• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The reproducing kernel of the Fourier symmetric Sobolev space

Zelent, Denis
Master thesis
Thumbnail
View/Open
no.ntnu:inspera:187809203:120221295.pdf (6.509Mb)
URI
https://hdl.handle.net/11250/3138281
Date
2024
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [2686]
Abstract
 
 
By showing the unitarity of the Bargmann transform between the Fourier symmetric Sobolev space

$\mathcal{H}$ consisting of functions $f\in L^2(\mathbb{R})$ such that $ \| f \|^2_{\mathcal{H}} = \int_{\mathbb{R}} |f(x)|^2(1+x^2) dx + \int_{\mathbb{R}} |\hat{f}(\xi)|^2(1+\xi^2) d\xi < \infty $

and the corresponding Fock space, we find an orthonormal basis of $\mathcal{H}$. This allows us to find the reproducing kernel of $\mathcal{H}$, which is expected to be useful in e.g. the area of Fourier interpolation.
 
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit