Vis enkel innførsel

dc.contributor.advisorSørensen, Svein Ivarnb_NO
dc.contributor.authorHauso, Andreasnb_NO
dc.date.accessioned2014-12-19T11:34:10Z
dc.date.available2014-12-19T11:34:10Z
dc.date.created2014-09-16nb_NO
dc.date.issued2014nb_NO
dc.identifier747493nb_NO
dc.identifierntnudaim:11096nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/233122
dc.description.abstractThis paper aims to give an objective comparison of analytical and numerical solutions to thin concrete shells of revolution. The numerical simulations are performed using the finite element software Diana. The main focus is on cylindrical and spherical shells, as they are typical geometries for constructing shells in concrete. Some assessment of the necessary theory on circular plates and ring beams is also presented since these are structural components frequently related to the shells in question.In order to attain a fundamental understanding of the load carrying behaviour of shells, the classical background material on thin shells of revolution is thoroughly investigated. Detailed deductions of the governing equations in membrane- and bending theory constitute the first part of the paper. This theory is then applied to cases involving typical connected shell structures which highlights different aspects of the analytical theory. Further assessments of these structures are done using finite element software, which provides a basis for comparing the analytical and numerical solutions. Finally, one of the structures are designed in accordance with the Eurocodes, accompanied by a nonlinear analysis. For this purpose a comparative study of line and solid elements is conducted. In the context of linear static analysis, two- and three-node axisymmetric shell of revolution elements show superb accuracy when compared to the analytical solutions. Intrinsic shell properties, such as the damping of forces and moments from the shell boundaries, are accurately represented.Element comparison shows a lower degree of accuracy from solid element solutions compared to the line alternative. This is especially true for shear stresses, which show oscillating behaviour near the edge zones of the shells. These oscillations are considered one of the main uncertainties in the solid model used for the nonlinear analysis.From the nonlinear analysis, the design of the structure was found to be adequate. The results show that the forces have been correctly redistributed to the reinforcement, and that the total load the structure can endure is approximately 1.08 times of the design load. Finite element analysis provides a powerful tool for evaluating the load response from connected concrete shell structures. Analytical solutions, although bringing valuable insight in the leading principals governing the shell behaviour, are highly exposed to human errors. As a consequence they are less attractive in practice. Finite element simulations coupled with a general understanding of the classical theory is therefore recommended for the executing engineer.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for konstruksjonsteknikknb_NO
dc.titleAnalysis methods for thin concrete shells of revolutionnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber140nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for bygg, anlegg og transportnb_NO


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel