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Abstract. Numerical integrators could be used to form interpolation
conditions when training neural networks to approximate the vector
field of an ordinary differential equation (ODE) from data. When nu-
merical one-step schemes such as the Runge–Kutta methods are used
to approximate the temporal discretization of an ODE with a known
vector field, properties such as symmetry and stability are much stud-
ied. Here, we show that using mono-implicit Runge–Kutta methods of
high order allows for accurate training of Hamiltonian neural networks on
small datasets. This is demonstrated by numerical experiments where the
Hamiltonian of the chaotic double pendulum in addition to the Fermi–
Pasta–Ulam–Tsingou system is learned from data.
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1 Introduction

In this paper, we apply backward error analysis [11] to motivate the use of numer-
ical integrators of high order when approximating the vector field of ODEs with
neural networks. We particularly consider mono-implicit Runge–Kutta (MIRK)
methods [3,1], a class of one-step methods that are explicit when solving inverse
problems. Such methods can be constructed to have high order with relatively
few stages, compared to explicit Runge–Kutta methods, and attractive proper-
ties such as symmetry. Here, we perform numerical experiments learning two
Hamiltonian systems with MIRK methods up to order p = 6. To the best of our
knowledge, this is the first demonstration of the remarkable capacity of numer-
ical integrators of order p > 4 to facilitate the training of Hamiltonian neural
networks [9] from sparse datasets, to do accurate interpolation and extrapolation
in time.

Recently, there has been a growing interest in studying neural networks
through the lens of dynamical systems. This is of interest both to accelerate
data-driven modeling and for designing effective architectures for neural net-
works [10,16,8]. Considering neural network layers as the flow of a dynamical
? Supported by the Research Council of Norway, through the project DynNoise: Learn-
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2 H. Noren

system is the idea driving the study of so-called neural ODEs [4] and its dis-
cretized counter-part, residual neural networks.

Hamiltonian mechanics provide an elegant formalism that allows a wide range
of energy preserving dynamical systems to be described as first order ODEs.
Hamiltonian neural networks [9] aim at learning energy-preserving dynamical
systems from data by approximating the Hamiltonian using neural networks. A
central issue when studying neural networks and dynamical systems is which
method to use when discretizing the continuous time dynamics. Several works
use backward error analysis to argue for the importance of using symplectic
integrators for learning the vector field of Hamiltonian systems [5,17,14]. Using
Taylor expansions to derive the exact form of the inverse modified vector field
allows for the construction of a correction term that cancels the error stemming
from the temporal discretization, up to arbitrary order [14,6].

2 Inverse ODE problems on Hamiltonian form

We consider a first-order ODE

d

dt
y(t) = f(y(t)), y(t) : [0, T ]→ Rn, (1)

and assume that the vector field f is unknown, whereas samples SN = {y(tn)}Nn=0

of the solution are available, with constant step size h. Then the inverse problem
aims at deriving an approximation fθ ≈ f where θ is a set of parameters to
be chosen. The inverse problem can be formulated as the following optimization
problem:

argmin
θ

N−1∑
n=0

∥∥∥∥y(tn+1)− Φh,fθ (y(tn))
∥∥∥∥, (2)

where fθ is a neural network approximation of f with parameters θ, and Φh,fθ
is a one-step integration method with step size h such that yn+1 = Φh,f (yn). In
particular, we assume that (1) is a Hamiltonian system, meaning that

f(y) = J∇H(y(t)), J :=

[
0 I
−I 0

]
∈ R2d×2d. (3)

We follow the idea of Hamiltonian neural networks [9] aiming at approximating
the Hamiltonian, H : R2d → R, such that Hθ is a neural network and f is
approximated by fθ(y) := J∇Hθ(y). It thus follows that the learned vector field
fθ by construction is Hamiltonian.

3 Mono-implicit Runge–Kutta for inverse problems

Since the solution is known point-wise, SN = {y(tn)}Nn=0, the points yn and yn+1

can be substituted by y(tn) and y(tn+1) when computing the next step of a one-
step integration method. We denote this substitution as the inverse injection,
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and note that is yields an interpolation condition for fθ ≈ f for each n. If we
let Φh,fθ in (2) be the so-called implicit midpoint method, we get the following
expression to be minimized:∥∥∥∥y(tn+1)−

(
y(tn) + hfθ

(y(tn) + y(tn+1)

2

))∥∥∥∥, n = 0 . . . , N − 1. (4)

For the midpoint method, the inverse injection bypasses the computationally
costly problem of solving a system of equations within each training iteration,
since y(tn+1) is known. More generally, mono-implicit Runge–Kutta (MIRK)
methods constitute the class of all Runge–Kutta methods that form explicit
methods under this substitution. Given vectors b, v ∈ Rs and a strictly lower
triangular matrix D ∈ Rs×s, a MIRK method is a Runge–Kutta method where
A = D + vbT , and is thus given by

yn+1 = yn + h

s∑
i=1

biki,

ki = f
(
yn + vi(yn+1 − yn) + h

s∑
j=1

dijkj
)
.

(5)

Let us denote ŷn+1 and k̂i as the next time-step and the corresponding stages of
a MIRK method when substituting yn, yn+1 by y(tn), y(tn+1) on the right-hand
side of (5).

Theorem 1. Let yn+1 be given by a MIRK scheme (5) of order p and ŷn+1

be given by the same method under the inverse injection. Assume that only one
integration step is taken from a known initial value yn = y(tn). Then

ŷn+1 = yn+1 +O(hp+2) (6)

and ŷn+1 = y(tn+1) +O(hp+1). (7)

Proof. Since the method (5) is of order p we have that

k̂1 = f
(
y(tn) + v1(y(tn+1)− y(tn))

)
= f

(
yn + v1(yn+1 − yn)

)
+O(hp+1) = k1 +O(hp+1)

The same approximation could be made for k̂2, . . . , k̂s, since D is strictly lower
triangular, yielding k̂i = ki +O(hp+1) for i = 1, . . . , s. In total, we find that

ŷn+1 = y(tn) + h

s∑
i=1

bik̂i

= yn + h

s∑
i=1

biki +O(hp+2)

= yn+1 +O(hp+2)

= y(tn+1) +O(hp+1) +O(hp+2).

= y(tn+1) +O(hp+1).



4 H. Noren

For the numerical experiments, we will consider the optimal MIRK methods
derived in [12]. The minimal number of stages required to obtain order p is
s = p−1 for MIRK methods [1]. In contrast, explicit Runge–Kutta methods need
s = p stages to obtain order p for 1 ≤ p ≤ 4 and s = p+1 stages for p = 5, 6 [2],
meaning that the MIRK methods have significantly lower computational cost for
a given order. As an example, a symmetric, A-stable MIRK method with s = 3
stages and of order p = 4 is given by

k1 = f(yn), k2 = f(yn+1),

k3 = f

(
1

2
(yn + yn+1) +

h

8
(k1 − k2)

)
,

yn+1 = yn +
h

6
(k1 + k2 + 4k3).

4 Backward error analysis

Let ϕh,f : Rn → Rn be the h-flow of an ODE such that ϕh,f (y(t0)) := y(t0 + h)
for an initial value y(t0). With this notation, the vector field fh(y) solving the
optimization problem (2) exactly must satisfy

ϕh,f (y(tn)) = Φh,fh(y(tn)), n = 0, . . . , N − 1. (8)

For a given numerical one-step method Φ, the inverse modified vector field [18]
fh could be computed by Taylor expansions. However, since their convergence
is not guaranteed, truncated approximations are usually considered. This idea
builds on backward error analysis [11, Ch. IX], which is used in the case of
forward problems (f is known and y(t) is approximated) and instead computes
the modified vector field f̃h satisfying ϕh,f̃h(y(tn)) = Φh,f (y(tn)).

An important result, Theorem 3.2 in [18], which is very similar to Theorem
1.2 in [11, Ch. IX], states that if the method Φh,f is of order p, then the inverse
modified vector field is a truncation of the true vector field, given by

fh(y) = f(y) + hpfp(y) + · · · = f(y) +O(hp). (9)

Furthermore, by the triangle inequality, we can express the objective function
of the optimization problem (2) in a given point y(tn) by∥∥y(tn+1)− Φh,fθ (y(tn))

∥∥ ≤∥∥ϕh,f (y(tn))− Φh,fh(y(tn))∥∥
+
∥∥Φh,fh(y(tn))− Φh,fθ (y(tn))∥∥

In the case of formal analysis where we do not consider convergence issues and
truncated approximations, the first term is zero by the definition of fh in (8).
Thus it is evident that the approximated vector field will approach the inverse
modified vector field as the optimization objective tends to zero. Then, by Equa-
tion (9) it is clear that fθ(y) will learn an approximation of f(y) up to a trun-
cation O(hp), which motivates using an integrator of high order.
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5 Numerical experiments

In this section, MIRK methods of order 2 ≤ p ≤ 6, denoted by MIRKp in
the plots, in addition to the classic fourth-order Runge–Kutta method (RK4),
is utilized for the temporal discretization in the training of Hamiltonian neural
networks. We train on samples y(tn), for tn ∈ [0, 20], from solutions of the double
pendulum (DP) problem with the Hamiltonian

H(y1, y2, y3, y4) =
1
2y

2
3 + y24 − y3y4 cos(y1 − y2)

1 + sin2(y1 − y2)
− 2 cos(y1)− cos(y2).

In addition, we consider the highly oscillatory Fermi–Pasta–Ulam–Tsingou (FPUT)
problem withm = 1, meaning y(t) ∈ R4, and ω = 2 as formulated in [11, Ch. I.5].
For both Hamiltonian systems, the data SN = {y(ti)}Ni=0 is found by integrating
the system using DOP853 [7] with a tolerance of 10−15 for the following step
sizes and number of steps: (h,N) = (2, 10), (1, 20), (0.5, 40). The initial values
used are yDP

0 = [−0.1, 0.5,−0.3, 0.1]T and yFPUT
0 = [0.2, 0.4,−0.3, 0.5]T . The

results for [y(t)]3 are illustrated in Figure 1.
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Fig. 1: Result when integrating over the learned vector fields when training on
data from the double pendulum (left, N = 10) and the Fermi–Pasta–Ulam–
Tsingou (right, N = 20) Hamiltonian.

After using the specified integrators in training, approximated solutions ỹn
are computed for each learned vector field fθ again using DOP853, but now with
step size and number of steps given by (htest, Ntest) = ( h20 , 4 ·20N), enabling the
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computation of the interpolation and extrapolation error:

el(ỹ) =
1

M + 1

M∑
n=0

‖ỹn − y(tn)‖2, tn ∈ Ql, M = |Ql| − 1. (10)

Here ỹn+1 := Φh,fθ (ỹn), and l ∈ {i, e} denotes interpolation or extrapolation:
Qi = {hn : 0 ≤ hn ≤ 20, n ∈ Z+} and Qe = {hn : 20 ≤ hn ≤ 80, n ∈ Z+}, with
h = htest. In addition, the error of the learned Hamiltonian is computed along
the true trajectory y(tn) by

e(Hθ) =
1

M + 1

M∑
n=0

H(y(tn))−Hθ(y(tn)),

e(Hθ) =
1

M + 1

M∑
n=0

∣∣∣∣H(y(tn))−Hθ(y(tn))− e(Hθ)

∣∣∣∣,
(11)

for tn ∈ Qi ∪Qe. The mean is subtracted since the Hamiltonian is only trained
by its gradient ∇Hθ. The error terms are shown in Figure 2.
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10−1

100

101 Extrapolation error ee(ỹ)
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Fig. 2: Errors in interpolation, extrapolation and the Hamiltonian for the double
pendulum (left) and the Fermi–Pasta–Ulam–Tsingou problem (right).

For both test problems the Hamiltonian neural networks have 3 layers with
a width of 100 neurons and tanh(·) as the activation function. Experiments are
implemented using PyTorch [15] and the optimization problem is solved using
the quasi-Newton L-BFGS algorithm [13] for 100 epochs without batching. The
implementation of the experiments could be found in the following repository
github.com/hakonnoren/learning_hamiltonian_mirk.

https://github.com/hakonnoren/learning_hamiltonian_mirk
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6 Conclusion

The mono-implicit Runge–Kutta methods enable the combination of high order
and computationally efficient training of Hamiltonian neural networks. The im-
portance of high order is demonstrated by the remarkable capacity of MIRK6
in learning a trajectory of the chaotic double pendulum and the Fermi–Pasta–
Ulam–Tsingou Hamiltonian systems from just 11 and 21 points, see Figure 1.
In most cases the error, displayed in Figure 2, is decreasing when increasing the
order. Additionally MIRK4 displays superior performance comparing with the
explicit method RK4 of same order. Even though the numerical experiments
show promising results, the theoretical error analysis in this work is rudimen-
tary at best. Future work should consider this is greater detail, perhaps along
the lines of [18].
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