Vis enkel innførsel

dc.contributor.authorMyhr, Håkon Noren
dc.date.accessioned2024-03-22T13:19:36Z
dc.date.available2024-03-22T13:19:36Z
dc.date.created2024-01-18T11:24:58Z
dc.date.issued2023
dc.identifier.citationLecture Notes in Computer Science (LNCS). 2023, 14071 552-559.en_US
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/11250/3123879
dc.description.abstractNumerical integrators could be used to form interpolation conditions when training neural networks to approximate the vector field of an ordinary differential equation (ODE) from data. When numerical one-step schemes such as the Runge–Kutta methods are used to approximate the temporal discretization of an ODE with a known vector field, properties such as symmetry and stability are much studied. Here, we show that using mono-implicit Runge–Kutta methods of high order allows for accurate training of Hamiltonian neural networks on small datasets. This is demonstrated by numerical experiments where the Hamiltonian of the chaotic double pendulum in addition to the Fermi–Pasta–Ulam–Tsingou system is learned from data.en_US
dc.description.abstractLearning Hamiltonian Systems with Mono-Implicit Runge-Kutta Methodsen_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.urihttps://arxiv.org/pdf/2303.03769.pdf
dc.titleLearning Hamiltonian Systems with Mono-Implicit Runge-Kutta Methodsen_US
dc.title.alternativeLearning Hamiltonian Systems with Mono-Implicit Runge-Kutta Methodsen_US
dc.typeJournal articleen_US
dc.description.versionsubmittedVersionen_US
dc.source.pagenumber552-559en_US
dc.source.volume14071en_US
dc.source.journalLecture Notes in Computer Science (LNCS)en_US
dc.identifier.doi10.1007/978-3-031-38271-0_55
dc.identifier.cristin2229413
dc.relation.projectNorges forskningsråd: 339389en_US
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel