Vis enkel innførsel

dc.contributor.advisorCarlsen, Toke Meier
dc.contributor.authorWinger, Marius Lie
dc.date.accessioned2015-10-06T10:56:59Z
dc.date.available2015-10-06T10:56:59Z
dc.date.created2015-06-01
dc.date.issued2015
dc.identifierntnudaim:10374
dc.identifier.urihttp://hdl.handle.net/11250/2352622
dc.description.abstractUsing a $C^*$-algebra $A$, a Hilbert $A$-module $E$ and a $C^*$-correspondence $(E,\phi_E)$ we use the language of category theory to construct $\mathcalO_{(E,\phi_E)}(J)$, the Cuntz-Pimsner representation relative to an ideal $J$. We provide a complete classification, up to isomorphism, of the bijective representations admitting a gauge action as relative Cuntz-Pimsner representations relative to some ideal. By doing this we obtain a simple proof of the gauge invariant uniqueness theorem for the Cuntz-Pimsner algebra $\mathcalO_{(E,\phi_E)}$ over $(E,\phi_E)$.
dc.languageeng
dc.publisherNTNU
dc.subjectMatematikk, Analyse
dc.titleA categorical approach to Cuntz-Pimsner C*-algebras
dc.typeMaster thesis
dc.source.pagenumber59


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel