Vis enkel innførsel

dc.contributor.authorZhang, Tao
dc.contributor.authorSajjad, Uzair
dc.contributor.authorSengupta, Akash
dc.contributor.authorAli, Mubasher
dc.contributor.authorSultan, Muhammad
dc.contributor.authorHamid, Khalid
dc.date.accessioned2024-04-04T12:05:28Z
dc.date.available2024-04-04T12:05:28Z
dc.date.created2023-11-10T13:00:48Z
dc.date.issued2023
dc.identifier.citationMicromachines. 2023, 14 (10), .en_US
dc.identifier.issn2072-666X
dc.identifier.urihttps://hdl.handle.net/11250/3124874
dc.description.abstractThis research is centered on optimizing the mechanical properties of additively manufactured (AM) lattice structures via strain optimization by controlling different design and process parameters such as stress, unit cell size, total height, width, and relative density. In this regard, numerous topologies, including sea urchin (open cell) structure, honeycomb, and Kelvin structures simple, round, and crossbar (2 × 2), were considered that were fabricated using different materials such as plastics (PLA, PA12), metal (316L stainless steel), and polymer (thiol-ene) via numerous AM technologies, including stereolithography (SLA), multijet fusion (MJF), fused deposition modeling (FDM), direct metal laser sintering (DMLS), and selective laser melting (SLM). The developed deep-learning-driven genetic metaheuristic algorithm was able to achieve a particular strain value for a considered topology of the lattice structure by controlling the considered input parameters. For instance, in order to achieve a strain value of 2.8 × 10−6 mm/mm for the sea urchin structure, the developed model suggests the optimal stress (11.9 MPa), unit cell size (11.4 mm), total height (42.5 mm), breadth (8.7 mm), width (17.29 mm), and relative density (6.67%). Similarly, these parameters were controlled to optimize the strain for other investigated lattice structures. This framework can be helpful in designing various AM lattice structures of desired mechanical qualities.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA Hybrid Data-Driven Metaheuristic Framework to Optimize Strain of Lattice Structures Proceeded by Additive Manufacturingen_US
dc.title.alternativeA Hybrid Data-Driven Metaheuristic Framework to Optimize Strain of Lattice Structures Proceeded by Additive Manufacturingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber0en_US
dc.source.volume14en_US
dc.source.journalMicromachinesen_US
dc.source.issue10en_US
dc.identifier.doi10.3390/mi14101924
dc.identifier.cristin2195059
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal