• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Isogeometric Methods for Computational Fluid Dynamics: Divergence-conforming Discretizations for the 2D Stokes Equations

Giske, Finn-Idar Grøtta
Master thesis
Thumbnail
Åpne
11172_FULLTEXT.pdf (8.582Mb)
11172_COVER.pdf (184.2Kb)
Permanent lenke
http://hdl.handle.net/11250/2352677
Utgivelsesdato
2014
Metadata
Vis full innførsel
Samlinger
  • Institutt for matematiske fag [1394]
Sammendrag
In this thesis we look at how boundary value problems for partial differential equations

can be solved numerically using B-splines, or more generally NURBS, both to express

the geometry of the problem exactly and as a basis for a finite element approximation.

This is called isogeometric analysis, and we consider the theory behind the method as

well as aspects regarding implementation. We take a close look at the construction of

B-spline basis functions and geometries, and how the basis can be refined, leading up

to the construction of NURBS basis functions and geometries. The ubiquitous Poisson

problem is considered as a model problem, and a numerical solver for this problem is

implemented in MATLAB using Galerkin s finite element method. We finally consider

a method for numerically solving the Stokes problem for incompressible fluid flow,

using divergence-conforming B-splines in an isogeometric setting. This method gives

a discrete velocity which is pointwise divergence-free, making the numerical solution

satisfy mass conservation in an exact sense. Numerical tests are performed, showing that

isogeometric analysis makes it possible to use exact geometry throughout the analysis

and provides great flexibility regarding refinement. The convergence properties of the

method for the Stokes problem are investigated numerically, with very good results for

the numerical velocity solution, but with a reduced convergence rate for the pressure

solution that is accounted for. The method is also tested on benchmark problems, the

results confirming the stability of the method.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit