-periodic of
Fδ is genuine, we restrict attention to the cases where k is prime. Then it follows
that non-genuine k-periodic points, must be �xed points.

The last chapter dealt with 3-periodic and 4-periodic points, so the natural next
step is 5-periodic points. Suppose that f is odd when δ = 1, and that f is even
and f(0) = 0, when δ = −1. Then we prove that Fix(F 5

δ ) admits in�nitely many
genuine 5-periodic points. For k > 5 we show the following main result: let f be
periodic. That is, there exists some p 6= 0 such that f(z + Zp) = f(z) for all z.
In the case that δ = 1, let f be odd. In the case that δ = −1, let f be even with
f(0) = 0. Then, Fix(F k

δ ) contains in�nitely many genuine k-periodic points for
all prime k.

Finally, we provide two special results in the case that k is not prime: namely
the cases k = 6 and k = 8. We give in�nitely many examples of transcendental
Hénon maps with in�nitely many genuine 6-periodic points, and in�nitely many
examples of transcendental Hénon maps with in�nitely many genuine 8-periodic
points.
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6.1 In�nitely many genuine 5-periodic points
As suggested, the natural next step going by the previous chapter, is to consider
5-periodic points. Our considerations here also suggests the more general method
we propose later for more general values of k. By experience, symplectic tran-
scendental Hénon maps give a system of determining equations which comes
with a symmetry that has proven to simplify things considerably compared to
the general case. Thus, we �rst consider a symplectic transcendental Hénon map
F1 = (f(z)−w, z). The system of determining equations for 5-periodic points of
F1, becomes:

z1 + w = f(z) (6.1)
z2 + z = f(z1) (6.2)
z3 + z1 = f(z2) (6.3)
w + z2 = f(z3) (6.4)
z + z3 = f(w). (6.5)

The most straight-forward approach is to eliminate z1, z2, and z3 and end up with
a system of equations involving only the variables z andw. To eliminate z1, we use
equation (6.1), and to eliminate z3, we use equation (6.5). This gives respectively
z1 = f(z)−w and z3 = f(w)−z. Substituting these expressions in the remaining
equations (6.2) - (6.4), yields:

z2 + z = f(f(z)− w) (6.6)
f(w)− z + f(z)− w = f(z2) (6.7)

w + z2 = f(f(w)− z). (6.8)

We now come to our �rst obstacle: a compatibility condition. This is what in
general happens when we take the straight-forward approach as above. Looking
at equations (6.6) and (6.8), we see that each of both the equations can be used
to solve for z2 in terms of z and w. Because z2 = z2, we thus end up with the
compatibility condition which needs to be satis�ed by both equations, given by:

f(f(z)− w)− z = f(f(w)− z)− w. (6.9)

In addition, equation (6.7) must also be satis�ed. Under the assumption that the
compatibility condition holds, we can choose either of equations (6.6) and (6.8) to
get an expression for z2. Say we choose the �rst and get z2 = f(f(z) − w) − z.
Then, with this substituted into equation (6.7), we get:

f(w) + f(z)− z − w = f [f(f(z)− w)− z] . (6.10)

In conclusion: we need to solve both equations (6.9) and (6.10). An immediate
way of satisfying the compatibility condition (6.9), is to propose that we look for
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solutions of the form z = w. That is, to look for solutions on the diagonal ∆. The
danger of being on the diagonal ∆, is that it might turn out that (z, w) is a �xed
point for F1. We are of course, mainly interested in genuine 5-periodic points for
F1. However, we have good control over when a point (z, w) ∈ ∆ is a �xed point
for F1. Indeed, (z, z) ∈ Fix(F1) if and only if f(z) = 2z. A priori, we might end up
with some z which does not satisfy this, in which case we have found a genuine
5-periodic point. Substituting w = z in (6.10), yields:

2f(z)− 2z = f [f(f(z)− z)− z] . (6.11)

The author �nds it di�cult to see any solution to equation (6.11) aside from the
one which gives �xed points: f(z) = 2z. In fact, we could even try to do the
following which fails. Suppose f is periodic, say with non-zero period p. We can
easily arrange for f(0) = A for any constant A we choose by replacing f with
f − f(0) + A. Let A = pl, where we �x l ∈ Z. Because f is periodic, we have
f(pZ) = f(0) = pl. We now propose a solution z = pk where k ∈ Z. Substituting
this into equation (6.11), we get:

2f(0)− 2pk = f(0) (6.12)

which implies

2pk = f(0) = pl. (6.13)

That is: 2k = l. Thus, �x any k ∈ Z. We choose l = 2k. Our proposed solu-
tion is z = pk, which indeed solves equation (6.11). However, we �nd then that
f(z) = f(pk) = f(0) = pl = 2pk = 2z and so this actually gives a �xed point for
F1.

Thus, the danger of ending up with �xed points, is very much there. What
seems to be an e�ective way of dealing with this problem, is to propose looking
for solutions of the form w = −z. In this case, the only possible �xed point
solution, is the origin. Pursuing this, we have the following result which gives
in�nitely many genuine 5-periodic points. The proof is worth looking at carefully
as it suggests the method we will use for the more general results later.

Theorem 6.1.1. Let F1(z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon map where f is odd. Then F1 admits in�nitely many genuine 5-periodic
points. Furthermore, in�nitely many of these can be chosen of the form (z,−z)
where:

z = f(f(z) + z). (1.63)

Proof. We pursue 5-periodic points for F1 of the form (z, w) = (z,−z). Substi-
tuting w = −z in the equations (6.1) - (6.5), we get the following determining
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equations for 5-periodic points of F1:

z1 − z = f(z) (6.14)
z2 + z = f(z1) (6.15)
z3 + z1 = f(z2) (6.16)
−z + z2 = f(z3) (6.17)
z + z3 = f(−z). (6.18)

Now, because f is odd, we have f(−z) = −f(z) for all z, and equation (6.18)
becomes: z + z3 = −f(z). That is: z3 = −f(z) − z = −[f(z) + z]. Comparing
with equation (6.14) which gives z1 = f(z)+z, we see that z1 = −z3. Substituting
for z3, −z1 and using that f is odd, in the equations (6.15) - (6.18), we get:

z1 = f(z) + z (6.19)
z2 = f(z1)− z (6.20)
0 = f(z2) (6.21)
z2 = −f(z1) + z (6.22)
−z1 = −f(z)− z (6.23)

Comparing, we see that equation (6.23) and (6.19) coincides, so we keep only one
of them. Say the latter: (6.19). Then comparing equation (6.20) and (6.22), we �nd
that z2 = −z2. Hence z2 = 0. Because f is odd, f(0) = 0 and so the equation
(6.21) becomes trivially true. Notice also that the equations (6.20) and (6.22) are
the same, so we also keep only one of these, say the �rst: (6.20). It follows that we
are left with the following two equations:

z1 = f(z) + z (6.24)
0 = f(z1)− z. (6.25)

Because z1 is directly given as expressed in terms of z by equation (6.24), we can
substitute this into equation (6.25), and end up with the single equation:

z = f(f(z) + z), (1.63)

for z. Now, let g(z) = f(z) + z. Then g is transcendental and entire. Equation
(1.63) means z ∈ Fix(f ◦ g), which by Rosenbloom’s theorem (Theorem 1.4.1) has
in�nite cardinality. It follows that there are in�nitely many solutions z of equation
(1.63). Hence, there are in�nitely many 5-periodic points (z,−z) of the form given
in the statement. The only possible non-genuine 5-periodic points of all these, are
the �xed points. But the only possible �xed point of the form (z,−z), is the origin.
It follows that Fix(F 5

1 ) contains in�nitely many genuine 5-periodic points. This
completes the proof.
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Remark 6.1.2. Looking at the proof of Theorem 6.1.1, we see that we end up with
a single equation in z, and that no compatibility conditions appear along the pro-
cess. We also note that 4 of the equations, reduce to 2 equations because they come
in pair as coinciding equations. That is, equation (6.19) coincides with (6.23) and so
one of these can be removed. The same happens with equation (6.20) and (6.22).
Finally, we note that the middle equation (6.21) becomes trivially true because
f(0) = 0 for odd functions f . We will later show that what we have observed here
will generally happen when we pursue solutions of the form (z,−z) ∈ Fix(F k

1 ) for
k prime and f odd. Thus this provides us with a systematic way of reducing the
system of determining equations for k-periodic points by about half, while also
avoiding compatibility conditions. In fact, this way of reducing the system works
for any value of k, however, for k not prime, it is in general considerably more
di�cult to determine whether (z,−z) is a genuine k-periodic point. As a concrete
example, let k = 16. Then non-genuine 16-periodic points could be �xed points,
genuine 2-periodic points, genuine 4-periodic points, or genuine 8-periodic points.

Finally, we note that we can get a similar result when δ = −1, that is for F−1,
by instead conditioning that f be even and that it satis�es f(0) = 0:

Theorem 6.1.3. Let F−1(z, w) = (f(z) + w, z) be a transcendental Hénon map
with δ = −1, where f is even and f(0) = 0. Then Fix(F 5

−1) contains in�nitely
many genuine 5-periodic points.

Proof. The proof is almost identical to the proof for the case of symplectic tran-
scendental Hénon maps with f odd. The system of equations determining 5-
periodic points, now becomes:

z1 − w = f(z) (6.26)
z2 − z = f(z1) (6.27)
z3 − z1 = f(z2) (6.28)
w − z2 = f(z3) (6.29)
z − z3 = f(w). (6.30)

We look for solutions where w = −z. Substituting this and using that f is even,
we �nd z1 = −z3, z2 = −z2 = 0, and that equations (6.30) and (6.29) are the same
as equations (6.26) and (6.27) respectively. So we keep only the two latter. Also,
equation (6.28) becomes the trivial equation f(0) = 0 which holds by assumption.
Substituting z1 = f(z)− z from (6.26) into (6.27) and invoking z2 = 0, we get the
single equation:

z = −f(f(z)− z), (6.31)

which has in�nitely many solutions by Rosenbloom’s theorem (Theorem 1.4.1).
This proves the assertion.
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6.2 In�nitelymany genuine prime periodic points
In this section, we give the main result of this chapter: given any symplectic tran-
scendental Hénon map F1(z, w) = (f(z) + w, z) where f is odd and periodic,
Fix(F k

1 ) contains in�nitely many genuine k-periodic points for all k > 1 prime.

The �rst step is the reduction of the system of determining equations for k-
periodic points for F1, to about half its original size, and is a direct generalization
of what was done in the proof of Theorem 6.1.1 in the previous section.

Thus, �x k > 2 (we have already dealt with the case k = 2 in great detail) to
be any prime number. We look for k-periodic points (z, w) of the form w = −z.
Recall that because f is odd, f(−z) = −f(z) for all z, and in particular, f(0) = 0.
The system of determining equations for k-periodic points of F1, becomes:

z1 − z = f(z) (1)
z2 + z = f(z1) (2)
z3 + z1 = f(z2) (3)

...
zk−3 + zk−5 = f(zk−4) (k − 3)
zk−2 + zk−4 = f(zk−3) (k − 2)
−z + zk−3 = f(zk−2) (k − 1)
z + zk−2 = f(−z) = −f(z). (k)

Comparing equation (1) and (k), we see that z1 = −zk−2. Thus, equation (k − 1) is
given by −z + zk−3 = −f(z1). That is: zk−3 = −f(z1) + z. Comparing this with
equation (2), we see that z2 = −zk−3. Substituting this into equation (k − 2) and
comparing with equation (3), we get that z3 = −zk−4 and so on. Inductively, we
see that zj = −zk−(j+1). We also note that this relationship tells us that equation
number j and equation number k − j + 1, coincides. Indeed, for instance we
see that equation (1) and equation (k) coincides, equation (2) and equation (k − 1)
coincides, and that equation (3) and equation (k − 2) coincides. Now, because
k > 2 and is prime, k is odd. Thus, we can write k = 2m + 1 where m ∈ N. We
consider the (m−1)-th equation, them-th equation, and the (m+1)-th equation,
which then respectively take the forms:

zm−1 + zm−3 = f(zm−2) (m− 1)
zm + zm−2 = f(zm−1) (m)

zm+1 + zm−1 = f(zm). (m+ 1)

Now, we have zm−1 = −zk−(m−1)−1 = −z2m+1−m = −zm+1. So zm+1 can be
replaced with −zm−1. Finally, we have zm = −zk−m−1 = −z2m+1−m−1 = −zm.
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That is: zm = 0. Substituting into the equations ((m− 1)) - (m+ 1), we therefore
�nd:

zm−1 + zm−3 = f(zm−2) ((m− 1))
zm−2 = f(zm−1) ((m))

0 = f(0) = 0. ((m+ 1))

Thus the last non-repeated, non-trivial equation we have, is the m-th equation.
Indeed, the next equation after the (m+1)-th equation, is the (m+2)-th equation,
and this is the same as the m-th equation. Indeed, recall that equation j coincides
with equation k − j + 1. Thus, we �nd that equation m coincides with equation
k −m + 1 = 2m + 1 −m + 1 = m + 2. Of course, the following equation, the
(m + 3)-th equation then coincides with the (m − 1)-th equation and so on. It
follows that we have reduced the system of k = 2m + 1 equations, to k−1

2
= m

equations. That is, about half. Now, consider this. The �rst equation (1), gives z1
as a function of z. Then the next equation, (2) gives z2 as a function of z and z1.
Hence, as a function of z. The next equation after that again, equation (3), then
gives z3 as a function of z2 and z1. Hence as a function of z. Inductively, we see
that the jth equation gives zj as a function of zj−2 and zj−1, hence as a function of
z, as zj−1 and zj−2 already have been given as functions of z in the two preceding
equations. In particular, for j = m − 1, we see that zm−1 is given as a function
of z. Thus the last equation, the m-th equation, being given by zm−2 = f(zm−1),
is an equation which only involves z. It follows that this is the equation which
determines z, and that this is really the only equation we have. All the preceding
equations give zj as functions of z for 1 ≤ j ≤ m− 1, and leads to the concluding
equation zm−2 = f(zm−1). We will refer to this equation, the m-th equation, as
the decisive equation of the system.

Example 6.2.1. We want to determine the decisive equation for k = 5. Writing
k = 2m+ 1, this gives m = 2. The decisive equation is given by zm−2 = f(zm−1).
That is, z0 = f(z1). Of course, here z0 = z = zk. Thus, the decisive equation in
the case k = 5, is given by

z = f(z1). (6.32)

Because z1 = f(z) + z, this can be written in complete form as:

z = f(f(z) + z). (1.63)

This is exactly the equation given in Theorem 6.1.1, equation (1.63). Thus, the car-
dinality of Fix(F 5

1 ) is determined by the number of solutions of equation (1.63). By
Rosenbloom’s theorem ( Theorem 1.4.1), there are in�nitely many solutions.

Finally, one might wonder what happened to z2 and z3. Using zj = −zk−j−1,
we �nd that z1 = −z5−1−1 = −z3, and z2 = −z5−2−1 = −z2. The �rst means that
z3 is already given by z1, and the latter means of course that z2 = 0. Notice how
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much faster we can get the complete system of determining equations, using zj =
−zk−(j+1), instead of writing up everything from start to end, and then go in and
eliminate by solving. That is, what we did in the proof of Theorem 6.1.1. Indeed,
we know that we only have m = k−1

2
= 5−1

2
= 2 equations, so we immediately

get the full system given by:

z1 = f(z) + z (6.33)
z = f(z1). (6.34)

Example 6.2.2. In the case k = 5, we could use Rosenbloom’s theorem (Theorem
1.4.1) directly to conclude that F1 has in�nitely many genuine 5-periodic points.
In particular, we did not need the additional assumption that f be periodic. Unfor-
tunately, in general, things are a bit more subtle and Rosenbloom’s theorem (Theo-
rem 1.4.1) cannot be applied. At least, the author has not been able to see how. Let
us consider for instance, k = 7. This is a natural place to start after dealing with
the case k = 5. Then using zj = −zk−j−1, we �nd z1 = −z7−2 = −z5, z2 = −z4,
and z3 = −z3 = 0. Writing k = 2m+ 1 as before, for k = 7, we get m = 3. Thus
we only have 3 equations for the full system of determining equations:

z1 = f(z) + z (6.35)
z2 + z = f(z1) (6.36)

z1 = f(z2). (6.37)

The decisive equation is of course the last of these, namely (6.37). Solving from
top to bottom, we �nd z1 = f(z) + z and z2 = f(z1)− z = f [f(z) + z]− z. Hence
the decisive equation becomes:

f(z) + z = f (f [f(z) + z]− z) . (6.38)
(6.39)

That is:

z = f (f [f(z) + z]− z)− f(z). (6.40)

The author fails to see how Rosenbloom’s theorem can be applied here to give
in�nitely many solutions for z of equation (6.40). However, if we assume also that
f is periodic, say with non-zero period p, so that f(z + pZ) = f(z) for all z, then
we can show that there are in�nitely many solutions:

�x any l ∈ Z. We let z = u + pl where u is some new variable we introduce.
Substituting this in equation (6.40), and using the periodicity of f , we get:

u+ pl = f (f [f(u) + u]− u)− f(u). (6.41)

That is:

pl = (f [f(u) + u]− u)− f(u)− u. (6.42)
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Now, the right-hand side function, is a transcendental entire function in u, while
the left-hand side is some constant complex number. Let g(z) be a transcendental
entire function and let λ ∈ C. The Great Picard theorem for transcendental entire
functions, Theorem 1.1.6, tells us that the equation:

λ = g(z), (6.43)

has in�nitely many solutions for all values of λ with the exception of at most one.
Thus, either equation (6.42) admits in�nitely many solutions for all l ∈ Z, or there
exists some exceptional l0 ∈ Z such that the equation (6.42) fails to have in�nitely
many solutions for l = l0. If there are no exceptional l0, then we are done: equation
(6.42) has in�nitely many solutions for u. Otherwise, if there is such an exceptional
l0, then we simply repeat what we did prior to getting equation (6.41), but this time
we �x any l ∈ Z such that l 6= l0. It follows that we get in�nitely many u which
solves equation (6.42). Because z = u+ pl, this means that we get in�nitely many
solutions for z solving the decisive equation (6.40). But then it follows that Fix(F 7

1 )
contains in�nitely many genuine 7-periodic points.

In the previous example, Example 6.2.2, in the course of our discussion, we
proved the following result, which can be viewed as a type of Rosenbloom result
for periodic transcendental functions f :

Theorem6.2.3. Let g be any transcendental entire and periodic function, say with
period p, and let L(z) be any �rst order polynomial. Then the equation:

L(z) = g(z), (6.44)

has in�nitely many solutions.

Proof. Because L(z) is a �rst order polynomial, we can write for it: L(z) = az+ b.
Let us introduce a new variable u given by z = u+pl where l ∈ Z. Then equation
(6.44) becomes:

a(u+ pl) + b = g(u+ pl). (6.45)

Because g is periodic, we have g(u + pZ) = g(u) for all u. In particular, we get
g(u+ pl) = g(u). Rearranging, we then get:

apl = g(u)− au. (6.46)

By the Great Picard theorem for transcendental entire functions, Theorem 1.1.6,
equation (6.46) has in�nitely many solutions for all values of l ∈ Z with the excep-
tion of at most one exceptional value l0 ∈ Z. We can always choose l 6= l0 in the
outset. Then for a �xed l ∈ Z\{l0}, the Great Picard theorem for transcendental
entire functions, Theorem 1.1.6, tells us that equation (6.46) admits in�nitely many
solutions for u. Finally, because z = u + pl, this gives in�nitely many solutions
for z of equation (6.44). This proves the assertion.
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Remark 6.2.4. Let us see what may go wrong ifL(z) is replaced by a more general
polynomial, say P (z) = z2. Then the equation we want to solve is:

z2 = g(z). (6.47)

We do as earlier, and de�ne z = u+ pl. This gives then:

(u+ pl)2 = u2 + 2plu+ p2l2 = g(u). (6.48)

This can be rearranged to give:

p2l2 = g(u)− u2 − 2plu. (6.49)

We would now like to apply the Great Picard theorem for transcendental entire
functions, Theorem 1.1.6, to conclude that there are in�nitely many solutions for
u. The problem, is that the transcendental entire function on the right-hand side
now depends on l. That is, di�erent values for l give di�erent transcendental entire
functions. Thus, the same arguments as before cannot be used here. However, we
remark that we can replace L(z) by other functions and still make the previous
arguments work. We see from our considerations just now, that the problem we
need to avoid, is to end up with a right-hand-side transcendental entire function
which depends on l. Suppose for instance p 6∈ 2πiZ, and let L(z) = ez . We
consider the equation:

ez = g(z). (6.50)

We do as before and introduce u by z = u+plwith l ∈ Z. Equation (6.50) becomes:

euepl = g(u). (6.51)

As Z(eu) = ∅, we can divide by eu and end up with a transcendental entire func-
tion on the right-hand side:

epl =
g(u)

eu
. (6.52)

The right-hand side function now does not involve l and so we can apply the Great
Picard theorem for transcendental entire functions, Theorem 1.1.6, as before and
conclude that there are in�nitely many solutions z to the equation ez = g(z).

Remark 6.2.5. From the theory of entire functions (see Theorems 1.3.7 and 1.3.8),
we know that the equation λP (z) = h(z), admits in�nitely many solutions with
at most one exceptional value for λ, where P (z) is any non-zero polynomial and
where ρ(h(z)) < ∞. In the case ρ(h(z)) ∈ N as well, we furthermore know that
there are no exceptional values for λ. This result would not work if for example
f(z) = ee

z , for the order of the latter is not �nite. However, in the case P (z) is
a �rst order polynomial, Theorem 6.2.3 can be applied and we may conclude that
the equation λP (z) = ee

z has in�nitely solutions for all values of λ 6= 0. Indeed,
ee
z is periodic with period 2πi. In fact, we can replace eez with h(g(z)) where g
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is any periodic non-constant entire function and h is any transcendental entire
function. In particular, if g is transcendental and periodic, then for any k ∈ N, the
equation:

z = gk(z), (6.53)

has in�nitely many solutions. Thus Fix(gk) has in�nite cardinality. This is almost
Rosenbloom’s theorem (Theorem 1.4.1); or more precisely: the corollary that fol-
lows from Rosenbloom’s theorem (Corollary 1.3.8), for transcendental entire func-
tions, except that we need the additional assumption that g be periodic. Another
di�erence is that Rosenbloom’s theorem allows for at most one exceptional value
of k for which Fix(gk) fails to have in�nite cardinality. In our result, there are no
exceptional values for k.

As a consequence, we get the following two existence results for 2-periodic
and 4-periodic points. The result for 2-periodic points, is not restricted to only
symplectic transcendental Hénon maps:

Corollary 6.2.6. Let F (z, w) = (f(z) − δw, z) be a transcendental Hénon map,
where f is odd and periodic. Then F has in�nitely many genuine 2-periodic
points.

Proof. Let g(z) = f(z)−(1+δ)z. We know thatZ(g)×(−Z(g)) ⊆ Fix(F 2). Thus,
it su�ces to show that Z(g) has in�nite cardinality. But this follows immediately
from Theorem 6.2.3.

The result for 4-periodic points, stated at the end of the previous chapter, does
not impose the condition that f be odd, only that f be periodic.

Corollary 6.2.7. Let F (z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon map, where f is periodic. Then F has in�nitely many genuine 4-periodic
points.

Proof. From the previous chapter, Theorem 5.2.18, we know that the following is
true: {(z, z + pZ) : f(z) = 2z} ⊆ Fix(F 4). Thus, it su�ces to show that there
are in�nitely many solutions to the equation f(z) = 2z. But this follows from
Theorem 6.2.3 and the assumption on f . The assertion follows.

We now arrive at our main result for this chapter. Most of the work has already
been done in the previous example for k = 7, Example 6.2.2.

Theorem 6.2.8. Let F1(z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon map where f is periodic and odd. Let k > 2 be prime. Then F1 admits
in�nitely many genuine k-periodic points.

Proof. Let k = 2m + 1. It su�ces to show that the decisive equation given by
zm−2(z) = f(zm−1(z)), has in�nitely many solutions in z. Let 1 ≤ j ≤ m− 1 be
any index. Then the equation determining zj , the j-th equation, is given by

zj = f(zj−1)− zj−2. (6.54)
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Let us start with j = 1. This then gives z1 = f(z) + z. Then for j = 2, we get
z2 = f(z1) − z. For z = 3, we get z3 = f(z2) − z1 = f(z2) − f(z) − z. For z4,
we get z4 = f(z3) − z2 = f(z3) − f(z1) + z, and so on. In general, we see that
zj = g(z) ± z where g is some transcendental entire and periodic function with
the same period as f . Indeed, let us prove this by strong induction. For j = 1, we
are done. For then z1 = f(z) + z, so g(z) can be taken as f(z). Thus, suppose this
is true for all j such that 1 ≤ j ≤ n for some 1 < n ≤ m− 1. We show that this is
then true for all 1 ≤ j ≤ n+1. Because by assumption, this is true for all j ≤ n, we
need only show that this is true for zn+1. That is, that zn+1 = h(z)± z for h some
periodic function with the same period as f . Now, we have zn+1 = f(zn)− zn−1.
By assumption, there are periodic functions g1 and g2 with the same period as f
such that: zn = g2(z)± z and zn−1 = g1(z)± z. Hence we get:

zn+1 = f(zn)− zn−1 = f(g2(z)± z)− g1(z)∓ z. (6.55)

Let us de�ne h(z) = f(g2(z)± z)− g1(z). We need only show that h is periodic
with the same period as f . Suppose f has period p. Then, we need only show that
h(z + pZ) = h(z) for all z. By assumption gi(z + pZ) = gi(z) for all z, i = 1, 2,
and so we �nd, using also the periodicity for f :

h(z + pZ) = f(g2(z ± pZ)± (z + pZ))− g1(z + pZ)

= f(g2(z))± z)− g1(z)

= h(z), (6.56)

as required. Thus h is periodic with the same period as f . This completes the
proof by strong induction that all zj is of the form g(z) ± z for some periodic g
with same period as f for 1 ≤ j ≤ m − 1. The decisive equation is given by
zm−2 = f(zm−1). By what we just showed, we can write zm−2 = g2(z) ± z for
some periodic function g2 with the same period as f . Hence the decisive equation
can be written:

g2(z)± z = f(zm−1). (6.57)

But we also showed that f(zm−1) is of the form g1(z)±z where g1 is periodic with
the same period as f as well. So equation (6.57) can be written as

g2(z)± z = f(g1(z)± z). (6.58)

That is: after rearranging:

±z = f(g1(z)± z)− g2(z). (6.59)

The right-hand side of equation (6.59) is a transcendental entire and periodic func-
tion. Thus by Theorem 6.2.3, equation (6.59) has in�nitely many solutions. But
equation (6.59) is the decisive equation, so we are done. This completes the proof.
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Example 6.2.9. Let k = 13. We write k = 2m + 1 and see that m = 6. Thus we
have 6 equations, with the last and decisive being given by z4 = f(z5):

z1 = f(z) + z (6.60)
z2 + z = f(z1) (6.61)
z3 + z1 = f(z2) (6.62)
z4 + z2 = f(z3) (6.63)
z5 + z3 = f(z4) (6.64)

z4 = f(z5) (6.65)

Solving from top to bottom, we �nd:

z1 = f(z) + z (6.66)
z2 = f(z1)− z = f [f(z) + z]− z (6.67)
z3 = f(z2)− z1 = f {f [f(z) + z]− z} − f(z)− z (6.68)
z4 = f(z3)− z2 = f (f {f [f(z) + z]− z} − f(z)− z)− f [f(z) + z] + z (6.69)
z5 = f(z4)− z3 = f [f (f {f [f(z) + z]− z} − f(z)− z)− f [f(z) + z] + z]

− f {f [f(z) + z]− z}+ f(z) + z. (6.70)

Thus, the decisive equation becomes:

z = f(z5) + f [f(z) + z]− f (f {f [f(z) + z]− z} − f(z)− z) , (6.71)

which is of the form z = g(z) for g a transcendental entire and periodic function
with the same period as f .

Remark 6.2.10. Finally, we remark that we can get a corresponding result to
Theorem 6.2.8 for δ = −1, by instead conditioning that f is even and �xes the
origin. That is: if F−1(z, w) = (f(z) + w, z) is a transcendental Hénon map with
δ = −1, where f is even, �xes the origin: f(0) = 0, and has non-zero period
p: f(z + Zp) = f(z) for all z, then Fix(F k

−1) contains in�nitely many genuine
k-periodic points of the form (z,−z) for all k > 1 prime. The proof is almost
identical to that of Theorem 6.2.8, except that we use f(−z) = f(z) for all z as f
is even, instead for f(−z) = −f(z). The decisive equation we end up with is also
slightly di�erent from the case where f is odd and δ = 1, but the proof for the the
existence of in�nitely many solutions of the resulting equation, remains the same.

6.3 Two special results

6.3.1 6-periodic points
Our previous results do not apply to 6-periodic points as 6 is not prime. However,
we can use many of the idea previously discussed to show the following:
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Theorem 6.3.1. Let F1(z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon where f is odd and where−f

2
has a �nite number of �xed points. Then F1

admits in�nitely many genuine 6-periodic points of the form (z,−z).

Proof. The idea is to look for 6-periodic points of the form (z,−z). Because f is
odd, we can use the the method in the beginning of section 6.2, to reduce the sys-
tem of equations determining 6-periodic points forF1. The relation zj = −zk−(j+1)

still holds, but now k is even, and so we have k = 2m for some m ∈ N, instead of
k = 2m + 1. The decisive equation also ends up di�erent from zm−2 = f(zm−1).
It is not hard to determine it. We still get that the decisive equation, is the m-
th equation. This has always the general form zm + zm−2 = f(zm−1). Now,
zm = −zk−m−1 = z2m−m−1 = zm−1; recall that when k is odd, we instead get
zm = −zm = 0, so the m-th equation is: zm−2 = f(zm−1) + zm−1. In our case,
k = 6, so we have m = 3. We thus get z1 = −z4 and z2 = −z3. Therefore we
have the equations:

z1 − z = f(z) (6.72)
z2 + z = f(z1) (6.73)

−z2 + z1 = f(z2). (6.74)

The �rst, equation (6.72), gives z1 = f(z)+z. Substituted into the second, equation
(6.73), gives z2 = f(f(z) + z) − z. Substituted into the �nal equation, equation
(6.74), gives the the decisive equation:

z − f(f(z) + z) + f(z) + z = f(f [f(z) + z]− z). (6.75)

That is:

2z = f(f(z) + z)− f(z) + f(f [f(z) + z]− z). (6.76)

After staring at this for a while, we see that if f(f(z)+z) = 2z, then the right-hand
side becomes 2zwhich is the left-hand side. Thus, if z is such that f(f(z)+z) = 2z,
then z is a solution to equation (6.76), and therefore a 6-periodic point. By Rosen-
bloom’s theorem 1.4.1), there are in�nitely many such z.

It remains to verify that these give in�nitely many genuine 6-periodic points.
It follows that a non-genuine 6-periodic point is either a �xed point, a genuine
2-periodic point, or a genuine 3-periodic point. The only �xed point of the form
(z,−z) is the origin, so we can consider 2-periodic points and 3-periodic points.

We recall that (z,−z) is a 2-periodic point for F1 if and only if f(z) = −2z.
By assumption, there can only be �nitely many z for which this is true. Thus in-
�nitely many of the 6-periodic points of F1 of the form (z,−z), are not 2-periodic
points.

Finally, we consider 3-periodic points. We recall that (z,−z) is a 3-periodic
point for F1, if and only if f(z) = −z. But then f(f(z) + z) = f(0) = 0. Thus
from f(f(z) + z) = 2z, we conclude that z = 0. The assertion follows.
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Note that there are in�nitely many symplectic transcendental Hénon maps
which satisfy the conditions of the previous theorem, Theorem 6.3.1. Indeed, we
can let f(z) = −2z + P (z)eg(z) for any odd polynomial P and any even non-
constant entire function g. A concrete example is for instance:

f(z) = −2z + (z3 + 6z + z9)ecos(z). (6.77)

6.3.2 8-periodic points
As with 6-periodic points, our previous results do not apply to 8-periodic points
because 8 is not prime. Nevertheless, we can give an interesting result:

Theorem 6.3.2. Let F1(z, w) = (f(z) − w, z) be a symplectic transcendental
Hénon map where f is odd and |Z(f)| < ∞. Then F1 admits in�nitely many
genuine 8-periodic points of the form (z, w) with w = f(z)

2
.

Proof. The idea is to look for 8-periodic points of the form in the statement. Then
the set of determining equations for 8-periodic points of F1, becomes:

z1 +
f(z)

2
= f(z) (6.78)

z2 + z = f(z1) (6.79)
z3 + z1 = f(z2) (6.80)
z4 + z2 = f(z3) (6.81)
z5 + z3 = f(z4) (6.82)
z6 + z4 = f(z5) (6.83)

f(z)

2
+ z5 = f(z6) (6.84)

z + z6 = f

(
f(z)

2

)
. (6.85)

The �rst equation, equation (6.78), gives w = z1 = f(z)
2

. Substituting this into the
remaining equations, therefore gives:

z2 + z = f(z1) (6.79)
z3 + z1 = f(z2) (6.80)
z4 + z2 = f(z3) (6.81)
z5 + z3 = f(z4) (6.82)
z6 + z4 = f(z5) (6.83)
z1 + z5 = f(z6) (6.86)
z + z6 = f(z1). (6.87)

The �rst and last equation, respectively equation (6.79) and equation (6.87), are
the same and z2 = z6. Substituting this into the remaining equations, then give
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that the �rst and last equation of the remaining ones, respectively equation (6.80)
and equation (6.86), are the same, with z3 = z5, and so on. In general, we see that
z2 = z6, z3 = z5, z4 = z4, and that we are left with only the equations:

z2 + z = f(z1) (6.79)
z3 + z1 = f(z2) (6.80)
z4 + z2 = f(z3) (6.81)

2z3 = f(z4). (6.88)

Solving downwards, we get:

z2 = f(z1)− z (6.89)
z3 = f(z2)− z1 = f [f(z1)− z]− z1 (6.90)
z4 = f(z3)− z2 = f (f [f(z1)− z]− z1)− f(z1) + z. (6.91)

The decisive equation is 2z3 = f(z4), which becomes then, with z1 = w = f(z)
2

:

2f

(
f

(
f(z)

2

)
− z
)
− f(z)

= f

(
f

(
f

(
f

(
f(z)

2

)
− z
)
− f(z)

2

)
− f

(
f(z)

2

)
+ z

)
(6.92)

We glare at this for a long time. Then, �nally, we try to see what happens if
f
(
f(z)
2

)
− z = 0. The idea is that if we have this, then because f is odd and thus,

f(0) = 0, many of the quantities in equation (6.92), vanish. Indeed, the left-hand
side is simpli�ed to:

LHS = −f(z), (6.93)

while the right-hand side becomes:

RHS = f

(
f

(
−f(z)

2

)
− 0

)
= −f

(
f

(
f(z)

2

))
= −f (z) . (6.94)

Thus if z = f
(
f(z)
2

)
, then z solves the decisive equation, equation (6.92), and it

follows that (z, w) is a 8-periodic point for F1. By Rosenbloom’s theorem (Theo-
rem 1.4.1), there are in�nitely many such z.

It remains to verify that there are in�nitely many genuine 8-periodic points
of this form. If an 8-periodic point fails to be genuine, it must be a �xed point, a
genuine 2-periodic point, or a genuine 4-periodic point.

(z, w) is a �xed point of F1 if and only if f(z) = 2z and w = z. We have
w = f(z)

2
and z = f(w). Hence we �nd from z = w, that z = f(z)

2
= f(z). That is
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f(z)
2

= 0 or f(z) = 0. There are by assumption, only �nitely many such z. It fol-
lows that in�nitely many of the 8-periodic points of the form (z, w) with w = f(z)

2

and z = f(w), are not �xed points.

We proceed to consider 2-periodic points ofF1. We recall that (z, w) ∈ Fix(F 2
1 )

if and only if f(w) = 2z and f(z) = 2w. With w = f(z)
2

, the last of these are au-
tomatically ful�lled. Thus, we consider the �rst: f(w) = 2z. By assumption, we
have z = f(w). Therefore we get 2z = z or z = 0. Thus the only 2-periodic point
of F1 of the form we are considering, is the origin.

Finally, we consider 4-periodic points for F1. The system of determining equa-
tions for 4-periodic points for F1, is given by, recall that z1 = w:

2z1 = f(z) (6.95)
z2 + z = f(z1) (6.96)

2z1 = f(z2) (6.97)
z + z2 = f(z1). (6.98)

The last and second, respectively equation (6.98) and equation (6.96), coincides.
Thus we only have the three �rst equations, equations (6.95) - (6.97). We recall
that: z1 = w = f(z)

2
. Thus: z2 = f

(
f(z)
2

)
− z, and the decisive equation, equation

(6.97), becomes:

f(z) = f

(
f

(
f(z)

2

)
− z
)
. (6.99)

Under our assumption, z = f(w) = f
(
f(z)
2

)
, and so this gives f(z) = 0. Again,

by assumption, there are only �nitely many such z. The assertion follows.

Example 6.3.3. Let P (z) be any odd polynomial and let g(z) be any non-constant
entire and even function. Then, it follows that the symplectic transcendental
Hénon map F1(z, w) = (P (z)eg(z) − w, z), admits in�nitely many genuine 8-
periodic points.
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