• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for bygg- og miljøteknikk
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap (IV)
  • Institutt for bygg- og miljøteknikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An experimental study of unfrozen water content in fine grained permafrost soils

Nybo, Marte Sundby
Master thesis
Thumbnail
View/Open
17783_FULLTEXT.pdf (6.895Mb)
17783_COVER.pdf (1.578Mb)
URI
http://hdl.handle.net/11250/2457827
Date
2017
Metadata
Show full item record
Collections
  • Institutt for bygg- og miljøteknikk [2808]
Abstract
The strength of a soil increases when the ground freezes, but some of the water will remain unfrozen. Unfrozen water content is an important thermal property of a soil as flowing water may supply heat, reduce the strength, and thawing ground will experience reduced soil strength and increased settlements. Thus, estimating the unfrozen water content is important for geotechnical design considerations in permafrost areas. Additionally, hydraulic and thermal responses of climate changes can be simulated.

Reliable methods for determining unfrozen water content in frozen soil exist, but requires sophisticated instruments and is time consuming. For engineering purposes, more simple and efficient methods are desired. In this thesis, more recently developed methods for determining unfrozen water content in fine grained soils have been examined, liquid limit determination and water potential testing in particular.

Soil samples from Longyearbyen and Trondheim have been examined and tested in the laboratories of UNIS and NTNU, using liquid limit determination and water potential testing. The test methods have been evaluated and compared against each other. New parameters adapted to Norwegian clays are proposed for the liquid limit determination.

A geothermal Plaxis model for finding thermal properties of fine grained soils are tested on the soils. The model estimates the frost penetration depth, and the result is compared to results obtained by hand calculations. With improvements, the model has potential to become a useful tool in geotechnical designs in permafrost areas.
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit