Vis enkel innførsel

dc.contributor.authorKelly, Cian
dc.contributor.authorMichelsen, Finn Are
dc.contributor.authorAlver, Morten Omholt
dc.date.accessioned2024-01-15T10:26:38Z
dc.date.available2024-01-15T10:26:38Z
dc.date.created2023-01-21T17:52:33Z
dc.date.issued2023
dc.identifier.issn0165-7836
dc.identifier.urihttps://hdl.handle.net/11250/3111479
dc.description.abstractThis article presents a novel method for estimating large scale spatiotemporal distribution patterns of fish populations modelled at the individual level. A single realization of an individual-based model calibrated on historic data has weak predictive capacity, given the underlying uncertainties faced when modelling a relatively small cluster of individuals operating in a high dimensional spatial plane. By incorporating real-time data sources to update these models, we can improve their predictive capacity. When correcting estimates from a large population of individuals, we don’t have access to information about individual histories, such as information derived from tagging data. We propose mapping individuals to derived density matrices, which can be corrected using conventional data sources which describe a mass of individuals e.g. catch data. An ensemble of derived states are used as forecast inputs to an assimilation procedure, that calculates an analysis state matrix of the same form. An individuals’ position and biomass values are updated based on the analysis values. To assess the effect of corrections, we setup a simulation experiment to explore the impact the number of measurement points has on the updated spatiotemporal distribution. The measurement points were sampled from derived states of a twin model that resembles the original model. The output of the twin model serves as the true distribution. With an increasing number of measurement points the centre of mass of the modelled distribution converges on the true distribution and the two distributions increase in overlap. Additionally, the absolute error between model and true values decreases. This estimation method, applied to individual-based models and coupled with real-time fisheries data, can improve spatially explicit estimates of fish distributions.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleAn ensemble modelling approach for spatiotemporally explicit estimation of fish distributions using data assimilationen_US
dc.title.alternativeAn ensemble modelling approach for spatiotemporally explicit estimation of fish distributions using data assimilationen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.volume261en_US
dc.source.journalFisheries Researchen_US
dc.identifier.doi10.1016/j.fishres.2023.106624
dc.identifier.cristin2112537
dc.relation.projectSigma2: NN9828Ken_US
dc.relation.projectNorges forskningsråd: 296321en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal