• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elektroniske systemer
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elektroniske systemer
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Language Identification Based on Detection of Phonetic Characteristics

Vindfallet, Vegar Enersen
Master thesis
Thumbnail
View/Open
570783_COVER01.pdf (184.2Kb)
570783_ATTACHMENT01.zip (26.44Kb)
570783_FULLTEXT01.pdf (618.8Kb)
URI
http://hdl.handle.net/11250/2370636
Date
2012
Metadata
Show full item record
Collections
  • Institutt for elektroniske systemer [2487]
Abstract
This thesis has taken a closer look at the implementation of the back-end of a language recognition system. The front-end of the system is a Universal Attribute Recognizer (UAR), which is used to detect phonetic characteristics in an utterance. When a speech signal is sent through the UAR, it is decoded into a sequence of attributes which is used to generate a vector of term-count. Vector Space Modeling (VSM) have been used for training the language classifiers in the back-end. The main principle of VSM is that term-count vectors from the same language will position themselves close to eachother when they are mapped into a vector space, and this property can be exploited for recognizing languages. The implemented back-end has trained vectors space classifiers for 12 different languages, and a NIST recognition task has been performed for evaluating the recognition rate of the system. The NIST task was a verification task and the system achived a equal error rate (EER) of $6.73 %$. Tools like Support Vector Machines (SVM) and Gaussian Mixture Models (GMM) have been used in the implementation of the back-end. Thus, are quite a few parameters which can be varied and tweaked, and different experiments were conducted to investigate how these parameters would affect EER of the language recognizer. As a part test the robustness of the system, the language recognizer were exposed to a so-called out-of-set language, which is a language that the system has not been trained to handle. The system showed a poor performance at rejecting these speech segments correctly.
Publisher
Institutt for elektronikk og telekommunikasjon

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit