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Abstract: This research is centered on optimizing the mechanical properties of additively manu-
factured (AM) lattice structures via strain optimization by controlling different design and process
parameters such as stress, unit cell size, total height, width, and relative density. In this regard,
numerous topologies, including sea urchin (open cell) structure, honeycomb, and Kelvin structures
simple, round, and crossbar (2 × 2), were considered that were fabricated using different materials
such as plastics (PLA, PA12), metal (316L stainless steel), and polymer (thiol-ene) via numerous AM
technologies, including stereolithography (SLA), multijet fusion (MJF), fused deposition modeling
(FDM), direct metal laser sintering (DMLS), and selective laser melting (SLM). The developed deep-
learning-driven genetic metaheuristic algorithm was able to achieve a particular strain value for
a considered topology of the lattice structure by controlling the considered input parameters. For
instance, in order to achieve a strain value of 2.8 × 10−6 mm/mm for the sea urchin structure, the de-
veloped model suggests the optimal stress (11.9 MPa), unit cell size (11.4 mm), total height (42.5 mm),
breadth (8.7 mm), width (17.29 mm), and relative density (6.67%). Similarly, these parameters were
controlled to optimize the strain for other investigated lattice structures. This framework can be
helpful in designing various AM lattice structures of desired mechanical qualities.

Keywords: genetic algorithm; deep learning; additive manufacturing; lattice structure;
topology optimization

1. Introduction

Lattice structures are a type of cellular material that has better thermomechanical
properties than other cellular materials, such as foams. The improvement in AM tech-
nology has engrossed both academia and industry toward its deployment in real-world
applications [1]. It is becoming easier and easier to design and construct cellular or lattice
structures as metal additive printing technology resolution improves. Although there are
few restrictions on the range of possible unit cell topologies, little is known about how the
underlying unit cell topology influences the mechanical performance of lattice structures.
A deeper comprehension of lattice structure performance based on unit cell topology can
make it simpler to choose the appropriate unit cells to achieve the desired lattice structure
mechanical properties [2].
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In the natural environment, complex topological structures such as cellular structures,
porous structures, and lattice structures are particularly prevalent [3]. The majority of these
complex structures are nonzero genus geometries, which feature a lot of voids or holes.
Complex topologies provide significant benefits for properties. The geometric model’s
weight can be considerably lowered by using a lot of holes, and this can also minimize the
amount of material, energy, and time needed to manufacture it. These optimized structures
can be used to absorb energy, attenuate sound, isolate vibrations, or dissipate heat. Despite
having many benefits, complex topological structures are challenging to manufacture using
conventional production methods. Researchers have tried a number of methods (other
than additive manufacturing) to create complicated topological structures [4]. Yet, these
techniques fall short in terms of controlling the final pore characteristics. No matter what
the shape geometry is, the most advanced method to fabricate complicated topological
structures is AM [5]. A variety of materials can even be utilized to build complex topological
structures thanks to advances in AM fabrication technology. Due to the ease with which
complex lattice structures may be created using AM technology, both business and research
now have the option of free-form production. Many material scientists have looked at the
strength of lattice structures in relation to things such as the kind, size, and relative density
of lattice cells, among other things. An extensive amount of research has been conducted to
investigate the deformation behavior of different materials and structures [6–8]. Other than
experiments, several models have been proposed to study the fatigue behavior of defective
and notched components [9–11].

Nonetheless, the design processes for complicated topology structures face new diffi-
culties as a result of AM technology. To design the most efficient and complex design for
AM fabrication technology, the computer-aided design (CAD) technique has been used for
a long time [12,13]. The two most often used techniques for representing 3D geometry are
mesh models and parametric models. Nevertheless, not all complex topological structures
can be designed using them. Several meshes have been employed for the approximation
of a planned model, which is extremely resource-intensive, in order to produce correct
modeling results. Additionally, merging the entire geometry would require dozens of
parametric surfaces, which could also have an adverse effect on the outcome [14,15]. Re-
garding the design task, several design needs, such as mechanical qualities, printability,
and other particular demands, should be taken into consideration. To cope with all these
AM fabricated topologies of lattice structures, artificial intelligence and machine learning
can be considered a compatible solution.

Artificial intelligence (AI) has opened up new avenues for improved design, process
management, and quality assurance in additive manufacturing. Numerous engineer-
ing applications could benefit from the efficiency, effectiveness, and decision-making
processes that artificial intelligence and machine learning techniques could potentially
improve [16–19]. These techniques have proven their effectiveness for prediction [18,20,21],
identification and monitoring [17,19], design optimization [22,23], control, sampling [24],
data augmentation and characterization [25], and other tasks. However, the data scarcity
in AM severely hinders the widespread application of AI approaches [26]. Few AI-based
attempts have been made in recent years to predict the mechanical properties of AM lat-
tice structures using AI. For example, recently, a deep neural network (DNN) model was
developed and tested to evaluate the stress–strain association of the AM lattices [27]. The
authors reported that their model was able to yield an accuracy of R2 = 0.936. They also
performed a parametric study and interpreted the model’s predictions through explainable
AI or XAI (explainable artificial intelligence) and highlighted the most sensitive features to
estimate the strain of the AM lattices in their considered data range. In an earlier investi-
gation, the same group of authors performed a short literature review and then proposed
an artificial neural network (ANN) model with great accuracy (R2 = 0.99) to evaluate the
mechanical behavior of AM lattices [28]. Their developed model’s predictions were true
for several topologies on a lot of materials and created by various AM methods. In another
study [29], to anticipate the inherent strain for powder bed fusion additive manufacturing
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based on a hatch pattern, neural networks were built. The findings demonstrated that
the trained neural network could accurately anticipate the intrinsic strain of any given
hatch pattern. Other than ANN and DNN, convolutional neural networks (CNNs) have
been developed and evaluated with a respectable degree of accuracy for the prediction of
geometric deviation in additive manufacturing [30].

The foregoing literature review suggests that no comprehensive framework has been
developed to optimize the strain of numerous AM lattice structures (built on various mate-
rials and AM techniques) by controlling their design and process parameters. Therefore,
in order to fill this research gap, the objective of this study was to propose a hybrid data-
driven metaheuristic framework to optimize the strain of various topologies such as sea
urchin (open cell) structure, honeycomb, and Kelvin structures simple, round, and crossbar
(2 × 2) that were fabricated using different materials such as plastics (PLA, PA12), metal
(316L stainless steel), and polymer (thiol-ene). The metaheuristic framework is driven by
an optimal DNN model aided by a Bayesian surrogate model.

2. Materials and Methods

In this work, a hybrid framework using a deep-neural-network-based genetic algo-
rithm (DNN-GA) was developed to find the values of the considered design and process
parameters (including stress, total height, breadth, width, relative density, and unit cell
size) of five additively built lattice topologies for a particular or optimal strain value. The
considered topologies of lattice structures for the strain optimization included sea urchin
(open cell) structure, honeycomb, and Kelvin structures simple, round, and crossbar (2 × 2).
The overall methodology to optimize the strain of the considered AM lattice structures by
controlling the impactful design and process parameters is depicted in Figure 1. Figure 1
contains six steps or phases. The first five steps comprised data collection, data prepro-
cessing, feature engineering, hyperparameters tuning, development, and validation of the
DNN model. In the last step, a hybrid DNN-GA framework was developed to optimize the
investigated output.

The detailed procedure to develop the deep neural networks model (including data
collection, data preprocessing, feature engineering, hyperparameters tuning, development,
and validation of the DNN model) has already been provided in our prior study [27].
Herein, a short description is provided as a reference. In the first step, the data are collected
for the considered AM lattice structures from the literature to develop the DNN model [27].
As can be seen, the collected data contains various input parameters (as listed in Figure 1)
and the strain. In the second step, the collected data are cleaned, and then different data
distribution methods (normal distribution, nth root transformation, and robust scaler) are
tried. In this step, the collected data are also normalized using the Min–Max Scaler. In order
to find the most important parameters as the inputs of the model, feature engineering and
data correlation (Pearson correlation heat maps) are used. After that, different Bayesian
surrogate models, including random forest (RF), gradient boost regression trees (GBRTs),
and Gaussian process (GP), were used to find the optimal set of hyperparameters (such as
activation function, learning rate, decay rate, optimizer, number of iterations, number of
dense nodes and layers, etc.) to develop the accurate DNNs (deep neural networks) model.
The optimal hyperparameters include a learning rate of 0.003664218944047891 and a single
hidden layer with 365 dense nodes. The DNN model makes use of “tanh” as the activation
function, “glorot normal” as the initialization mode, and “Adam” as the optimizer, while
the decay rate and batch size are 1 × 10−6 and 200, respectively. The overall structure of
the final DNN model includes an input layer of six neurons, a dense layer of 365 nodes,
and an output layer of a single neuron [27]. Explainable artificial intelligence (XAI) via the
SHAP library was employed to find the contribution of each input parameter to estimate
the strain of the considered lattice structures. The results of the XAI are also important to
verify the significance of the input parameters selected for the DNN model. The detailed
methodology of training and developing an optimal DNN model can be found in our prior
studies [27,31].
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Figure 1. A flowchart of the proposed methodology for strain optimization of the AM lattice structures.

The developed DNN model serves as a fitness function to build the metaheuristic
(GA) model, which is finally used to yield the optimal strain by maximizing/minimizing
the employed input parameters. The genetic algorithm is a stochastic search algorithm
that draws its inspiration from the fundamental biological ideas of biological evolution,
according to which only the strongest living things prevail over the weaker ones. It imitates
evolutionary processes, such as mutation, crossover, and selection. Each member of the
population, which initially comprises individuals of diverse fitness levels, is made up of a
variety of traits, attributes, and genes. Later, each person’s fitness is assessed, and the fittest
ones reproduce new offspring who inherit their ancestors’ expertise. Then, individuals
with random features are used for mutation, and the founding parents are discarded. Until
the ideal result is attained or the maximum number of iterations has been achieved, the
procedure is repeated. A schematic of the GA algorithm is shown in Figure 2.

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 15 
 

 

selected for the DNN model. The detailed methodology of training and developing an 

optimal DNN model can be found in our prior studies [27,31]. 

 

Figure 1. A flowchart of the proposed methodology for strain optimization of the AM lattice struc-

tures. 

The developed DNN model serves as a fitness function to build the metaheuristic 

(GA) model, which is finally used to yield the optimal strain by maximizing/minimizing 

the employed input parameters. The genetic algorithm is a stochastic search algorithm 

that draws its inspiration from the fundamental biological ideas of biological evolution, 

according to which only the strongest living things prevail over the weaker ones. It imi-

tates evolutionary processes, such as mutation, crossover, and selection. Each member of 

the population, which initially comprises individuals of diverse fitness levels, is made up 

of a variety of traits, attributes, and genes. Later, each person’s fitness is assessed, and the 

fittest ones reproduce new offspring who inherit their ancestors’ expertise. Then, individ-

uals with random features are used for mutation, and the founding parents are discarded. 

Until the ideal result is attained or the maximum number of iterations has been achieved, 

the procedure is repeated. A schematic of the GA algorithm is shown in Figure 2. 

 
(a) (b) 

Figure 2. (a) Schematic and (b) features of developed metaheuristic framework.

3. Results

This study considered five topologies of AM lattice structures, including sea urchin
structure, honeycomb, and Kelvin structures simple, round, and crossbar (2 × 2). The
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results and discussion section explain the best stress, unit cell size, total height, breadth,
width, and relative density values for a given value of strain for the considered topologies.
A detailed discussion is made in the succeeding paragraphs of the results and discus-
sion section.

3.1. Optimization of the Sea Urchin Structure

In our study, the considered sea lattice structures were fabricated by PLA material
using fused deposition modeling (FDM). The input parameters were tuned in a minimum
and maximum value, and the range is as mentioned in Table 1.

Table 1. Range of the variables.

Input Parameters Minimum Maximum

Stress (MPa) 0 342.32
Unit cell size (mm) 1.5 25
Total height (mm) 7 75
Breadth (mm) 7 75
Width (mm) 7 75
Relative density (%) 5 90

Table 2 shows the attained optimal parameter values of the sea urchin structures,
where an optimal strain value of 2.8 × 10−6 mm/mm was attained. The ideal total height
and relative density determined for the sea urchin structures were noticeably larger than
those for the other lattice structures under consideration, coming in at 42.5 mm and 6.67%,
respectively. The sea urchin structure, on the other hand, had the smallest optimal breadth
of any of its corresponding lattice structures at 8.7 mm. Figure 3 depicts the GA model’s
convergence as the training process’s number of generations increased. The strain curve
exhibited a smooth, exponentially degrading tendency before reaching a stable and ideal
value, which was attained around the fifth executable generation at a strain value of about
2.8 × 10−6 mm/mm. The stress optimal value, which plateaued off after crossing the
60th executable generation and stabilized at 11.9 MPa, initially exhibited a sharp decline
up until the progress of the 5th executable generation, after which it exhibited a marked
improvement and reached its peak. Contrarily, the unit cell size fluctuation tendency was
highly variable, reaching a peak of about 23 mm on the 5th executable generation before
undergoing a stepwise decrease and a peak before displaying stable behavioral tendencies
after the 60th executable generation. Although it begins to decrease sharply after the
first few generations, the total height shows a noticeable increase after the 25th executable
generation, following which it flattens out and stabilizes at 42.5 mm after the 60th executable
generation. With regard to their fluctuating tendencies before experiencing a second crest
around the 40th executable generations, where it flattened out and displayed a steep decline
before stabilizing off at a value of the 60th executable generations, the behavioral tendencies
of breadth, width, and relative densities with the number of executable generations were
more or less similar. Overall, there were variations in the values for all parameters, which
is understandable given that the model is still learning, but all the parameters stabilized
throughout the course of the 60th executable generation.

3.2. Optimization of the Honeycomb Structure

Honeycombs are two-dimensional periodic cellular materials that are relatively strong
and stiff along the microstructural normal but flexible and weak in the plane. This material
is ideal for weight-bearing applications, especially in the automotive and aerospace indus-
tries, in which components with a high strength-to-weight ratio are required. However,
designing honeycomb structures using conventional machining processes is a difficult and
time-consuming task. In this respect, it would be interesting to study the capabilities of the
AM process, as AM appears to be an alternative solution due to its design freedom [32].
Herein, the investigated honeycomb structures were fabricated using PA12 material us-
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ing multijet fusion (MJF) fabrication technology. Table 3 shows the value of the optimal
parameters obtained for the honeycomb structures. It can be seen that for the honeycomb
structure, the optimal value of the strain was around 6.5 × 10−6 mm/mm, and it was
also characterized by the highest optimal value of width for the studied lattice structures
corresponding to 69.89 mm and by the least unit size corresponding to 1.5 mm. The results
obtained can be said to be in accordance with the findings of [33], as the smaller unit sizes
in the honeycomb structures exhibited better stiffness and, thus, exhibited a much more
stronger response under compression.

Table 2. Optimal parameters for sea urchin structure.

Parameter Value

Stress (MPa) 11.9
Unit cell size (mm) 11.4
Total height (mm) 42.5
Breadth (mm) 8.7
Width (mm) 17.29
Relative density (%) 6.67
Strain (mm/mm) 2.8 × 10−6
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Table 3. Optimal parameters for honeycomb structure.

Parameter Value

Stress (MPa) 12
Unit cell size (mm) 1.5
Total height (mm) 37.3
Breadth (mm) 33.69
Width (mm) 69.89
Relative density (%) 5.18
Strain (mm/mm) 6.5 × 10−6

Figure 4 shows the convergence of the GA model for the honeycomb structures, with
an increase in the number of generations during the training process. Initially, the model
showed fluctuations in the values for all parameters during the learning phase but showed
stabilizing tendencies afterward with the execution of the generations. The strain curve
showed a similar exponential decay with the execution of the generations and stabilized
around an optimal value of 6.5 × 10−6 mm/mm, which was executed around the 5th
generation and showed a stabilizing behavioral tendency afterward. The dependency of
the stress and the unit cell size with the number of executable generations exhibited similar
behavioral traits, reaching a crest around the 10th executable generation, after which it
showed a steep decline and flattened off, indicating a stable behavioral tendency, but around
the 80th generation, the curves showed a steep increment and decrement, respectively,
before stabilizing and providing an optimal value of 12 MPa and 1.5 mm, respectively. The
remaining parameters, namely, total height, breadth, width, and relative density, exhibited
plateau-like behavior until the 80th iteration and might give the impression of stabilizing
behavior and attaining an optimal value. However, post the 80th executable generation, the
total height, width, and relative density increased approximately 1.5–2 fold and flattened
off, attaining an optimal value of 37.3 mm, 69.89 mm, and 5.18%, respectively, while the
breadth experienced a significant decline and flattened off, attaining an optimal value of
33.69 mm.

3.3. Optimization of the Kelvin Simple 2 × 2 Structure

Due to their better mechanical qualities and simplicity of modeling, Kelvin structures
have been the subject of much investigation [34]. A group of authors [35] investigated
how Kelvin cells were affected by relative density and loading circumstances. For our
case study, we investigated the simple Kelvin 2 × 2 structure by 316L stainless steel using
selective laser melting (SLM) technology. Table 4 shows the value of the optimal parameters
obtained for the Kelvin simple 2 × 2 structure. It can be seen that the simple Kevin 2 × 2
structure was characterized by the highest optimal strain and least optimal stress value
compared with its lattice structure counterparts, which were 1.7 × 10−5 mm/mm and
4.15 MPa, respectively. The optimal value of the height parameter of the simple Kelvin
2 × 2 structure was also toward the lower optimum range, standing at a value of 28.5 mm.
Amongst all the other compared lattice structures, this structure particularly showed more
deformation behavior, having a high value of relative density that signified the deformation
to be stretch-dominated, as per findings in the literature [36].

Figure 5 shows the convergence of the GA model for the Kelvin simple 2 × 2 structure,
with an increase in the number of generations during the training process. Although
initially, all the parameters displayed a tendency to fluctuate, after the 60th executable
generation, a more or less consistent behavior was established in all situations. The stress
curve displayed initial fluctuations that formed plateau-like crests, with the executable
generations showing a significant decline in crest amplitude until the 60th executable
generation, before stabilizing until the 80th executable generation and before showing a
significant increment by two folds and flattening.
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Table 4. Optimal parameters for Kelvin simple (2 × 2) structure.

Parameter Value

Stress (MPa) 4.15
Unit cell size (mm) 18.6
Total height (mm) 28.5
Breadth (mm) 24.32
Width (mm) 68.12
Relative density (%) 6.12
Strain (mm/mm) 1.7 × 10−5

The variation in the width and relative density with the number of executable genera-
tions showed a similar tendency in terms of having initial fluctuations in the learning phase,
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showing stabilizing tendencies in the 30th–60th executable generations before an increment
by 1.2-fold and coming to stabilized conditions, signifying attainment of the optimal value.
The total height and unit cell size achieved stable behavior with the execution of the 20th
generation, while the breadth value, although it showed mostly detrimental fluctuations,
stabilized to an optimum value of 24.32 mm post the 80th executable generation.
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3.4. Optimization of the Kelvin Round 2 × 2 Structure

As pointed out in the literary work of [34], the formation of Kelvin round 2 × 2 struc-
tures from simple Kelvin 2 × 2 structures can be attributed to the addition of fillets. A
group of researchers [35] studied the impact of loading circumstances and relative density
on Kelvin cells. They observed that the strength of the structure grew as the relative density
of the structure increased. Additionally, the cells’ method of deformation switched from
cell edge bending to cell membrane bending. In our study, the considered structure was
made with the material Visi Jet SL Clear, and the fabrication methodology used was the
SLA technique. Table 5 shows the value of the optimal parameters obtained for the Kelvin
round 2 × 2 structure.
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Table 5. Optimal parameters for Kelvin round (2 × 2) structure.

Parameter Value

Stress (MPa) 9.2
Unit cell size (mm) 8.9
Total height (mm) 24.3
Breadth (mm) 38.5
Width (mm) 67.32
Relative density (%) 5.007
Strain (mm/mm) 6.1 × 10−6

It is evident that the stress value increased almost two-fold when compared with
the straightforward 2 × 2 Kelvin structure, whereas the relative density and unit size
both experienced a sharp decline by 1.08 times and 0.22 times, respectively. Thus, it is
clear that the additional fillets in this situation improved the lattice structure’s rigidity
and resilience, which was already reported [37]. Moreover, the smaller optimal unit size
ensured better stiffness exhibition, as pointed out by [38]. Figure 6 shows the convergence
of the GA model for the Kelvin round 2 × 2 structure. While the initial fluctuations in the
learning phase of the model are noted here as well, overall, the model exhibited a stable
behavior after the 40th executable generation, which is similar to the previous characteristic
curves for the previously stated lattice structures. When it came to the breadth and relative
density, there was a similar propensity for them to fluctuate up until the 40th executable
generation, at which point there was a plateau peak that lasted about from the 10th to the
20th executable generation. The strain curve exhibited an exponential decline relationship
with the passage of the executable generations that was more or less identical. Up to the
40th executable generation, when it stabilized, the stress value exhibited a more or less
significant decline from the initialized executable generations. Comparatively quicker than
the other lattice structure characteristics, the parameter of total height obtained a somewhat
boosted optimization at the 25th executable generation.

3.5. Optimization of Kelvin Cross Bar 2 × 2 Structure

The Kelvin-type lattice structure has been widely investigated owing to its mechan-
ical qualities and ease of modeling [39]. In our study, the investigated Kelvin cross bar
2 × 2 structure was manufactured with the help of a thiol-ene polymer using the additive
manufacturing methodology of direct metal laser sintering (DMLS). Table 6 shows the
value of the optimal parameters obtained for the Kelvin cross bar 2 × 2 structure.

Table 6. Optimal parameters for Kelvin cross bar (2 × 2) structure.

Parameter Value

Stress (MPa) 17.99
Unit cell size (mm) 20.06
Total height (mm) 54.8
Breadth (mm) 51.7
Width (mm) 62.7
Relative density (%) 9.89
Strain (mm/mm) 6.2 × 10−6

The optimal parameters achieved for the Kelvin cross bar 2 × 2 structure exhibited a
higher value for optimal stress as well as a lower value for optimal strain, demonstrating
the fact that the structure is more resistant to deformation of any kind. The structure is also
distinguished by the largest relative density among the equivalents taken into consideration,
suggesting that, contrary to what is suggested in literary works, the lattice structure is
primarily a stretch structure [36]. Given that the unit cell size was significantly bigger in
this case and was the largest among the counterparts of the investigated lattice structures,
it is thought that reducing the unit cell size may be a strategy that can be revisited in
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order to further improve the mechanical properties of the structures. The geometry of
the proposed lattice structure was also larger than that of the prior structure, indicating
that it was far more spread out than its predecessors. Figure 7 shows the convergence
of the GA model for the Kelvin cross bar 2 × 2 structure. On an overall basis, it can be
seen that the value fluctuations at the learning phase of the model continued until the
execution of the 60th executable generation, after which the model gradually stabilized.
The fluctuations and stabilization characteristics for the relative density and width with
the executable generations were almost identical to one another, with both stabilizing at
around the 60th executable generation. The variation in stress, unit cell size, and total
height with the executable generation initially showed a fluctuating behavior until the 20th
executable generation, after which it displayed plateau-like secondary stabilizing behavior
followed by a significant increment or decrement to achieve the final stabilizing behavior
at the proximity of the 60th executable generation. The breadth characteristics, in this case,
exhibited a more volatile fluctuation behavior before achieving a stabilized value.
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4. Conclusions

In this study, numerous topologies of AM lattices, including sea urchin (open cell)
structure, honeycomb, and Kelvin structures simple, round, and crossbar (2 × 2), were con-
sidered, which were fabricated using different materials such as plastics (PLA, PA12), metal
(316L stainless steel), and polymer (thiol-ene) via numerous AM technologies, including
FDM, MJF, SLM, SLA, and DMLS. A deep-learning-driven genetic metaheuristic model
was developed to find the best values of the considered process and design variables for a
given value of strain for a certain topology of the lattice structure. This study’s key findings
are as follows.

− For the sea urchin structure, the developed model suggests the optimal stress (11.9 MPa),
unit cell size (11.4 mm), total height (42.5 mm), breadth (8.7 mm), width (17.29 mm),
and relative density (6.67%) for a strain value of 2.8 × 10−6 mm/mm.
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− For the honeycomb structure, the proposed model finds the optimal stress (12 MPa),
unit cell size (1.5 mm), total height (37.3 mm), breadth (33.69 mm), width (69.89 mm),
and relative density (5.18%) for a strain value of 6.5 × 10−6 mm/mm.

− For the Kelvin simple (2 × 2) structure, the developed model suggests the opti-
mal stress (4.15 MPa), unit cell size (18.6 mm), total height (28.5 mm), breadth
(24.32 mm), width (68.12 mm), and relative density (6.12%) for a strain value of
1.7 × 10−5 mm/mm.

− For the Kelvin round (2 × 2) structure, the proposed model finds the optimal stress
(9.2 MPa), unit cell size (8.9 mm), total height (24.3 mm), breadth (38.5 mm), width
(67.32 mm), and relative density (5.007%) for a strain value of 6.1 × 10−6 mm/mm.

− For the Kelvin cross bar (2 × 2) structure, the developed model suggests the optimal
stress (17.99 MPa), unit cell size (20.06 mm), total height (54.8 mm), breadth (51.7 mm),
width (59.7 mm), and relative density (9.89%) for a strain value of 6.2 × 10−6 mm/mm.

These findings can be used to develop AM lattice structures by controlling the design
and process parameters for other topologies and manufacturing methods on different
materials by including the relevant, impactful, deep-learning-driven genetic metaheuris-
tic algorithm.
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