• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elektroniske systemer
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for elektroniske systemer
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radar Waveforms for Future Radar Systems - Automatic Recognition of Radar Intrapulse Modulation

Andersen, Idar Andreas
Master thesis
Åpne
346665_ATTACHMENT01.zip (Låst)
346665_FULLTEXT01.pdf (Låst)
346665_COVER01.pdf (Låst)
Permanent lenke
http://hdl.handle.net/11250/2368900
Utgivelsesdato
2006
Metadata
Vis full innførsel
Samlinger
  • Institutt for elektroniske systemer [2220]
Sammendrag
Knowing the waveform or pulse-compression technique of a radar is a very useful feature in Electronic Support Measures (ESM) systems. Classification of radars (and their platforms), deinterleaving radar pulses, and efficient/smart jamming are some purposes. As pulse-compression becomes more advanced, and the peak power decreases in favour of spreading the energy over time, classification of the waveform becomes more difficult as the diversity increases. Several different phase-modulations and frequency modulations exists and are in use, e.g. Linear FM Chirp, biphase and polyphase codes and Costas frequency codes. In this thesis an automatic modulation recognizer (AMR), originally developed for communication signals by E. E. Azzouz and A. K. Nandi, has been implemented in LabVIEW and adapted to classify radar intrapulse modulations. Testing showed that the algorithm successfully classified unmodulated-, LFM-, PSK2-coded and PSK4-coded pulses down to 7dB SNR, and it is believed that even better results can be achieved by further tweaking of the AMR. The bandwidth of the receiver had a large influence on the key-features that were extracted by the algorithm. The AMR still needs to be tested on real radar signals. It is necessary to first develop a working carrier-frequency estimator and investigate the influence of inaccurate frequency estimation on the extracted key-features. Azzouz & Nandi also proved artificial neural networks (ANN) superior to the decision tree as classifier, and future implementations should by that reason use ANN's instead. ANN's were avoided here as time did not permit implementation.
Utgiver
Institutt for elektronikk og telekommunikasjon

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit